%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1999-2018. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% %% %% Purpose : Transform normal Erlang to Core Erlang %% At this stage all preprocessing has been done. All that is left are %% "pure" Erlang functions. %% %% Core transformation is done in three stages: %% %% 1. Flatten expressions into an internal core form without doing %% matching. %% %% 2. Step "forwards" over the icore code annotating each "top-level" %% thing with variable usage. Detect bound variables in matching %% and replace with explicit guard test. Annotate "internal-core" %% expressions with variables they use and create. Convert matches %% to cases when not pure assignments. %% %% 3. Step "backwards" over icore code using variable usage %% annotations to change implicit exported variables to explicit %% returns. %% %% To ensure the evaluation order we ensure that all arguments are %% safe. A "safe" is basically a core_lib simple with VERY restricted %% binaries. %% %% We have to be very careful with matches as these create variables. %% While we try not to flatten things more than necessary we must make %% sure that all matches are at the top level. For this we use the %% type "novars" which are non-match expressions. Cases and receives %% can also create problems due to exports variables so they are not %% "novars" either. I.e. a novars will not export variables. %% %% Annotations in the #iset, #iletrec, and all other internal records %% is kept in a record, #a, not in a list as in proper core. This is %% easier and faster and creates no problems as we have complete control %% over all annotations. %% %% On output, the annotation for most Core Erlang terms will contain %% the source line number. A few terms will be marked with the atom %% atom 'compiler_generated', to indicate that the compiler has generated %% them and that no warning should be generated if they are optimized %% away. %% %% %% In this translation: %% %% call ops are safes %% call arguments are safes %% match arguments are novars %% case arguments are novars %% receive timeouts are novars %% binaries and maps are novars %% let/set arguments are expressions %% fun is not a safe -module(v3_core). -export([module/2,format_error/1]). -import(lists, [reverse/1,reverse/2,map/2,member/2,foldl/3,foldr/3,mapfoldl/3, splitwith/2,keyfind/3,sort/1,foreach/2,droplast/1,last/1]). -import(ordsets, [add_element/2,del_element/2,is_element/2, union/1,union/2,intersection/2,subtract/2]). -import(cerl, [ann_c_cons/3,ann_c_tuple/2,c_tuple/1, ann_c_map/3]). -include("core_parse.hrl"). %% Internal core expressions and help functions. %% N.B. annotations fields in place as normal Core expressions. -record(a, {us=[],ns=[],anno=[]}). %Internal annotation -record(iapply, {anno=#a{},op,args}). -record(ibinary, {anno=#a{},segments}). %Not used in patterns. -record(icall, {anno=#a{},module,name,args}). -record(icase, {anno=#a{},args,clauses,fc}). -record(icatch, {anno=#a{},body}). -record(iclause, {anno=#a{},pats,pguard=[],guard,body}). -record(ifun, {anno=#a{},id,vars,clauses,fc,name=unnamed}). -record(iletrec, {anno=#a{},defs,body}). -record(imatch, {anno=#a{},pat,guard=[],arg,fc}). -record(iprimop, {anno=#a{},name,args}). -record(iprotect, {anno=#a{},body}). -record(ireceive1, {anno=#a{},clauses}). -record(ireceive2, {anno=#a{},clauses,timeout,action}). -record(iset, {anno=#a{},var,arg}). -record(itry, {anno=#a{},args,vars,body,evars,handler}). -record(ifilter, {anno=#a{},arg}). -record(igen, {anno=#a{},ceps=[],acc_pat,acc_guard, skip_pat,tail,tail_pat,arg}). -record(isimple, {anno=#a{},term :: cerl:cerl()}). -type iapply() :: #iapply{}. -type ibinary() :: #ibinary{}. -type icall() :: #icall{}. -type icase() :: #icase{}. -type icatch() :: #icatch{}. -type iclause() :: #iclause{}. -type ifun() :: #ifun{}. -type iletrec() :: #iletrec{}. -type imatch() :: #imatch{}. -type iprimop() :: #iprimop{}. -type iprotect() :: #iprotect{}. -type ireceive1() :: #ireceive1{}. -type ireceive2() :: #ireceive2{}. -type iset() :: #iset{}. -type itry() :: #itry{}. -type ifilter() :: #ifilter{}. -type igen() :: #igen{}. -type isimple() :: #isimple{}. -type i() :: iapply() | ibinary() | icall() | icase() | icatch() | iclause() | ifun() | iletrec() | imatch() | iprimop() | iprotect() | ireceive1() | ireceive2() | iset() | itry() | ifilter() | igen() | isimple(). -type warning() :: {file:filename(), [{integer(), module(), term()}]}. -record(core, {vcount=0 :: non_neg_integer(), %Variable counter fcount=0 :: non_neg_integer(), %Function counter function={none,0} :: fa(), %Current function. in_guard=false :: boolean(), %In guard or not. wanted=true :: boolean(), %Result wanted or not. opts :: [compile:option()], %Options. ws=[] :: [warning()], %Warnings. file=[{file,""}] %File. }). %% XXX: The following type declarations do not belong in this module -type fa() :: {atom(), arity()}. -type attribute() :: atom(). -type form() :: {function, integer(), atom(), arity(), _} | {attribute, integer(), attribute(), _}. -record(imodule, {name = [], exports = ordsets:new(), attrs = [], defs = [], file = [], opts = [], ws = []}). -spec module([form()], [compile:option()]) -> {'ok',cerl:c_module(),[warning()]}. module(Forms0, Opts) -> Forms = erl_internal:add_predefined_functions(Forms0), Module = foldl(fun (F, Acc) -> form(F, Acc, Opts) end, #imodule{}, Forms), #imodule{name=Mod,exports=Exp0,attrs=As0,defs=Kfs0,ws=Ws} = Module, Exp = case member(export_all, Opts) of true -> defined_functions(Forms); false -> Exp0 end, Cexp = [#c_var{name=FA} || {_,_}=FA <- Exp], As = reverse(As0), Kfs = reverse(Kfs0), {ok,#c_module{name=#c_literal{val=Mod},exports=Cexp,attrs=As,defs=Kfs},Ws}. form({function,_,_,_,_}=F0, Module, Opts) -> #imodule{file=File,defs=Defs,ws=Ws0} = Module, {F,Ws} = function(F0, Ws0, File, Opts), Module#imodule{defs=[F|Defs],ws=Ws}; form({attribute,_,module,Mod}, Module, _Opts) -> true = is_atom(Mod), Module#imodule{name=Mod}; form({attribute,_,file,{File,_Line}}=F, #imodule{attrs=As}=Module, _Opts) -> Module#imodule{file=File, attrs=[attribute(F)|As]}; form({attribute,_,import,_}, Module, _Opts) -> %% Ignore. We have no futher use for imports. Module; form({attribute,_,export,Es}, #imodule{exports=Exp0}=Module, _Opts) -> Exp = ordsets:union(ordsets:from_list(Es), Exp0), Module#imodule{exports=Exp}; form({attribute,_,_,_}=F, #imodule{attrs=As}=Module, _Opts) -> Module#imodule{attrs=[attribute(F)|As]}; form(_, Module, _Opts) -> %% Ignore uninteresting forms such as 'eof'. Module. attribute({attribute,A,Name,Val0}) -> Line = [erl_anno:location(A)], Val = if is_list(Val0) -> Val0; true -> [Val0] end, {#c_literal{val=Name, anno=Line}, #c_literal{val=Val, anno=Line}}. defined_functions(Forms) -> Fs = [{Name,Arity} || {function,_,Name,Arity,_} <- Forms], ordsets:from_list(Fs). %% function_dump(module_info,_,_,_) -> ok; %% function_dump(Name,Arity,Format,Terms) -> %% io:format("~w/~w " ++ Format,[Name,Arity]++Terms), %% ok. function({function,_,Name,Arity,Cs0}, Ws0, File, Opts) -> St0 = #core{vcount=0,function={Name,Arity},opts=Opts, ws=Ws0,file=[{file,File}]}, {B0,St1} = body(Cs0, Name, Arity, St0), %% ok = function_dump(Name,Arity,"body:~n~p~n",[B0]), {B1,St2} = ubody(B0, St1), %% ok = function_dump(Name,Arity,"ubody:~n~p~n",[B1]), {B2,#core{ws=Ws}} = cbody(B1, St2), %% ok = function_dump(Name,Arity,"cbody:~n~p~n",[B2]), {{#c_var{name={Name,Arity}},B2},Ws}. body(Cs0, Name, Arity, St0) -> Anno = lineno_anno(element(2, hd(Cs0)), St0), {Args0,St1} = new_vars(Anno, Arity, St0), Args = reverse(Args0), %Nicer order case clauses(Cs0, St1) of {Cs1,[],St2} -> {Ps,St3} = new_vars(Arity, St2), %Need new variables here Fc = function_clause(Ps, Anno, {Name,Arity}), {#ifun{anno=#a{anno=Anno},id=[],vars=Args,clauses=Cs1,fc=Fc},St3}; {Cs1,Eps,St2} -> %% We have pre-expressions from patterns and %% these needs to be letified before matching %% since only bound variables are allowed AnnoGen = #a{anno=[compiler_generated]}, {Ps1,St3} = new_vars(Arity, St2), %Need new variables here Fc1 = function_clause(Ps1, Anno, {Name,Arity}), {Ps2,St4} = new_vars(Arity, St3), %Need new variables here Fc2 = function_clause(Ps2, Anno, {Name,Arity}), Case = #icase{anno=AnnoGen,args=Args, clauses=Cs1, fc=Fc2}, {#ifun{anno=#a{anno=Anno},id=[],vars=Args, clauses=[#iclause{anno=AnnoGen,pats=Ps1, guard=[#c_literal{val=true}], body=Eps ++ [Case]}], fc=Fc1},St4} end. %% clause(Clause, State) -> {Cclause,State} | noclause. %% clauses([Clause], State) -> {[Cclause],State}. %% Convert clauses. Trap bad pattern aliases and remove clause from %% clause list. clauses([C0|Cs0],St0) -> case clause(C0, St0) of {noclause,_,St} -> clauses(Cs0,St); {C,Eps1,St1} -> {Cs,Eps2,St2} = clauses(Cs0, St1), {[C|Cs],Eps1++Eps2,St2} end; clauses([],St) -> {[],[],St}. clause({clause,Lc,H0,G0,B0}, St0) -> try head(H0, St0) of {H1,Eps,St1} -> {G1,St2} = guard(G0, St1), {B1,St3} = exprs(B0, St2), Anno = lineno_anno(Lc, St3), {#iclause{anno=#a{anno=Anno},pats=H1,guard=G1,body=B1},Eps,St3} catch throw:nomatch -> St = add_warning(Lc, nomatch, St0), {noclause,[],St} %Bad pattern end. clause_arity({clause,_,H0,_,_}) -> length(H0). %% head([P], State) -> {[P],[Cexpr],State}. head(Ps, St) -> pattern_list(Ps, St). %% guard([Expr], State) -> {[Cexpr],State}. %% Build an explict and/or tree of guard alternatives, then traverse %% top-level and/or tree and "protect" inner tests. guard([], St) -> {[],St}; guard(Gs0, St0) -> Gs1 = foldr(fun (Gt0, Rhs) -> Gt1 = guard_tests(Gt0), L = element(2, Gt1), {op,L,'or',Gt1,Rhs} end, guard_tests(last(Gs0)), droplast(Gs0)), {Gs,St} = gexpr_top(Gs1, St0#core{in_guard=true}), {Gs,St#core{in_guard=false}}. guard_tests(Gs) -> L = element(2, hd(Gs)), {protect,L,foldr(fun (G, Rhs) -> {op,L,'and',G,Rhs} end, last(Gs), droplast(Gs))}. %% gexpr_top(Expr, State) -> {Cexpr,State}. %% Generate an internal core expression of a guard test. Explicitly %% handle outer boolean expressions and "protect" inner tests in a %% reasonably smart way. gexpr_top(E0, St0) -> {E1,Eps0,Bools,St1} = gexpr(E0, [], St0), {E,Eps,St} = force_booleans(Bools, E1, Eps0, St1), {Eps++[E],St}. %% gexpr(Expr, Bools, State) -> {Cexpr,[PreExp],Bools,State}. %% Generate an internal core expression of a guard test. gexpr({protect,Line,Arg}, Bools0, St0) -> case gexpr(Arg, [], St0) of {E0,[],Bools,St1} -> {E,Eps,St} = force_booleans(Bools, E0, [], St1), {E,Eps,Bools0,St}; {E0,Eps0,Bools,St1} -> {E,Eps,St} = force_booleans(Bools, E0, Eps0, St1), Anno = lineno_anno(Line, St), {#iprotect{anno=#a{anno=Anno},body=Eps++[E]},[],Bools0,St} end; gexpr({op,_,'andalso',_,_}=E0, Bools, St0) -> {op,L,'andalso',E1,E2} = right_assoc(E0, 'andalso'), Anno = lineno_anno(L, St0), {#c_var{name=V0},St} = new_var(Anno, St0), V = {var,L,V0}, False = {atom,L,false}, E = make_bool_switch_guard(L, E1, V, E2, False), gexpr(E, Bools, St); gexpr({op,_,'orelse',_,_}=E0, Bools, St0) -> {op,L,'orelse',E1,E2} = right_assoc(E0, 'orelse'), Anno = lineno_anno(L, St0), {#c_var{name=V0},St} = new_var(Anno, St0), V = {var,L,V0}, True = {atom,L,true}, E = make_bool_switch_guard(L, E1, V, True, E2), gexpr(E, Bools, St); gexpr({op,Line,Op,L,R}=E, Bools, St) -> case erl_internal:bool_op(Op, 2) of true -> gexpr_bool(Op, L, R, Bools, St, Line); false -> gexpr_test(E, Bools, St) end; gexpr({call,Line,{remote,_,{atom,_,erlang},{atom,_,Op}},[L,R]}=E, Bools, St) -> case erl_internal:bool_op(Op, 2) of true -> gexpr_bool(Op, L, R, Bools, St, Line); false -> gexpr_test(E, Bools, St) end; gexpr({op,Line,'not',A}, Bools, St) -> gexpr_not(A, Bools, St, Line); gexpr({call,Line,{remote,_,{atom,_,erlang},{atom,_,'not'}},[A]}, Bools, St) -> gexpr_not(A, Bools, St, Line); gexpr(E0, Bools, St0) -> gexpr_test(E0, Bools, St0). %% gexpr_not(L, R, Bools, State) -> {Cexpr,[PreExp],Bools,State}. %% Generate a guard for boolean operators gexpr_bool(Op, L, R, Bools0, St0, Line) -> {Le,Lps,Bools1,St1} = gexpr(L, Bools0, St0), {Ll,Llps,St2} = force_safe(Le, St1), {Re,Rps,Bools,St3} = gexpr(R, Bools1, St2), {Rl,Rlps,St4} = force_safe(Re, St3), Anno = lineno_anno(Line, St4), {#icall{anno=#a{anno=Anno}, %Must have an #a{} module=#c_literal{anno=Anno,val=erlang}, name=#c_literal{anno=Anno,val=Op}, args=[Ll,Rl]},Lps ++ Llps ++ Rps ++ Rlps,Bools,St4}. %% gexpr_not(Expr, Bools, State) -> {Cexpr,[PreExp],Bools,State}. %% Generate an erlang:'not'/1 guard test. gexpr_not(A, Bools0, St0, Line) -> {Ae0,Aps,Bools,St1} = gexpr(A, Bools0, St0), case Ae0 of #icall{module=#c_literal{val=erlang}, name=#c_literal{val='=:='}, args=[E,#c_literal{val=true}]}=EqCall -> %% %% Doing the following transformation %% not(Expr =:= true) ==> Expr =:= false %% will help eliminating redundant is_boolean/1 tests. %% Ae = EqCall#icall{args=[E,#c_literal{val=false}]}, {Al,Alps,St2} = force_safe(Ae, St1), {Al,Aps ++ Alps,Bools,St2}; Ae -> {Al,Alps,St2} = force_safe(Ae, St1), Anno = lineno_anno(Line, St2), {#icall{anno=#a{anno=Anno}, %Must have an #a{} module=#c_literal{anno=Anno,val=erlang}, name=#c_literal{anno=Anno,val='not'}, args=[Al]},Aps ++ Alps,Bools,St2} end. %% gexpr_test(Expr, Bools, State) -> {Cexpr,[PreExp],Bools,State}. %% Generate a guard test. At this stage we must be sure that we have %% a proper boolean value here so wrap things with an true test if we %% don't know, i.e. if it is not a comparison or a type test. gexpr_test({atom,L,true}, Bools, St0) -> {#c_literal{anno=lineno_anno(L, St0),val=true},[],Bools,St0}; gexpr_test({atom,L,false}, Bools, St0) -> {#c_literal{anno=lineno_anno(L, St0),val=false},[],Bools,St0}; gexpr_test(E0, Bools0, St0) -> {E1,Eps0,St1} = expr(E0, St0), %% Generate "top-level" test and argument calls. case E1 of #icall{anno=Anno,module=#c_literal{val=erlang},name=#c_literal{val=N},args=As} -> Ar = length(As), case erl_internal:type_test(N, Ar) orelse erl_internal:comp_op(N, Ar) orelse erl_internal:bool_op(N, Ar) of true -> {E1,Eps0,Bools0,St1}; false -> Lanno = Anno#a.anno, {New,St2} = new_var(Lanno, St1), Bools = [New|Bools0], {icall_eq_true(New), Eps0 ++ [#iset{anno=Anno,var=New,arg=E1}],Bools,St2} end; _ -> Lanno = get_lineno_anno(E1), ACompGen = #a{anno=[compiler_generated]}, case is_simple(E1) of true -> Bools = [E1|Bools0], {icall_eq_true(E1),Eps0,Bools,St1}; false -> {New,St2} = new_var(Lanno, St1), Bools = [New|Bools0], {icall_eq_true(New), Eps0 ++ [#iset{anno=ACompGen,var=New,arg=E1}],Bools,St2} end end. icall_eq_true(Arg) -> #icall{anno=#a{anno=[compiler_generated]}, module=#c_literal{val=erlang}, name=#c_literal{val='=:='}, args=[Arg,#c_literal{val=true}]}. force_booleans(Vs0, E, Eps, St) -> Vs1 = [set_anno(V, []) || V <- Vs0], Vs = unforce(E, Eps, Vs1), force_booleans_1(Vs, E, Eps, St). force_booleans_1([], E, Eps, St) -> {E,Eps,St}; force_booleans_1([V|Vs], E0, Eps0, St0) -> {E1,Eps1,St1} = force_safe(E0, St0), ACompGen = #a{anno=[compiler_generated]}, Call = #icall{anno=ACompGen,module=#c_literal{val=erlang}, name=#c_literal{val=is_boolean}, args=[V]}, {New,St} = new_var([], St1), Iset = #iset{var=New,arg=Call}, Eps = Eps0 ++ Eps1 ++ [Iset], E = #icall{anno=ACompGen, module=#c_literal{val=erlang},name=#c_literal{val='and'}, args=[E1,New]}, force_booleans_1(Vs, E, Eps, St). %% unforce(Expr, PreExprList, BoolExprList) -> BoolExprList'. %% Filter BoolExprList. BoolExprList is a list of simple expressions %% (variables or literals) of which we are not sure whether they are booleans. %% %% The basic idea for filtering is the following transformation %% %% (E =:= Bool) and is_boolean(E) ==> E =:= Bool %% %% where E is an arbitrary expression and Bool is 'true' or 'false'. %% %% The transformation is still valid if there are other expressions joined %% by 'and' operations: %% %% E1 and (E2 =:= true) and E3 and is_boolean(E) ==> E1 and (E2 =:= true) and E3 %% %% but expressions such as %% %% not (E =:= true) and is_boolean(E) %% %% cannot be transformed in this way (such expressions are the reason for %% adding the is_boolean/1 test in the first place). %% unforce(_, _, []) -> []; unforce(E, Eps, Vs) -> Tree = unforce_tree(Eps++[E], gb_trees:empty()), unforce(Tree, Vs). unforce_tree([#iset{var=#c_var{name=V},arg=Arg0}|Es], D0) -> Arg = unforce_tree_subst(Arg0, D0), D = gb_trees:insert(V, Arg, D0), unforce_tree(Es, D); unforce_tree([#icall{}=Call], D) -> unforce_tree_subst(Call, D); unforce_tree([#c_var{name=V}], D) -> gb_trees:get(V, D). unforce_tree_subst(#icall{module=#c_literal{val=erlang}, name=#c_literal{val='=:='}, args=[_Expr,#c_literal{val=Bool}]}=Call, _) when is_boolean(Bool) -> %% We have erlang:'=:='(Expr, Bool). We must not expand this call any more %% or we will not recognize is_boolean(Expr) later. Call; unforce_tree_subst(#icall{args=Args0}=Call, D) -> Args = map(fun(#c_var{name=V}=Var) -> case gb_trees:lookup(V, D) of {value,Val} -> Val; none -> Var end; (Expr) -> Expr end, Args0), Call#icall{args=Args}; unforce_tree_subst(Expr, _) -> Expr. unforce(#icall{module=#c_literal{val=erlang}, name=#c_literal{val=Name}, args=Args}, Vs0) -> case {Name,Args} of {'and',[Arg1,Arg2]} -> Vs = unforce(Arg1, Vs0), unforce(Arg2, Vs); {'=:=',[E,#c_literal{val=Bool}]} when is_boolean(Bool) -> Vs0 -- [set_anno(E, [])]; {_,_} -> %% Give up. Vs0 end; unforce(_, Vs) -> Vs. %% exprs([Expr], State) -> {[Cexpr],State}. %% Flatten top-level exprs. exprs([E0|Es0], St0) -> {E1,Eps,St1} = expr(E0, St0), {Es1,St2} = exprs(Es0, St1), {Eps ++ [E1] ++ Es1,St2}; exprs([], St) -> {[],St}. %% expr(Expr, State) -> {Cexpr,[PreExp],State}. %% Generate an internal core expression. expr({var,L,V}, St) -> {#c_var{anno=lineno_anno(L, St),name=V},[],St}; expr({char,L,C}, St) -> {#c_literal{anno=full_anno(L, St),val=C},[],St}; expr({integer,L,I}, St) -> {#c_literal{anno=full_anno(L, St),val=I},[],St}; expr({float,L,F}, St) -> {#c_literal{anno=full_anno(L, St),val=F},[],St}; expr({atom,L,A}, St) -> {#c_literal{anno=full_anno(L, St),val=A},[],St}; expr({nil,L}, St) -> {#c_literal{anno=full_anno(L, St),val=[]},[],St}; expr({string,L,S}, St) -> {#c_literal{anno=full_anno(L, St),val=S},[],St}; expr({cons,L,H0,T0}, St0) -> {H1,Hps,St1} = safe(H0, St0), {T1,Tps,St2} = safe(T0, St1), A = full_anno(L, St2), {annotate_cons(A, H1, T1, St2),Hps ++ Tps,St2}; expr({lc,L,E,Qs0}, St0) -> {Qs1,St1} = preprocess_quals(L, Qs0, St0), lc_tq(L, E, Qs1, #c_literal{anno=lineno_anno(L, St1),val=[]}, St1); expr({bc,L,E,Qs}, St) -> bc_tq(L, E, Qs, St); expr({tuple,L,Es0}, St0) -> {Es1,Eps,St1} = safe_list(Es0, St0), A = record_anno(L, St1), {annotate_tuple(A, Es1, St1),Eps,St1}; expr({map,L,Es0}, St0) -> map_build_pairs(#c_literal{val=#{}}, Es0, full_anno(L, St0), St0); expr({map,L,M,Es}, St) -> expr_map(M, Es, L, St); expr({bin,L,Es0}, St0) -> try expr_bin(Es0, full_anno(L, St0), St0) of {_,_,_}=Res -> Res catch throw:bad_binary -> St = add_warning(L, bad_binary, St0), LineAnno = lineno_anno(L, St), As = [#c_literal{anno=LineAnno,val=badarg}], {#icall{anno=#a{anno=LineAnno}, %Must have an #a{} module=#c_literal{anno=LineAnno,val=erlang}, name=#c_literal{anno=LineAnno,val=error}, args=As},[],St} end; expr({block,_,Es0}, St0) -> %% Inline the block directly. {Es1,St1} = exprs(droplast(Es0), St0), {E1,Eps,St2} = expr(last(Es0), St1), {E1,Es1 ++ Eps,St2}; expr({'if',L,Cs0}, St0) -> {Cs1,Ceps,St1} = clauses(Cs0, St0), Lanno = lineno_anno(L, St1), Fc = fail_clause([], Lanno, #c_literal{val=if_clause}), {#icase{anno=#a{anno=Lanno},args=[],clauses=Cs1,fc=Fc},Ceps,St1}; expr({'case',L,E0,Cs0}, St0) -> {E1,Eps,St1} = novars(E0, St0), {Cs1,Ceps,St2} = clauses(Cs0, St1), {Fpat,St3} = new_var(St2), Lanno = lineno_anno(L, St2), Fc = fail_clause([Fpat], Lanno, c_tuple([#c_literal{val=case_clause},Fpat])), {#icase{anno=#a{anno=Lanno},args=[E1],clauses=Cs1,fc=Fc},Eps++Ceps,St3}; expr({'receive',L,Cs0}, St0) -> {Cs1,Ceps,St1} = clauses(Cs0, St0), {#ireceive1{anno=#a{anno=lineno_anno(L, St1)},clauses=Cs1},Ceps, St1}; expr({'receive',L,Cs0,Te0,Tes0}, St0) -> {Te1,Teps,St1} = novars(Te0, St0), {Tes1,St2} = exprs(Tes0, St1), {Cs1,Ceps,St3} = clauses(Cs0, St2), {#ireceive2{anno=#a{anno=lineno_anno(L, St3)}, clauses=Cs1,timeout=Te1,action=Tes1},Teps++Ceps,St3}; expr({'try',L,Es0,[],Ecs,[]}, St0) -> %% 'try ... catch ... end' {Es1,St1} = exprs(Es0, St0), {V,St2} = new_var(St1), %This name should be arbitrary {Evs,Hs,St3} = try_exception(Ecs, St2), Lanno = lineno_anno(L, St3), {#itry{anno=#a{anno=Lanno},args=Es1,vars=[V],body=[V], evars=Evs,handler=Hs}, [],St3}; expr({'try',L,Es0,Cs0,Ecs,[]}, St0) -> %% 'try ... of ... catch ... end' {Es1,St1} = exprs(Es0, St0), {V,St2} = new_var(St1), %This name should be arbitrary {Cs1,Ceps,St3} = clauses(Cs0, St2), {Fpat,St4} = new_var(St3), Lanno = lineno_anno(L, St4), Fc = fail_clause([Fpat], Lanno, c_tuple([#c_literal{val=try_clause},Fpat])), {Evs,Hs,St5} = try_exception(Ecs, St4), {#itry{anno=#a{anno=lineno_anno(L, St5)},args=Es1, vars=[V],body=[#icase{anno=#a{anno=Lanno},args=[V],clauses=Cs1,fc=Fc}], evars=Evs,handler=Hs}, Ceps,St5}; expr({'try',L,Es0,[],[],As0}, St0) -> %% 