/* -*- Mode: C; tab-width: 8; indent-tabs-mode: t; c-basic-offset: 8 -*- */ /* * Copyright (C) 1999-2008 Novell, Inc. (www.novell.com) * * This library is free software: you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include "camel-network-settings.h" #include "camel-sasl-ntlm.h" #include "camel-stream-process.h" #define CAMEL_SASL_NTLM_GET_PRIVATE(obj) \ (G_TYPE_INSTANCE_GET_PRIVATE \ ((obj), CAMEL_TYPE_SASL_NTLM, CamelSaslNTLMPrivate)) struct _CamelSaslNTLMPrivate { gint placeholder; /* allow for future expansion */ #ifndef G_OS_WIN32 gboolean tried_helper; CamelStream *helper_stream; gchar *type1_msg; #endif }; static CamelServiceAuthType sasl_ntlm_auth_type = { N_("NTLM / SPA"), N_("This option will connect to a Windows-based server using " "NTLM / Secure Password Authentication."), "NTLM", TRUE }; G_DEFINE_TYPE (CamelSaslNTLM, camel_sasl_ntlm, CAMEL_TYPE_SASL) #define NTLM_REQUEST "NTLMSSP\x00\x01\x00\x00\x00\x06\x82\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00" #define NTLM_CHALLENGE_DOMAIN_OFFSET 12 #define NTLM_CHALLENGE_FLAGS_OFFSET 20 #define NTLM_CHALLENGE_NONCE_OFFSET 24 #define NTLM_RESPONSE_HEADER "NTLMSSP\x00\x03\x00\x00\x00" #define NTLM_RESPONSE_FLAGS "\x82\x01" #define NTLM_RESPONSE_BASE_SIZE 64 #define NTLM_RESPONSE_LM_RESP_OFFSET 12 #define NTLM_RESPONSE_NT_RESP_OFFSET 20 #define NTLM_RESPONSE_DOMAIN_OFFSET 28 #define NTLM_RESPONSE_USER_OFFSET 36 #define NTLM_RESPONSE_HOST_OFFSET 44 #define NTLM_RESPONSE_FLAGS_OFFSET 60 #define NTLM_AUTH_HELPER "/usr/bin/ntlm_auth" typedef struct { guint16 length; guint16 allocated; guint32 offset; } SecurityBuffer; static GString * ntlm_get_string (GByteArray *ba, gint offset) { SecurityBuffer *secbuf; GString *string; gchar *buf_string; guint16 buf_length; guint32 buf_offset; secbuf = (SecurityBuffer *) &ba->data[offset]; buf_length = GUINT16_FROM_LE (secbuf->length); buf_offset = GUINT32_FROM_LE (secbuf->offset); if (ba->len < buf_offset + buf_length) return NULL; string = g_string_sized_new (buf_length); buf_string = (gchar *) &ba->data[buf_offset]; g_string_append_len (string, buf_string, buf_length); return string; } static void ntlm_set_string (GByteArray *ba, gint offset, const gchar *data, gint len) { SecurityBuffer *secbuf; secbuf = (SecurityBuffer *) &ba->data[offset]; secbuf->length = GUINT16_TO_LE (len); secbuf->offset = GUINT32_TO_LE (ba->len); secbuf->allocated = secbuf->length; g_byte_array_append (ba, (guint8 *) data, len); } /* MD4 */ static void md4sum (const guchar *in, gint nbytes, guchar digest[16]); /* DES */ typedef guint32 DES_KS[16][2]; /* Single-key DES key schedule */ static void deskey (DES_KS, guchar *, gint); static void des (DES_KS, guchar *); static void setup_schedule (const guchar *key_56, DES_KS ks); #define LM_PASSWORD_MAGIC "\x4B\x47\x53\x21\x40\x23\x24\x25" \ "\x4B\x47\x53\x21\x40\x23\x24\x25" \ "\x00\x00\x00\x00\x00" static void ntlm_lanmanager_hash (const gchar *password, gchar hash[21]) { guchar lm_password[15]; DES_KS ks; gint i; for (i = 0; i < 14 && password && password[i]; i++) lm_password[i] = toupper ((guchar) password[i]); for (; i < 15; i++) lm_password[i] = '\0'; memcpy (hash, LM_PASSWORD_MAGIC, 21); setup_schedule (lm_password, ks); des (ks, (guchar *) hash); setup_schedule (lm_password + 7, ks); des (ks, (guchar *) hash + 8); } static void ntlm_nt_hash (const gchar *password, gchar hash[21]) { guchar *buf, *p; if (!password) password = ""; p = buf = g_malloc (strlen (password) * 2); while (*password) { *p++ = *password++; *p++ = '\0'; } md4sum (buf, p - buf, (guchar *) hash); memset (hash + 16, 0, 5); g_free (buf); } #define KEYBITS(k,s) \ (((k[(s) / 8] << ((s) % 8)) & 0xFF) | (k[(s) / 8 + 1] >> (8 - (s) % 8))) /* DES utils */ /* Set up a key schedule based on a 56bit key */ static void setup_schedule (const guchar *key_56, DES_KS ks) { guchar key[8]; gint i, c, bit; for (i = 0; i < 8; i++) { key[i] = KEYBITS (key_56, i * 7); /* Fix parity */ for (c = bit = 0; bit < 8; bit++) if (key[i] & (1 << bit)) c++; if (!(c & 1)) key[i] ^= 0x01; } deskey (ks, key, 0); } static void ntlm_calc_response (const guchar key[21], const guchar plaintext[8], guchar results[24]) { DES_KS ks; memcpy (results, plaintext, 8); memcpy (results + 8, plaintext, 8); memcpy (results + 16, plaintext, 8); setup_schedule (key, ks); des (ks, results); setup_schedule (key + 7, ks); des (ks, results + 8); setup_schedule (key + 14, ks); des (ks, results + 16); } /* * MD4 encoder. (The one everyone else uses is not GPL-compatible; * this is a reimplementation from spec.) This doesn't need to be * efficient for our purposes, although it would be nice to fix * it to not malloc()... */ #define F(X,Y,Z) ( ((X)&(Y)) | ((~(X))&(Z)) ) #define G(X,Y,Z) ( ((X)&(Y)) | ((X)&(Z)) | ((Y)&(Z)) ) #define H(X,Y,Z) ( (X)^(Y)^(Z) ) #define ROT(val, n) ( ((val) << (n)) | ((val) >> (32 - (n))) ) static void md4sum (const guchar *in, gint nbytes, guchar digest[16]) { guchar *M; guint32 A, B, C, D, AA, BB, CC, DD, X[16]; gint pbytes, nbits = nbytes * 8, i, j; /* There is *always* padding of at least one bit. */ pbytes = ((119 - (nbytes % 64)) % 64) + 1; M = alloca (nbytes + pbytes + 8); memcpy (M, in, nbytes); memset (M + nbytes, 0, pbytes + 8); M[nbytes] = 0x80; M[nbytes + pbytes] = nbits & 0xFF; M[nbytes + pbytes + 1] = (nbits >> 8) & 0xFF; M[nbytes + pbytes + 2] = (nbits >> 16) & 0xFF; M[nbytes + pbytes + 3] = (nbits >> 24) & 0xFF; A = 0x67452301; B = 0xEFCDAB89; C = 0x98BADCFE; D = 0x10325476; for (i = 0; i < nbytes + pbytes + 8; i += 64) { for (j = 0; j < 16; j++) { X[j] = (M[i + j * 4]) | (M[i + j * 4 + 1] << 8) | (M[i + j * 4 + 2] << 16) | (M[i + j * 4 + 3] << 24); } AA = A; BB = B; CC = C; DD = D; A = ROT (A + F (B, C, D) + X[0], 3); D = ROT (D + F (A, B, C) + X[1], 7); C = ROT (C + F (D, A, B) + X[2], 11); B = ROT (B + F (C, D, A) + X[3], 19); A = ROT (A + F (B, C, D) + X[4], 3); D = ROT (D + F (A, B, C) + X[5], 7); C = ROT (C + F (D, A, B) + X[6], 11); B = ROT (B + F (C, D, A) + X[7], 19); A = ROT (A + F (B, C, D) + X[8], 3); D = ROT (D + F (A, B, C) + X[9], 7); C = ROT (C + F (D, A, B) + X[10], 11); B = ROT (B + F (C, D, A) + X[11], 19); A = ROT (A + F (B, C, D) + X[12], 3); D = ROT (D + F (A, B, C) + X[13], 7); C = ROT (C + F (D, A, B) + X[14], 