'try ... after ... end' {Es1,St1} = exprs(Es0, St0), {As1,St2} = exprs(As0, St1), {Name,St3} = new_fun_name("after", St2), {V,St4} = new_var(St3), % (must not exist in As1) LA = lineno_anno(L, St4), Lanno = #a{anno=LA}, Fc = function_clause([], LA, {Name,0}), Fun = #ifun{anno=Lanno,id=[],vars=[], clauses=[#iclause{anno=Lanno,pats=[], guard=[#c_literal{val=true}], body=As1}], fc=Fc}, App = #iapply{anno=#a{anno=[compiler_generated|LA]}, op=#c_var{anno=LA,name={Name,0}},args=[]}, {Evs,Hs,St5} = try_after([App], St4), Try = #itry{anno=Lanno,args=Es1,vars=[V],body=[App,V],evars=Evs,handler=Hs}, Letrec = #iletrec{anno=Lanno,defs=[{{Name,0},Fun}], body=[Try]}, {Letrec,[],St5}; expr({'try',L,Es,Cs,Ecs,As}, St0) -> %% 'try ... [of ...] [catch ...] after ... end' expr({'try',L,[{'try',L,Es,Cs,Ecs,[]}],[],[],As}, St0); expr({'catch',L,E0}, St0) -> {E1,Eps,St1} = expr(E0, St0), Lanno = lineno_anno(L, St1), {#icatch{anno=#a{anno=Lanno},body=Eps ++ [E1]},[],St1}; expr({'fun',L,{function,F,A}}, St0) -> {Fname,St1} = new_fun_name(St0), Lanno = full_anno(L, St1), Id = {0,0,Fname}, {#c_var{anno=Lanno++[{id,Id}],name={F,A}},[],St1}; expr({'fun',L,{function,M,F,A}}, St0) -> {As,Aps,St1} = safe_list([M,F,A], St0), Lanno = full_anno(L, St1), {#icall{anno=#a{anno=Lanno}, module=#c_literal{val=erlang}, name=#c_literal{val=make_fun}, args=As},Aps,St1}; expr({'fun',L,{clauses,Cs}}, St) -> fun_tq(Cs, L, St, unnamed); expr({named_fun,L,'_',Cs}, St) -> fun_tq(Cs, L, St, unnamed); expr({named_fun,L,Name,Cs}, St) -> fun_tq(Cs, L, St, {named,Name}); expr({call,L,{remote,_,M,F},As0}, St0) -> {[M1,F1|As1],Aps,St1} = safe_list([M,F|As0], St0), Anno = full_anno(L, St1), {#icall{anno=#a{anno=Anno},module=M1,name=F1,args=As1},Aps,St1}; expr({call,Lc,{atom,Lf,F},As0}, St0) -> {As1,Aps,St1} = safe_list(As0, St0), Op = #c_var{anno=lineno_anno(Lf, St1),name={F,length(As1)}}, {#iapply{anno=#a{anno=lineno_anno(Lc, St1)},op=Op,args=As1},Aps,St1}; expr({call,L,FunExp,As0}, St0) -> {Fun,Fps,St1} = safe_fun(length(As0), FunExp, St0), {As1,Aps,St2} = safe_list(As0, St1), Lanno = lineno_anno(L, St2), {#iapply{anno=#a{anno=Lanno},op=Fun,args=As1},Fps ++ Aps,St2}; expr({match,L,P0,E0}, St0) -> %% First fold matches together to create aliases. {P1,E1} = fold_match(E0, P0), St1 = case P1 of {var,_,'_'} -> St0#core{wanted=false}; _ -> St0 end, {E2,Eps1,St2} = novars(E1, St1), St3 = St2#core{wanted=St0#core.wanted}, {P2,Eps2,St4} = try pattern(P1, St3) catch throw:Thrown -> {Thrown,[],St3} end, {Fpat,St5} = new_var(St4), Lanno = lineno_anno(L, St5), Fc = fail_clause([Fpat], Lanno, c_tuple([#c_literal{val=badmatch},Fpat])), case P2 of nomatch -> %% The pattern will not match. We must take care here to %% bind all variables that the pattern would have bound %% so that subsequent expressions do not refer to unbound %% variables. %% %% As an example, this code: %% %% [X] = {Y} = E, %% X + Y. %% %% will be rewritten to: %% %% error({badmatch,E}), %% case E of %% {[X],{Y}} -> %% X + Y; %% Other -> %% error({badmatch,Other}) %% end. %% St6 = add_warning(L, nomatch, St5), {Expr,Eps3,St7} = safe(E1, St6), SanPat0 = sanitize(P1), {SanPat,Eps4,St} = pattern(SanPat0, St7), Badmatch = c_tuple([#c_literal{val=badmatch},Expr]), Fail = #iprimop{anno=#a{anno=Lanno}, name=#c_literal{val=match_fail}, args=[Badmatch]}, Eps = Eps3 ++ Eps4 ++ [Fail], {#imatch{anno=#a{anno=Lanno},pat=SanPat,arg=Expr,fc=Fc},Eps,St}; Other when not is_atom(Other) -> {#imatch{anno=#a{anno=Lanno},pat=P2,arg=E2,fc=Fc},Eps1++Eps2,St5} end; expr({op,_,'++',{lc,Llc,E,Qs0},More}, St0) -> %% Optimise '++' here because of the list comprehension algorithm. %% %% To avoid achieving quadratic complexity if there is a chain of %% list comprehensions without generators combined with '++', force %% evaluation of More now. Evaluating More here could also reduce the %% number variables in the environment for letrec. {Mc,Mps,St1} = safe(More, St0), {Qs,St2} = preprocess_quals(Llc, Qs0, St1), {Y,Yps,St} = lc_tq(Llc, E, Qs, Mc, St2), {Y,Mps++Yps,St}; expr({op,_,'andalso',_,_}=E0, St0) -> {op,L,'andalso',E1,E2} = right_assoc(E0, 'andalso'), Anno = lineno_anno(L, St0), {#c_var{name=V0},St} = new_var(Anno, St0), V = {var,L,V0}, False = {atom,L,false}, E = make_bool_switch(L, E1, V, E2, False, St0), expr(E, St); expr({op,_,'orelse',_,_}=E0, St0) -> {op,L,'orelse',E1,E2} = right_assoc(E0, 'orelse'), Anno = lineno_anno(L, St0), {#c_var{name=V0},St} = new_var(Anno, St0), V = {var,L,V0}, True = {atom,L,true}, E = make_bool_switch(L, E1, V, True, E2, St0), expr(E, St); expr({op,L,Op,A0}, St0) -> {A1,Aps,St1} = safe(A0, St0), LineAnno = full_anno(L, St1), {#icall{anno=#a{anno=LineAnno}, %Must have an #a{} module=#c_literal{anno=LineAnno,val=erlang}, name=#c_literal{anno=LineAnno,val=Op},args=[A1]},Aps,St1}; expr({op,L,Op,L0,R0}, St0) -> {As,Aps,St1} = safe_list([L0,R0], St0), LineAnno = full_anno(L, St1), {#icall{anno=#a{anno=LineAnno}, %Must have an #a{} module=#c_literal{anno=LineAnno,val=erlang}, name=#c_literal{anno=LineAnno,val=Op},args=As},Aps,St1}. %% sanitize(Pat) -> SanitizedPattern %% Rewrite Pat so that it will be accepted by pattern/2 and will %% bind the same variables as the original pattern. %% %% Here is an example of a pattern that would cause a pattern/2 %% to generate a 'nomatch' exception: %% %% #{k:=X,k:=Y} = [Z] %% %% The sanitized pattern will look like: %% %% {{X,Y},[Z]} sanitize({match,L,P1,P2}) -> {tuple,L,[sanitize(P1),sanitize(P2)]}; sanitize({cons,L,H,T}) -> {cons,L,sanitize(H),sanitize(T)}; sanitize({tuple,L,Ps0}) -> Ps = [sanitize(P) || P <- Ps0], {tuple,L,Ps}; sanitize({map,L,Ps0}) -> Ps = [sanitize(V) || {map_field_exact,_,_,V} <- Ps0], {tuple,L,Ps}; sanitize(P) -> P. make_bool_switch(L, E, V, T, F, #core{in_guard=true}) -> make_bool_switch_guard(L, E, V, T, F); make_bool_switch(L, E, V, T, F, #core{}) -> make_bool_switch_body(L, E, V, T, F). make_bool_switch_body(L, E, V, T, F) -> NegL = no_compiler_warning(L), Error = {tuple,NegL,[{atom,NegL,badarg},V]}, {'case',NegL,E, [{clause,NegL,[{atom,NegL,true}],[],[T]}, {clause,NegL,[{atom,NegL,false}],[],[F]}, {clause,NegL,[V],[], [{call,NegL,{remote,NegL,{atom,NegL,erlang},{atom,NegL,error}}, [Error]}]}]}. make_bool_switch_guard(_, E, _, {atom,_,true}, {atom,_,false}) -> E; make_bool_switch_guard(L, E, V, T, F) -> NegL = no_compiler_warning(L), {'case',NegL,E, [{clause,NegL,[{atom,NegL,true}],[],[T]}, {clause,NegL,[{atom,NegL,false}],[],[F]}, {clause,NegL,[V],[],[V]} ]}. expr_map(M0, Es0, L, St0) -> {M1,Eps0,St1} = safe(M0, St0), Badmap = badmap_term(M1, St1), A = lineno_anno(L, St1), Fc = fail_clause([], [{eval_failure,badmap}|A], Badmap), case is_valid_map_src(M1) of true -> {M2,Eps1,St2} = map_build_pairs(M1, Es0, full_anno(L, St1), St1), M3 = case Es0 of [] -> M1; [_|_] -> M2 end, Cs = [#iclause{ anno=#a{anno=[compiler_generated|A]}, pats=[], guard=[#icall{anno=#a{anno=A}, module=#c_literal{anno=A,val=erlang}, name=#c_literal{anno=A,val=is_map}, args=[M1]}], body=[M3]}], Eps = Eps0 ++ Eps1, {#icase{anno=#a{anno=A},args=[],clauses=Cs,fc=Fc},Eps,St2}; false -> %% Not a map source. The update will always fail. St2 = add_warning(L, badmap, St1), #iclause{body=[Fail]} = Fc, {Fail,Eps0,St2} end. badmap_term(_Map, #core{in_guard=true}) -> %% The code generator cannot handle complex error reasons %% in guards. But the exact error reason does not matter anyway %% since it is not user-visible. #c_literal{val=badmap}; badmap_term(Map, #core{in_guard=false}) -> c_tuple([#c_literal{val=badmap},Map]). map_build_pairs(Map, Es0, Ann, St0) -> {Es,Pre,_,St1} = map_build_pairs_1(Es0, cerl_sets:new(), St0), {ann_c_map(Ann, Map, Es),Pre,St1}. map_build_pairs_1([{Op0,L,K0,V0}|Es], Used0, St0) -> {K,Pre0,St1} = safe(K0, St0), {V,Pre1,St2} = safe(V0, St1), {Pairs,Pre2,Used1,St3} = map_build_pairs_1(Es, Used0, St2), As = lineno_anno(L, St3), Op = map_op(Op0), {Used2,St4} = maybe_warn_repeated_keys(K, L, Used1, St3), Pair = cerl:ann_c_map_pair(As, Op, K, V), {[Pair|Pairs],Pre0++Pre1++Pre2,Used2,St4}; map_build_pairs_1([], Used, St) -> {[],[],Used,St}. maybe_warn_repeated_keys(Ck,Line,Used,St) -> case cerl:is_literal(Ck) of false -> {Used,St}; true -> K = cerl:concrete(Ck), case cerl_sets:is_element(K,Used) of true -> {Used, add_warning(Line, {map_key_repeated,K}, St)}; false -> {cerl_sets:add_element(K,Used), St} end end. map_op(map_field_assoc) -> #c_literal{val=assoc}; map_op(map_field_exact) -> #c_literal{val=exact}. is_valid_map_src(#c_literal{val = M}) when is_map(M) -> true; is_valid_map_src(#c_var{}=Var) -> not cerl:is_c_fname(Var); is_valid_map_src(_) -> false. %% try_exception([ExcpClause], St) -> {[ExcpVar],Handler,St}. try_exception(Ecs0, St0) -> %% Note that Tag is not needed for rethrow - it is already in Info. {Evs,St1} = new_vars(3, St0), % Tag, Value, Info {Ecs1,Ceps,St2} = clauses(Ecs0, St1), Ecs2 = try_build_stacktrace(Ecs1, hd(Evs)), [_,Value,Info] = Evs, LA = case Ecs2 of [] -> []; [C|_] -> get_lineno_anno(C) end, Ec = #iclause{anno=#a{anno=[compiler_generated|LA]}, pats=[c_tuple(Evs)],guard=[#c_literal{val=true}], body=[#iprimop{anno=#a{}, %Must have an #a{} name=#c_literal{val=raise}, args=[Info,Value]}]}, Hs = [#icase{anno=#a{anno=LA},args=[c_tuple(Evs)],clauses=Ecs2,fc=Ec}], {Evs,Ceps++Hs,St2}. try_after(As, St0) -> %% See above. {Evs,St1} = new_vars(3, St0), % Tag, Value, Info [_,Value,Info] = Evs, B = As ++ [#iprimop{anno=#a{}, % Must have an #a{} name=#c_literal{val=raise}, args=[Info,Value]}], Ec = #iclause{anno=#a{anno=[compiler_generated]}, pats=[c_tuple(Evs)],guard=[#c_literal{val=true}], body=B}, Hs = [#icase{anno=#a{},args=[c_tuple(Evs)],clauses=[],fc=Ec}], {Evs,Hs,St1}. try_build_stacktrace([#iclause{pats=Ps0,body=B0}=C0|Cs], RawStk) -> [#c_tuple{es=[Class,Exc,Stk]}=Tup] = Ps0, case Stk of #c_var{name='_'} -> %% Stacktrace variable is not used. Nothing to do. [C0|try_build_stacktrace(Cs, RawStk)]; _ -> %% Add code to build the stacktrace. Ps = [Tup#c_tuple{es=[Class,Exc,RawStk]}], Call = #iprimop{anno=#a{}, name=#c_literal{val=build_stacktrace}, args=[RawStk]}, Iset = #iset{var=Stk,arg=Call}, B = [Iset|B0], C = C0#iclause{pats=Ps,body=B}, [C|try_build_stacktrace(Cs, RawStk)] end; try_build_stacktrace([], _) -> []. %% expr_bin([ArgExpr], St) -> {[Arg],[PreExpr],St}. %% Flatten the arguments of a bin. Do this straight left to right! %% Note that ibinary needs to have its annotation wrapped in a #a{} %% record whereas c_literal should not have a wrapped annotation expr_bin(Es0, Anno, St0) -> Es1 = [bin_element(E) || E <- Es0], case constant_bin(Es1) of error -> {Es,Eps,St} = expr_bin_1(bin_expand_strings(Es1), St0), {#ibinary{anno=#a{anno=Anno},segments=Es},Eps,St}; Bin -> {#c_literal{anno=Anno,val=Bin},[],St0} end. bin_element({bin_element,Line,Expr,Size0,Type0}) -> {Size,Type} = make_bit_type(Line, Size0, Type0), {bin_element,Line,Expr,Size,Type}. make_bit_type(Line, default, Type0) -> case erl_bits:set_bit_type(default, Type0) of {ok,all,Bt} -> {{atom,Line,all},erl_bits:as_list(Bt)}; {ok,undefined,Bt} -> {{atom,Line,undefined},erl_bits:as_list(Bt)}; {ok,Size,Bt} -> {{integer,Line,Size},erl_bits:as_list(Bt)} end; make_bit_type(_Line, Size, Type0) -> %Integer or 'all' {ok,Size,Bt} = erl_bits:set_bit_type(Size, Type0), {Size,erl_bits:as_list(Bt)}. %% constant_bin([{bin_element,_,_,_,_}]) -> binary() | error %% If the binary construction is truly constant (no variables, %% no native fields), and does not contain fields whose expansion %% become huge (such as <<0:100000000>>), evaluate and return the binary; %% otherwise return 'error'. constant_bin(Es) -> try constant_bin_1(Es) catch error -> error end. constant_bin_1(Es) -> verify_suitable_fields(Es), EmptyBindings = erl_eval:new_bindings(), EvalFun = fun({string,_,S}, B) -> {value,S,B}; ({integer,_,I}, B) -> {value,I,B}; ({char,_,C}, B) -> {value,C,B}; ({float,_,F}, B) -> {value,F,B}; ({atom,_,undefined}, B) -> {value,undefined,B} end, try eval_bits:expr_grp(Es, EmptyBindings, EvalFun) of {value,Bin,EmptyBindings} -> Bin catch error:_ -> error end. %% verify_suitable_fields([{bin_element,_,Sz,Opts}=E|Es]) -> verify_suitable_fields([{bin_element,_,Val,SzTerm,Opts}|Es]) -> case member(big, Opts) orelse member(little, Opts) of true -> ok; false -> throw(error) %Native endian. end, {unit,Unit} = keyfind(unit, 1, Opts), case {SzTerm,Val} of {{atom,_,undefined},{string,_,_}} -> %% UTF-8/16/32. ok; {{atom,_,undefined},{char,_,_}} -> %% UTF-8/16/32. ok; {{atom,_,undefined},{integer,_,_}} -> %% UTF-8/16/32. ok; {{integer,_,Sz},_} when Sz*Unit =< 256 -> %% Don't be cheap - always accept fields up to this size. ok; {{integer,_,Sz0},{integer,_,Int}} -> %% Estimate the number of bits needed to to hold the integer %% literal. Check whether the field size is reasonable in %% proportion to the number of bits needed. Sz = Sz0*Unit, case count_bits(Int) of BitsNeeded when 2*BitsNeeded >= Sz -> ok; _ -> %% More than about half of the field size will be %% filled out with zeroes - not acceptable. throw(error) end; {_,_} -> %% Reject anything else. There are either variables, %% or a float with a huge size or an embedded binary. throw(error) end, verify_suitable_fields(Es); verify_suitable_fields([]) -> ok. %% Count the number of bits approximately needed to store Int. %% (We don't need an exact result for this purpose.) count_bits(Int) -> count_bits_1(abs(Int), 64). count_bits_1(0, Bits) -> Bits; count_bits_1(Int, Bits) -> count_bits_1(Int bsr 64, Bits+64). bin_expand_strings(Es0) -> foldr(fun ({bin_element,Line,{string,_,S},{integer,_,8},_}, Es) -> bin_expand_string(S, Line, 0, 0) ++ Es; ({bin_element,Line,{string,_,S},Sz,Ts}, Es1) -> foldr( fun (C, Es) -> [{bin_element,Line,{char,Line,C},Sz,Ts}|Es] end, Es1, S); (E, Es) -> [E|Es] end, [], Es0). bin_expand_string(S, Line, Val, Size) when Size >= 2048 -> Combined = make_combined(Line, Val, Size), [Combined|bin_expand_string(S, Line, 0, 0)]; bin_expand_string([H|T], Line, Val, Size) -> bin_expand_string(T, Line, (Val