11); B = ROT (B + F (C, D, A) + X[15], 19); A = ROT (A + G (B, C, D) + X[0] + 0x5A827999, 3); D = ROT (D + G (A, B, C) + X[4] + 0x5A827999, 5); C = ROT (C + G (D, A, B) + X[8] + 0x5A827999, 9); B = ROT (B + G (C, D, A) + X[12] + 0x5A827999, 13); A = ROT (A + G (B, C, D) + X[1] + 0x5A827999, 3); D = ROT (D + G (A, B, C) + X[5] + 0x5A827999, 5); C = ROT (C + G (D, A, B) + X[9] + 0x5A827999, 9); B = ROT (B + G (C, D, A) + X[13] + 0x5A827999, 13); A = ROT (A + G (B, C, D) + X[2] + 0x5A827999, 3); D = ROT (D + G (A, B, C) + X[6] + 0x5A827999, 5); C = ROT (C + G (D, A, B) + X[10] + 0x5A827999, 9); B = ROT (B + G (C, D, A) + X[14] + 0x5A827999, 13); A = ROT (A + G (B, C, D) + X[3] + 0x5A827999, 3); D = ROT (D + G (A, B, C) + X[7] + 0x5A827999, 5); C = ROT (C + G (D, A, B) + X[11] + 0x5A827999, 9); B = ROT (B + G (C, D, A) + X[15] + 0x5A827999, 13); A = ROT (A + H (B, C, D) + X[0] + 0x6ED9EBA1, 3); D = ROT (D + H (A, B, C) + X[8] + 0x6ED9EBA1, 9); C = ROT (C + H (D, A, B) + X[4] + 0x6ED9EBA1, 11); B = ROT (B + H (C, D, A) + X[12] + 0x6ED9EBA1, 15); A = ROT (A + H (B, C, D) + X[2] + 0x6ED9EBA1, 3); D = ROT (D + H (A, B, C) + X[10] + 0x6ED9EBA1, 9); C = ROT (C + H (D, A, B) + X[6] + 0x6ED9EBA1, 11); B = ROT (B + H (C, D, A) + X[14] + 0x6ED9EBA1, 15); A = ROT (A + H (B, C, D) + X[1] + 0x6ED9EBA1, 3); D = ROT (D + H (A, B, C) + X[9] + 0x6ED9EBA1, 9); C = ROT (C + H (D, A, B) + X[5] + 0x6ED9EBA1, 11); B = ROT (B + H (C, D, A) + X[13] + 0x6ED9EBA1, 15); A = ROT (A + H (B, C, D) + X[3] + 0x6ED9EBA1, 3); D = ROT (D + H (A, B, C) + X[11] + 0x6ED9EBA1, 9); C = ROT (C + H (D, A, B) + X[7] + 0x6ED9EBA1, 11); B = ROT (B + H (C, D, A) + X[15] + 0x6ED9EBA1, 15); A += AA; B += BB; C += CC; D += DD; } digest[0] = A & 0xFF; digest[1] = (A >> 8) & 0xFF; digest[2] = (A >> 16) & 0xFF; digest[3] = (A >> 24) & 0xFF; digest[4] = B & 0xFF; digest[5] = (B >> 8) & 0xFF; digest[6] = (B >> 16) & 0xFF; digest[7] = (B >> 24) & 0xFF; digest[8] = C & 0xFF; digest[9] = (C >> 8) & 0xFF; digest[10] = (C >> 16) & 0xFF; digest[11] = (C >> 24) & 0xFF; digest[12] = D & 0xFF; digest[13] = (D >> 8) & 0xFF; digest[14] = (D >> 16) & 0xFF; digest[15] = (D >> 24) & 0xFF; } /* Public domain DES implementation from Phil Karn */ static guint32 Spbox[8][64] = { { 0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004 }, { 0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000 }, { 0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200 }, { 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080 }, { 0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100 }, { 0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010 }, { 0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002 }, { 0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000 } }; #undef F #define F(l,r,key){\ work = ((r >> 4) | (r << 28)) ^ key[0];\ l ^= Spbox[6][work & 0x3f];\ l ^= Spbox[4][(work >> 8) & 0x3f];\ l ^= Spbox[2][(work >> 16) & 0x3f];\ l ^= Spbox[0][(work >> 24) & 0x3f];\ work = r ^ key[1];\ l ^= Spbox[7][work & 0x3f];\ l ^= Spbox[5][(work >> 8) & 0x3f];\ l ^= Spbox[3][(work >> 16) & 0x3f];\ l ^= Spbox[1][(work >> 24) & 0x3f];\ } /* Encrypt or decrypt a block of data in ECB mode */ static void des (guint32 ks[16][2], guchar block[8]) { guint32 left, right, work; /* Read input block and place in left/right in big-endian order */ left = ((guint32) block[0] << 24) | ((guint32) block[1] << 16) | ((guint32) block[2] << 8) | (guint32) block[3]; right = ((guint32) block[4] << 24) | ((guint32) block[5] << 16) | ((guint32) block[6] << 8) | (guint32) block[7]; /* Hoey's clever initial permutation algorithm, from Outerbridge * (see Schneier p 478) * * The convention here is the same as Outerbridge: rotate each * register left by 1 bit, i.e., so that "left" contains permuted * input bits 2, 3, 4, ... 1 and "right" contains 33, 34, 35, ... 32 * (using origin-1 numbering as in the FIPS). This allows us to avoid * one of the two rotates that would otherwise be required in each of * the 16 rounds. */ work = ((left >> 4) ^ right) & 0x0f0f0f0f; right ^= work; left ^= work << 4; work = ((left >> 16) ^ right) & 0xffff; right ^= work; left ^= work << 16; work = ((right >> 2) ^ left) & 0x33333333; left ^= work; right ^= (work << 2); work = ((right >> 8) ^ left) & 0xff00ff; left ^= work; right ^= (work << 8); right = (right << 1) | (right >> 31); work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = (left << 1) | (left >> 31); /* Now do the 16 rounds */ F (left,right,ks[0]); F (right,left,ks[1]); F (left,right,ks[2]); F (right,left,ks[3]); F (left,right,ks[4]); F (right,left,ks[5]); F (left,right,ks[6]); F (right,left,ks[7]); F (left,right,ks[8]); F (right,left,ks[9]); F (left,right,ks[10]); F (right,left,ks[11]); F (left,right,ks[12]); F (right,left,ks[13]); F (left,right,ks[14]); F (right,left,ks[15]); /* Inverse permutation, also from Hoey via Outerbridge and Schneier */ right = (right << 31) | (right >> 1); work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = (left >> 1) | (left << 31); work = ((left >> 8) ^ right) & 0xff00ff; right ^= work; left ^= work << 8; work = ((left >> 2) ^ right) & 0x33333333; right ^= work; left ^= work << 2; work = ((right >> 16) ^ left) & 0xffff; left ^= work; right ^= work << 16; work = ((right >> 4) ^ left) & 0x0f0f0f0f; left ^= work; right ^= work << 4; /* Put the block back into the user's buffer with final swap */ block[0] = right >> 24; block[1] = right >> 16; block[2] = right >> 8; block[3] = right; block[4] = left >> 24; block[5] = left >> 16; block[6] = left >> 8; block[7] = left; } /* Key schedule-related tables from FIPS-46 */ /* permuted choice table (key) */ static guchar pc1[] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; /* number left rotations of pc1 */ static guchar totrot[] = { 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28 }; /* permuted choice key (table) */ static guchar pc2[] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; /* End of DES-defined tables */ /* bit 0 is left-most in byte */ static gint bytebit[] = { 0200,0100,040,020,010,04,02,01 }; /* Generate key schedule for encryption or decryption * depending on the value of "decrypt" */ static void deskey (DES_KS k, guchar *key, gint decrypt) { guchar pc1m[56]; /* place to modify pc1 into */ guchar pcr[56]; /* place to rotate pc1 into */ register gint i,j,l; gint m; guchar ks[8]; for (j=0; j<56; j++) { /* convert pc1 to bits of key */ l=pc1[j]-1; /* integer bit location */ m = l & 07; /* find bit */ pc1m[j]=(key[l>>3] & /* find which key byte l is in */ bytebit[m]) /* and which bit of that byte */ ? 1 : 0; /* and store 1-bit result */ } for (i=0; i<16; i++) { /* key chunk for each iteration */ memset (ks,0,sizeof (ks)); /* Clear key schedule */ for (j=0; j<56; j++) /* rotate pc1 the right amount */ pcr[j] = pc1m[(l = j + totrot[decrypt? 15 - i : i]) < (j < 28? 28 : 56) ? l: l - 28]; /* rotate left and right halves independently */ for (j=0; j<48; j++){ /* select bits individually */ /* check bit that goes to ks[j] */ if (pcr[pc2[j]-1]) { /* mask it in if it's there */ l= j % 6; ks[j / 6] |= bytebit[l] >> 2; } } /* Now convert to packed odd/even interleaved form */ k[i][0] = ((guint32) ks[0] << 24) | ((guint32) ks[2] << 16) | ((guint32) ks[4] << 8) | ((guint32) ks[6]); k[i][1] = ((guint32) ks[1] << 24) | ((guint32) ks[3] << 16) | ((guint32) ks[5] << 8) | ((guint32) ks[7]); } } static gboolean sasl_ntlm_try_empty_password_sync (CamelSasl *sasl, GCancellable *cancellable, GError **error) { #ifndef G_OS_WIN32 CamelStream *stream; CamelNetworkSettings *network_settings; CamelSettings *settings; CamelService *service; CamelSaslNTLM *ntlm = CAMEL_SASL_NTLM (sasl); CamelSaslNTLMPrivate *priv = ntlm->priv; const gchar *cp; gchar *user; gchar buf[1024]; gsize s; gchar *command; gint ret; if (priv->tried_helper) return !!priv->helper_stream; priv->tried_helper = TRUE; if (access (NTLM_AUTH_HELPER, X_OK)) return FALSE; service = camel_sasl_get_service (sasl); settings = camel_service_ref_settings (service); g_return_val_if_fail (CAMEL_IS_NETWORK_SETTINGS (settings), FALSE); network_settings = CAMEL_NETWORK_SETTINGS (settings); user = camel_network_settings_dup_user (network_settings); g_object_unref (settings); g_return_val_if_fail (user != NULL, FALSE); cp = strchr (user, '\\'); if (cp != NULL) { command = g_strdup_printf ( "%s --helper-protocol ntlmssp-client-1 " "--use-cached-creds --username '%s' " "--domain '%.*s'", NTLM_AUTH_HELPER, cp + 1, (gint)(cp - user), user); } else { command = g_strdup_printf ( "%s --helper-protocol ntlmssp-client-1 " "--use-cached-creds --username '%s'", NTLM_AUTH_HELPER, user); } stream = camel_stream_process_new (); ret = camel_stream_process_connect ( CAMEL_STREAM_PROCESS (stream), command, NULL, error); g_free (command); g_free (user); if (ret) { g_object_unref (stream); return FALSE; } if (camel_stream_write_string (stream, "YR\n", cancellable, error) < 0) { g_object_unref (stream); return FALSE; } s = camel_stream_read (stream, buf, sizeof (buf), cancellable, NULL); if (s < 4) { g_object_unref (stream); return FALSE; } if (buf[0] != 'Y' || buf[1] != 'R' || buf[2] != ' ' || buf[s - 1] != '\n') { g_object_unref (stream); return FALSE; } buf[s - 1] = 0; priv->helper_stream = stream; priv->type1_msg = g_strdup (buf + 3); return TRUE; #else /* Win32 should be able to use SSPI here. */ return FALSE; #endif } static GByteArray * sasl_ntlm_challenge_sync (CamelSasl *sasl, GByteArray *token, GCancellable *cancellable, GError **error) { #ifndef G_OS_WIN32 CamelSaslNTLM *ntlm = CAMEL_SASL_NTLM (sasl); CamelSaslNTLMPrivate *priv = ntlm->priv; #endif CamelNetworkSettings *network_settings; CamelSettings *settings; CamelService *service; GByteArray *ret; guchar nonce[8], hash[21], lm_resp[24], nt_resp[24]; GString *domain = NULL; const gchar *password; const gchar *real_user; const gchar *cp; gchar *user = NULL; service = camel_sasl_get_service (sasl); settings = camel_service_ref_settings (service); g_return_val_if_fail (CAMEL_IS_NETWORK_SETTINGS (settings), NULL); network_settings = CAMEL_NETWORK_SETTINGS (settings); user = camel_network_settings_dup_user (network_settings); g_object_unref (settings); g_return_val_if_fail (user != NULL, NULL); password = camel_service_get_password (service); /* Assert a non-NULL password below, not here. */ ret = g_byte_array_new (); #ifndef G_OS_WIN32 if (!priv->tried_helper && password == NULL) sasl_ntlm_try_empty_password_sync (sasl, cancellable, NULL); if (priv->helper_stream && password == NULL) { guchar *data; gsize length = 0; gchar buf[1024]; gsize s = 0; buf[0] = 0; if (!token || !token->len) { if (priv->type1_msg) { data = g_base64_decode (priv->type1_msg, &length); g_byte_array_append (ret, data, length); g_free (data); g_free (priv->type1_msg); priv->type1_msg = NULL; } goto exit; } else { gchar *type2; gchar *string; type2 = g_base64_encode (token->data, token->len); string = g_strdup_printf ("TT %s\n", type2); if (camel_stream_write_string ( priv->helper_stream, string, NULL, NULL) >= 0 && (s = camel_stream_read ( priv->helper_stream, buf, sizeof (buf), cancellable, NULL)) > 4 && buf[0] == 'K' && buf[1] == 'K' && buf[2] == ' ' && buf[s - 1] == '\n') { buf[s - 1] = 0; data = g_base64_decode (buf + 3, &length); g_byte_array_append (ret, data, length); g_free (data); } else g_warning ("Didn't get valid response from ntlm_auth helper"); g_free (string); g_free (type2); } /* On failure, we just return an empty string. Setting the * GError would cause the providers to abort the whole * connection, and we want them to ask the user for a password * and continue. */ g_object_unref (priv->helper_stream); priv->helper_stream = NULL; goto exit; } #endif g_return_val_if_fail (password != NULL, NULL); if (!token || token->len < NTLM_CHALLENGE_NONCE_OFFSET + 8) goto fail; /* 0x00080000: Negotiate NTLM2 Key */ if (token->data[NTLM_CHALLENGE_FLAGS_OFFSET + 2] & 8) { /* NTLM2 session response */ struct { guint32 srv[2]; guint32 clnt[2]; } sess_nonce; GChecksum *md5; guint8 digest[16]; gsize digest_len = sizeof (digest); sess_nonce.clnt[0] = g_random_int (); sess_nonce.clnt[1] = g_random_int (); /* LM response is 8-byte client nonce, NUL-padded to 24 */ memcpy (lm_resp, sess_nonce.clnt, 8); memset (lm_resp + 8, 0, 16); /* Session nonce is client nonce + server nonce */ memcpy ( sess_nonce.srv, token->data + NTLM_CHALLENGE_NONCE_OFFSET, 8); /* Take MD5 of session nonce */ md5 = g_checksum_new (G_CHECKSUM_MD5); g_checksum_update (md5, (gpointer) &sess_nonce, 16); g_checksum_get_digest (md5, (gpointer) &digest, &digest_len); g_checksum_get_digest (md5, digest, &digest_len); g_checksum_free (md5); ntlm_nt_hash (password, (gchar *) hash); ntlm_calc_response (hash, digest, nt_resp); } else { /* NTLM1 */ memcpy (nonce, token->data + NTLM_CHALLENGE_NONCE_OFFSET, 8); ntlm_lanmanager_hash (password, (gchar *) hash); ntlm_calc_response (hash, nonce, lm_resp); ntlm_nt_hash (password, (gchar *) hash); ntlm_calc_response (hash, nonce, nt_resp); } /* If a domain is supplied as part of the username, use it */ cp = strchr (user, '\\'); if (cp != NULL) { domain = g_string_new_len (user, cp - user); real_user = cp + 1; } else real_user = user; /* Otherwise, fall back to the domain of the server, if possible */ if (domain == NULL) domain = ntlm_get_string (token, NTLM_CHALLENGE_DOMAIN_OFFSET); if (domain == NULL) goto fail; /* Don't jump to 'fail' label after this point. */ g_byte_array_set_size (ret, NTLM_RESPONSE_BASE_SIZE); memset (ret->data, 0, NTLM_RESPONSE_BASE_SIZE); memcpy ( ret->data, NTLM_RESPONSE_HEADER, sizeof (NTLM_RESPONSE_HEADER) - 1); memcpy ( ret->data + NTLM_RESPONSE_FLAGS_OFFSET, NTLM_RESPONSE_FLAGS, sizeof (NTLM_RESPONSE_FLAGS) - 1); /* Mask in the NTLM2SESSION flag */ ret->data[NTLM_RESPONSE_FLAGS_OFFSET + 2] |= token->data[NTLM_CHALLENGE_FLAGS_OFFSET + 2] & 8; ntlm_set_string ( ret, NTLM_RESPONSE_DOMAIN_OFFSET, domain->str, domain->len); ntlm_set_string ( ret, NTLM_RESPONSE_USER_OFFSET, real_user, strlen (real_user)); ntlm_set_string ( ret, NTLM_RESPONSE_HOST_OFFSET, "UNKNOWN", sizeof ("UNKNOWN") - 1); ntlm_set_string ( ret, NTLM_RESPONSE_LM_RESP_OFFSET, (const gchar *) lm_resp, sizeof (lm_resp)); ntlm_set_string ( ret, NTLM_RESPONSE_NT_RESP_OFFSET, (const gchar *) nt_resp, sizeof (nt_resp)); camel_sasl_set_authenticated (sasl, TRUE); g_string_free (domain, TRUE); goto exit; fail: /* If the challenge is malformed, restart authentication. * XXX A malicious server could make this loop indefinitely. */ g_byte_array_append ( ret, (guint8 *) NTLM_REQUEST, sizeof (NTLM_REQUEST) - 1); exit: g_free (user); return ret; } static void sasl_ntlm_finalize (GObject *object) { #ifndef G_OS_WIN32 CamelSaslNTLM *ntlm = CAMEL_SASL_NTLM (object); CamelSaslNTLMPrivate *priv = ntlm->priv; if (priv->type1_msg) g_free (priv->type1_msg); if (priv->helper_stream) g_object_unref (priv->helper_stream); #endif /* Chain up to parent's finalize() method. */ G_OBJECT_CLASS (camel_sasl_ntlm_parent_class)->finalize (object); } static void camel_sasl_ntlm_class_init (CamelSaslNTLMClass *class) { GObjectClass *object_class; CamelSaslClass *sasl_class; g_type_class_add_private (class, sizeof (CamelSaslNTLMPrivate)); object_class = G_OBJECT_CLASS (class); object_class->finalize = sasl_ntlm_finalize; sasl_class = CAMEL_SASL_CLASS (class); sasl_class->auth_type = &sasl_ntlm_auth_type; sasl_class->challenge_sync = sasl_ntlm_challenge_sync; sasl_class->try_empty_password_sync = sasl_ntlm_try_empty_password_sync; } static void camel_sasl_ntlm_init (CamelSaslNTLM *sasl) { sasl->priv = CAMEL_SASL_NTLM_GET_PRIVATE (sasl); }