bsl 8) bor H, Size+8); bin_expand_string([], Line, Val, Size) -> [make_combined(Line, Val, Size)]. make_combined(Line, Val, Size) -> {bin_element,Line,{integer,Line,Val}, {integer,Line,Size}, [integer,{unit,1},unsigned,big]}. expr_bin_1(Es, St) -> foldr(fun (E, {Ces,Esp,St0}) -> {Ce,Ep,St1} = bitstr(E, St0), {[Ce|Ces],Ep ++ Esp,St1} end, {[],[],St}, Es). bitstr({bin_element,_,E0,Size0,[Type,{unit,Unit}|Flags]}, St0) -> {E1,Eps,St1} = safe(E0, St0), {Size1,Eps2,St2} = safe(Size0, St1), case {Type,E1} of {_,#c_var{}} -> ok; {integer,#c_literal{val=I}} when is_integer(I) -> ok; {utf8,#c_literal{val=I}} when is_integer(I) -> ok; {utf16,#c_literal{val=I}} when is_integer(I) -> ok; {utf32,#c_literal{val=I}} when is_integer(I) -> ok; {float,#c_literal{val=V}} when is_number(V) -> ok; {binary,#c_literal{val=V}} when is_bitstring(V) -> ok; {_,_} -> throw(bad_binary) end, case Size1 of #c_var{} -> ok; #c_literal{val=Sz} when is_integer(Sz), Sz >= 0 -> ok; #c_literal{val=undefined} -> ok; #c_literal{val=all} -> ok; _ -> throw(bad_binary) end, {#c_bitstr{val=E1,size=Size1, unit=#c_literal{val=Unit}, type=#c_literal{val=Type}, flags=#c_literal{val=Flags}}, Eps ++ Eps2,St2}. %% fun_tq(Id, [Clauses], Line, State, NameInfo) -> {Fun,[PreExp],State}. fun_tq(Cs0, L, St0, NameInfo) -> Arity = clause_arity(hd(Cs0)), {Cs1,Ceps,St1} = clauses(Cs0, St0), {Args,St2} = new_vars(Arity, St1), {Ps,St3} = new_vars(Arity, St2), %Need new variables here Anno = full_anno(L, St3), {Name,St4} = new_fun_name(St3), Fc = function_clause(Ps, Anno, {Name,Arity}), Id = {0,0,Name}, Fun = #ifun{anno=#a{anno=Anno}, id=[{id,Id}], %We KNOW! vars=Args,clauses=Cs1,fc=Fc,name=NameInfo}, {Fun,Ceps,St4}. %% lc_tq(Line, Exp, [Qualifier], Mc, State) -> {LetRec,[PreExp],State}. %% This TQ from Simon PJ pp 127-138. lc_tq(Line, E, [#igen{anno=#a{anno=GA}=GAnno,ceps=Ceps, acc_pat=AccPat,acc_guard=AccGuard, skip_pat=SkipPat,tail=Tail,tail_pat=TailPat, arg={Pre,Arg}}|Qs], Mc, St0) -> {Name,St1} = new_fun_name("lc", St0), LA = lineno_anno(Line, St1), LAnno = #a{anno=LA}, F = #c_var{anno=LA,name={Name,1}}, Nc = #iapply{anno=GAnno,op=F,args=[Tail]}, {Var,St2} = new_var(St1), Fc = function_clause([Var], GA, {Name,1}), TailClause = #iclause{anno=LAnno,pats=[TailPat],guard=[],body=[Mc]}, Cs0 = case {AccPat,AccGuard} of {SkipPat,[]} -> %% Skip and accumulator patterns are the same and there is %% no guard, no need to generate a skip clause. [TailClause]; _ -> [#iclause{anno=#a{anno=[compiler_generated|LA]}, pats=[SkipPat],guard=[],body=[Nc]}, TailClause] end, {Cs,St4} = case AccPat of nomatch -> %% The accumulator pattern never matches, no need %% for an accumulator clause. {Cs0,St2}; _ -> {Lc,Lps,St3} = lc_tq(Line, E, Qs, Nc, St2), {[#iclause{anno=LAnno,pats=[AccPat],guard=AccGuard, body=Lps ++ [Lc]}|Cs0], St3} end, Fun = #ifun{anno=GAnno,id=[],vars=[Var],clauses=Cs,fc=Fc}, {#iletrec{anno=GAnno#a{anno=[list_comprehension|GA]},defs=[{{Name,1},Fun}], body=Pre ++ [#iapply{anno=GAnno,op=F,args=[Arg]}]}, Ceps,St4}; lc_tq(Line, E, [#ifilter{}=Filter|Qs], Mc, St) -> filter_tq(Line, E, Filter, Mc, St, Qs, fun lc_tq/5); lc_tq(Line, E0, [], Mc0, St0) -> {H1,Hps,St1} = safe(E0, St0), {T1,Tps,St} = force_safe(Mc0, St1), Anno = lineno_anno(Line, St), E = ann_c_cons(Anno, H1, T1), {set_anno(E, [compiler_generated|Anno]),Hps ++ Tps,St}. %% bc_tq(Line, Exp, [Qualifier], More, State) -> {LetRec,[PreExp],State}. %% This TQ from Gustafsson ERLANG'05. %% More could be transformed before calling bc_tq. bc_tq(Line, Exp, Qs0, St0) -> {BinVar,St1} = new_var(St0), {Sz,SzPre,St2} = bc_initial_size(Exp, Qs0, St1), {Qs,St3} = preprocess_quals(Line, Qs0, St2), {E,BcPre,St} = bc_tq1(Line, Exp, Qs, BinVar, St3), Pre = SzPre ++ [#iset{var=BinVar, arg=#iprimop{name=#c_literal{val=bs_init_writable}, args=[Sz]}}] ++ BcPre, {E,Pre,St}. bc_tq1(Line, E, [#igen{anno=GAnno,ceps=Ceps, acc_pat=AccPat,acc_guard=AccGuard, skip_pat=SkipPat,tail=Tail,tail_pat=TailPat, arg={Pre,Arg}}|Qs], Mc, St0) -> {Name,St1} = new_fun_name("lbc", St0), LA = lineno_anno(Line, St1), LAnno = #a{anno=LA}, {Vars=[_,AccVar],St2} = new_vars(LA, 2, St1), F = #c_var{anno=LA,name={Name,2}}, Nc = #iapply{anno=GAnno,op=F,args=[Tail,AccVar]}, Fc = function_clause(Vars, LA, {Name,2}), TailClause = #iclause{anno=LAnno,pats=[TailPat,AccVar],guard=[], body=[AccVar]}, Cs0 = case {AccPat,AccGuard} of {SkipPat,[]} -> %% Skip and accumulator patterns are the same and there is %% no guard, no need to generate a skip clause. [TailClause]; _ -> [#iclause{anno=#a{anno=[compiler_generated|LA]}, pats=[SkipPat,AccVar],guard=[],body=[Nc]}, TailClause] end, {Cs,St4} = case AccPat of nomatch -> %% The accumulator pattern never matches, no need %% for an accumulator clause. {Cs0,St2}; _ -> {Bc,Bps,St3} = bc_tq1(Line, E, Qs, AccVar, St2), Body = Bps ++ [#iset{var=AccVar,arg=Bc},Nc], {[#iclause{anno=LAnno, pats=[AccPat,AccVar],guard=AccGuard, body=Body}|Cs0], St3} end, Fun = #ifun{anno=LAnno,id=[],vars=Vars,clauses=Cs,fc=Fc}, {#iletrec{anno=LAnno#a{anno=[list_comprehension|LA]},defs=[{{Name,2},Fun}], body=Pre ++ [#iapply{anno=LAnno,op=F,args=[Arg,Mc]}]}, Ceps,St4}; bc_tq1(Line, E, [#ifilter{}=Filter|Qs], Mc, St) -> filter_tq(Line, E, Filter, Mc, St, Qs, fun bc_tq1/5); bc_tq1(_, {bin,Bl,Elements}, [], AccVar, St0) -> bc_tq_build(Bl, [], AccVar, Elements, St0); bc_tq1(Line, E0, [], AccVar, St0) -> BsFlags = [binary,{unit,1}], BsSize = {atom,Line,all}, {E1,Pre0,St1} = safe(E0, St0), case E1 of #c_var{name=VarName} -> Var = {var,Line,VarName}, Els = [{bin_element,Line,Var,BsSize,BsFlags}], bc_tq_build(Line, Pre0, AccVar, Els, St1); #c_literal{val=Val} when is_bitstring(Val) -> Bits = bit_size(Val), <> = Val, Int = {integer,Line,Int0}, Sz = {integer,Line,Bits}, Els = [{bin_element,Line,Int,Sz,[integer,{unit,1},big]}], bc_tq_build(Line, Pre0, AccVar, Els, St1); _ -> %% Any other safe (cons, tuple, literal) is not a %% bitstring. Force the evaluation to fail (and %% generate a warning). Els = [{bin_element,Line,{atom,Line,bad_value},BsSize,BsFlags}], bc_tq_build(Line, Pre0, AccVar, Els, St1) end. bc_tq_build(Line, Pre0, #c_var{name=AccVar}, Elements0, St0) -> Elements = [{bin_element,Line,{var,Line,AccVar},{atom,Line,all}, [binary,{unit,1}]}|Elements0], {E,Pre,St} = expr({bin,Line,Elements}, St0), #a{anno=A} = Anno0 = get_anno(E), Anno = Anno0#a{anno=[compiler_generated,single_use|A]}, {set_anno(E, Anno),Pre0++Pre,St}. %% filter_tq(Line, Expr, Filter, Mc, State, [Qualifier], TqFun) -> %% {Case,[PreExpr],State}. %% Transform an intermediate comprehension filter to its intermediate case %% representation. filter_tq(Line, E, #ifilter{anno=#a{anno=LA}=LAnno,arg={Pre,Arg}}, Mc, St0, Qs, TqFun) -> %% The filter is an expression, it is compiled to a case of degree 1 with %% 3 clauses, one accumulating, one skipping and the final one throwing %% {case_clause,Value} where Value is the result of the filter and is not a %% boolean. {Lc,Lps,St1} = TqFun(Line, E, Qs, Mc, St0), {FailPat,St2} = new_var(St1), Fc = fail_clause([FailPat], LA, c_tuple([#c_literal{val=case_clause},FailPat])), {#icase{anno=LAnno#a{anno=[list_comprehension|LA]},args=[Arg], clauses=[#iclause{anno=LAnno, pats=[#c_literal{val=true}],guard=[], body=Lps ++ [Lc]}, #iclause{anno=LAnno#a{anno=[compiler_generated|LA]}, pats=[#c_literal{val=false}],guard=[], body=[Mc]}], fc=Fc}, Pre,St2}; filter_tq(Line, E, #ifilter{anno=#a{anno=LA}=LAnno,arg=Guard}, Mc, St0, Qs, TqFun) when is_list(Guard) -> %% Otherwise it is a guard, compiled to a case of degree 0 with 2 clauses, %% the first matches if the guard succeeds and the comprehension continues %% or the second one is selected and the current element is skipped. {Lc,Lps,St1} = TqFun(Line, E, Qs, Mc, St0), {#icase{anno=LAnno#a{anno=[list_comprehension|LA]},args=[], clauses=[#iclause{anno=LAnno,pats=[],guard=Guard,body=Lps ++ [Lc]}], fc=#iclause{anno=LAnno#a{anno=[compiler_generated|LA]}, pats=[],guard=[],body=[Mc]}}, [],St1}. %% preprocess_quals(Line, [Qualifier], State) -> {[Qualifier'],State}. %% Preprocess a list of Erlang qualifiers into its intermediate representation, %% represented as a list of #igen{} and #ifilter{} records. We recognise guard %% tests and try to fold them together and join to a preceding generators, this %% should give us better and more compact code. preprocess_quals(Line, Qs, St) -> preprocess_quals(Line, Qs, St, []). preprocess_quals(Line, [Q|Qs0], St0, Acc) -> case is_generator(Q) of true -> {Gs,Qs} = splitwith(fun is_guard_test/1, Qs0), {Gen,St} = generator(Line, Q, Gs, St0), preprocess_quals(Line, Qs, St, [Gen|Acc]); false -> LAnno = #a{anno=lineno_anno(get_qual_anno(Q), St0)}, case is_guard_test(Q) of true -> %% When a filter is a guard test, its argument in the %% #ifilter{} record is a list as returned by %% lc_guard_tests/2. {Gs,Qs} = splitwith(fun is_guard_test/1, Qs0), {Cg,St} = lc_guard_tests([Q|Gs], St0), Filter = #ifilter{anno=LAnno,arg=Cg}, preprocess_quals(Line, Qs, St, [Filter|Acc]); false -> %% Otherwise, it is a pair {Pre,Arg} as in a generator %% input. {Ce,Pre,St} = novars(Q, St0), Filter = #ifilter{anno=LAnno,arg={Pre,Ce}}, preprocess_quals(Line, Qs0, St, [Filter|Acc]) end end; preprocess_quals(_, [], St, Acc) -> {reverse(Acc),St}. is_generator({generate,_,_,_}) -> true; is_generator({b_generate,_,_,_}) -> true; is_generator(_) -> false. %% Retrieve the annotation from an Erlang AST form. %% (Use get_anno/1 to retrieve the annotation from Core Erlang forms). get_qual_anno(Abstract) -> element(2, Abstract). %% %% Generators are abstracted as sextuplets: %% - acc_pat is the accumulator pattern, e.g. [Pat|Tail] for Pat <- Expr. %% - acc_guard is the list of guards immediately following the current %% generator in the qualifier list input. %% - skip_pat is the skip pattern, e.g. <> for %% <> <= Expr. %% - tail is the variable used in AccPat and SkipPat bound to the rest of the %% generator input. %% - tail_pat is the tail pattern, respectively [] and <<_/bitstring>> for list %% and bit string generators. %% - arg is a pair {Pre,Arg} where Pre is the list of expressions to be %% inserted before the comprehension function and Arg is the expression %% that it should be passed. %% %% generator(Line, Generator, Guard, State) -> {Generator',State}. %% Transform a given generator into its #igen{} representation. generator(Line, {generate,Lg,P0,E}, Gs, St0) -> LA = lineno_anno(Line, St0), GA = lineno_anno(Lg, St0), {Head,Ceps,St1} = list_gen_pattern(P0, Line, St0), {[Tail,Skip],St2} = new_vars(2, St1), {Cg,St3} = lc_guard_tests(Gs, St2), {AccPat,SkipPat} = case Head of #c_var{} -> %% If the generator pattern is a variable, the %% pattern from the accumulator clause can be %% reused in the skip one. lc_tq and bc_tq1 takes %% care of dismissing the latter in that case. Cons = ann_c_cons(LA, Head, Tail), {Cons,Cons}; nomatch -> %% If it never matches, there is no need for %% an accumulator clause. {nomatch,ann_c_cons(LA, Skip, Tail)}; _ -> {ann_c_cons(LA, Head, Tail), ann_c_cons(LA, Skip, Tail)} end, {Ce,Pre,St4} = safe(E, St3), Gen = #igen{anno=#a{anno=GA},ceps=Ceps, acc_pat=AccPat,acc_guard=Cg,skip_pat=SkipPat, tail=Tail,tail_pat=#c_literal{anno=LA,val=[]},arg={Pre,Ce}}, {Gen,St4}; generator(Line, {b_generate,Lg,P,E}, Gs, St0) -> LA = lineno_anno(Line, St0), GA = lineno_anno(Lg, St0), {Cp = #c_binary{segments=Segs},[],St1} = pattern(P, St0), %% The function append_tail_segment/2 keeps variable patterns as-is, making %% it possible to have the same skip clause removal as with list generators. {AccSegs,Tail,TailSeg,St2} = append_tail_segment(Segs, St1), AccPat = Cp#c_binary{segments=AccSegs}, {Cg,St3} = lc_guard_tests(Gs, St2), {SkipSegs,St4} = emasculate_segments(AccSegs, St3), SkipPat = Cp#c_binary{segments=SkipSegs}, {Ce,Pre,St5} = safe(E, St4), Gen = #igen{anno=#a{anno=GA},acc_pat=AccPat,acc_guard=Cg,skip_pat=SkipPat, tail=Tail,tail_pat=#c_binary{anno=LA,segments=[TailSeg]}, arg={Pre,Ce}}, {Gen,St5}. append_tail_segment(Segs, St0) -> {Var,St} = new_var(St0), Tail = #c_bitstr{val=Var,size=#c_literal{val=all}, unit=#c_literal{val=1}, type=#c_literal{val=binary}, flags=#c_literal{val=[unsigned,big]}}, {Segs++[Tail],Var,Tail,St}. emasculate_segments(Segs, St) -> emasculate_segments(Segs, St, []). emasculate_segments([#c_bitstr{val=#c_var{}}=B|Rest], St, Acc) -> emasculate_segments(Rest, St, [B|Acc]); emasculate_segments([B|Rest], St0, Acc) -> {Var,St1} = new_var(St0), emasculate_segments(Rest, St1, [B#c_bitstr{val=Var}|Acc]); emasculate_segments([], St, Acc) -> {reverse(Acc),St}. lc_guard_tests([], St) -> {[],St}; lc_guard_tests(Gs0, St0) -> Gs1 = guard_tests(Gs0), {Gs,St} = gexpr_top(Gs1, St0#core{in_guard=true}), {Gs,St#core{in_guard=false}}. list_gen_pattern(P0, Line, St) -> try pattern(P0,St) catch nomatch -> {nomatch,[],add_warning(Line, nomatch, St)} end. %%% %%% Generate code to calculate the initial size for %%% the result binary in a binary comprehension. %%% bc_initial_size(E0, Q, St0) -> try E = bin_bin_element(E0), {ElemSzExpr,ElemSzPre,EVs,St1} = bc_elem_size(E, St0), {V,St2} = new_var(St1), {GenSzExpr,GenSzPre,St3} = bc_gen_size(Q, EVs, St2), case ElemSzExpr of #c_literal{val=ElemSz} when ElemSz rem 8 =:= 0 -> NumBytesExpr = #c_literal{val=ElemSz div 8}, BytesExpr = [#iset{var=V, arg=bc_mul(GenSzExpr, NumBytesExpr)}], {V,ElemSzPre++GenSzPre++BytesExpr,St3}; _ -> {[BitsV,PlusSevenV],St} = new_vars(2, St3), BitsExpr = #iset{var=BitsV,arg=bc_mul(GenSzExpr, ElemSzExpr)}, PlusSevenExpr = #iset{var=PlusSevenV, arg=bc_add(BitsV, #c_literal{val=7})}, Expr = #iset{var=V, arg=bc_bsr(PlusSevenV, #c_literal{val=3})}, {V,ElemSzPre++GenSzPre++ [BitsExpr,PlusSevenExpr,Expr],St} end catch throw:impossible -> {#c_literal{val=256},[],St0} end. bc_elem_size({bin,_,El}, St0) -> case bc_elem_size_1(El, ordsets:new(), 0, []) of {Bits,[]} -> {#c_literal{val=Bits},[],[],St0}; {Bits,Vars0} -> [{U,V0}|Pairs] = sort(Vars0), F = bc_elem_size_combine(Pairs, U, [V0], []), Vs = [V || {_,#c_var{name=V}} <- Vars0], {E,Pre,St} = bc_mul_pairs(F, #c_literal{val=Bits}, [], St0), {E,Pre,Vs,St} end; bc_elem_size(_, _) -> throw(impossible). bc_elem_size_1([{bin_element,_,{string,_,String},{integer,_,N},_}=El|Es], DefVars, Bits, SizeVars) -> U = get_unit(El), bc_elem_size_1(Es, DefVars, Bits+U*N*length(String), SizeVars); bc_elem_size_1([{bin_element,_,Expr,{integer,_,N},_}=El|Es], DefVars0, Bits, SizeVars) -> U = get_unit(El), DefVars = bc_elem_size_def_var(Expr, DefVars0), bc_elem_size_1(Es, DefVars, Bits+U*N, SizeVars); bc_elem_size_1([{bin_element,_,Expr,{var,_,Src},_}=El|Es], DefVars0, Bits, SizeVars) -> case ordsets:is_element(Src, DefVars0) of false -> U = get_unit(El), DefVars = bc_elem_size_def_var(Expr, DefVars0), bc_elem_size_1(Es, DefVars, Bits, [{U,#c_var{name=Src}}|SizeVars]); true -> throw(impossible) end; bc_elem_size_1([_|_], _, _, _) -> throw(impossible); bc_elem_size_1([], _DefVars, Bits, SizeVars) -> {Bits,SizeVars}. bc_elem_size_def_var({var,_,Var}, DefVars) -> ordsets:add_element(Var, DefVars); bc_elem_size_def_var(_Expr, DefVars) -> DefVars. bc_elem_size_combine([{U,V}|T], U, UVars, Acc) -> bc_elem_size_combine(T, U, [V|UVars], Acc); bc_elem_size_combine([{U,V}|T], OldU, UVars, Acc) -> bc_elem_size_combine(T, U, [V], [{OldU,UVars}|Acc]); bc_elem_size_combine([], U, Uvars, Acc) -> [{U,Uvars}|Acc]. bc_mul_pairs([{U,L0}|T], E0, Pre, St0) -> {AddExpr,AddPre,St1} = bc_add_list(L0, St0), {[V1,V2],St} = new_vars(2, St1), Set1 = #iset{var=V1,arg=bc_mul(AddExpr, #c_literal{val=U})}, Set2 = #iset{var=V2,arg=bc_add(V1, E0)}, bc_mul_pairs(T, V2, [Set2,Set1|reverse(AddPre, Pre)], St); bc_mul_pairs([], E, Pre, St) -> {E,reverse(Pre),St}. bc_add_list([V], St) -> {V,[],St}; bc_add_list([H|T], St) -> bc_add_list_1(T, [], H, St). bc_add_list_1([H|T], Pre, E, St0) -> {Var,St} = new_var(St0), Set = #iset{var=Var,arg=bc_add(H, E)}, bc_add_list_1(T, [Set|Pre], Var, St); bc_add_list_1([], Pre, E, St) -> {E,reverse(Pre),St}. bc_gen_size(Q, EVs, St) -> bc_gen_size_1(Q, EVs, #c_literal{val=1}, [], St). bc_gen_size_1([{generate,L,El,Gen}|Qs], EVs, E0, Pre0, St0) -> bc_verify_non_filtering(El, EVs), case Gen of {var,_,ListVar} -> Lanno = lineno_anno(L, St0), {LenVar,St1} = new_var(St0), Set = #iset{var=LenVar, arg=#icall{anno=#a{anno=Lanno}, module=#c_literal{val=erlang}, name=#c_literal{val=length}, args=[#c_var{name=ListVar}]}}, {E,Pre,St} = bc_gen_size_mul(E0, LenVar, [Set|Pre0], St1), bc_gen_size_1(Qs, EVs, E, Pre, St); _ -> %% The only expressions we handle is literal lists. Len = bc_list_length(Gen, 0), {E,Pre,St} = bc_gen_size_mul(E0, #c_literal{val=Len}, Pre0, St0), bc_gen_size_1(Qs, EVs, E, Pre, St) end; bc_gen_size_1([{b_generate,_,El0,Gen0}|Qs], EVs, E0, Pre0, St0) -> El = bin_bin_element(El0), Gen = bin_bin_element(Gen0), bc_verify_non_filtering(El, EVs), {MatchSzExpr,Pre1,_,St1} = bc_elem_size(El, St0), Pre2 = reverse(Pre1, Pre0), {ResVar,St2} = new_var(St1), {BitSizeExpr,Pre3,St3} = bc_gen_bit_size(Gen, Pre2, St2), Div = #iset{var=ResVar,arg=bc_div(BitSizeExpr, MatchSzExpr)}, Pre4 = [Div|Pre3], {E,Pre,St} = bc_gen_size_mul(E0, ResVar, Pre4, St3), bc_gen_size_1(Qs, EVs, E, Pre, St); bc_gen_size_1([], _, E, Pre, St) -> {E,reverse(Pre),St}; bc_gen_size_1(_, _, _, _, _) -> throw(impossible). bin_bin_element({bin,L,El}) -> {bin,L,[bin_element(E) || E <- El]}; bin_bin_element(Other) -> Other. bc_gen_bit_size({var,L,V}, Pre0, St0) -> Lanno = lineno_anno(L, St0), {SzVar,St} = new_var(St0), Pre = [#iset{var=SzVar, arg=#icall{anno=#a{anno=Lanno}, module=#c_literal{val=erlang}, name=#c_literal{val=bit_size}, args=[#c_var{name=V}]}}|Pre0], {SzVar,Pre,St}; bc_gen_bit_size({bin,_,_}=Bin, Pre, St) -> {#c_literal{val=bc_bin_size(Bin)},Pre,St}; bc_gen_bit_size(_, _, _) -> throw(impossible). bc_verify_non_filtering({bin,_,Els}, EVs) -> foreach(fun({bin_element,_,{var,_,V},_,_}) -> case member(V, EVs) of true -> throw(impossible); false -> ok end; (_) -> throw(impossible) end, Els); bc_verify_non_filtering({var,_,V}, EVs) -> case member(V, EVs) of true -> throw(impossible); false -> ok end; bc_verify_non_filtering(_, _) -> throw(impossible). bc_list_length({string,_,Str}, Len) -> Len + length(Str); bc_list_length({cons,_,_,T}, Len) -> bc_list_length(T, Len+1); bc_list_length({nil,_}, Len) -> Len; bc_list_length(_, _) -> throw(impossible). bc_bin_size({bin,_,Els}) -> bc_bin_size_1(Els, 0). bc_bin_size_1([{bin_element,_,{string,_,String},{integer,_,Sz},_}=El|Els], N) -> U = get_unit(El), bc_bin_size_1(Els, N+U*Sz*length(String)); bc_bin_size_1([{bin_element,_,_,{integer,_,Sz},_}=El|Els], N) -> U = get_unit(El), bc_bin_size_1(Els, N+U*Sz); bc_bin_size_1([], N) -> N; bc_bin_size_1(_, _) -> throw(impossible). bc_gen_size_mul(#c_literal{val=1}, E, Pre, St) -> {E,Pre,St}; bc_gen_size_mul(E1, E2, Pre, St0) -> {V,St} = new_var(St0), {V,[#iset{var=V,arg=bc_mul(E1, E2)}|Pre],St}. bc_mul(E1, #c_literal{val=1}) -> E1; bc_mul(E1, E2) -> #icall{module=#c_literal{val=erlang}, name=#c_literal{val='*'}, args=[E1,E2]}. bc_div(E1, E2) -> #icall{module=#c_literal{val=erlang}, name=#c_literal{val='div'}, args=[E1,E2]}. bc_add(E1, #c_literal{val=0}) -> E1; bc_add(E1, E2) -> #icall{module=#c_literal{val=erlang}, name=#c_literal{val='+'}, args=[E1,E2]}. bc_bsr(E1, E2) -> #icall{module=#c_literal{val=erlang}, name=#c_literal{val='bsr'}, args=[E1,E2]}. get_unit({bin_element,_,_,_,Flags}) -> {unit,U} = keyfind(unit, 1, Flags), U. %% is_guard_test(Expression) -> true | false. %% Test if a general expression is a guard test. %% %% Note that a local function overrides a BIF with the same name. %% For example, if there is a local function named is_list/1, %% any unqualified call to is_list/1 will be to the local function. %% The guard function must be explicitly called as erlang:is_list/1. is_guard_test(E) -> %% erl_expand_records has added a module prefix to any call %% to a BIF or imported function. Any call without a module %% prefix that remains must therefore be to a local function. IsOverridden = fun({_,_}) -> true end, erl_lint:is_guard_test(E, [], IsOverridden). %% novars(Expr, State) -> {Novars,[PreExpr],State}. %% Generate a novars expression, basically a call or a safe. At this %% level we do not need to do a deep check. novars(E0, St0) -> {E1,Eps,St1} = expr(E0, St0), {Se,Sps,St2} = force_novars(E1, St1), {Se,Eps ++ Sps,St2}. force_novars(#iapply{}=App, St) -> {App,[],St}; force_novars(#icall{}=Call, St) -> {Call,[],St}; force_novars(#ifun{}=Fun, St) -> {Fun,[],St}; %These are novars too force_novars(#ibinary{}=Bin, St) -> {Bin,[],St}; force_novars(#c_map{}=Bin, St) -> {Bin,[],St}; force_novars(Ce, St) -> force_safe(Ce, St). %% safe_pattern_expr(Expr, State) -> {Cexpr,[PreExpr],State}. %% only literals and variables are safe expressions in patterns safe_pattern_expr(E,St0) -> case safe(E,St0) of {#c_var{},_,_}=Safe -> Safe; {#c_literal{},_,_}=Safe -> Safe; {Ce,Eps,St1} -> {V,St2} = new_var(St1), {V,Eps++[#iset{var=V,arg=Ce}],St2} end. %% safe(Expr, State) -> {Safe,[PreExpr],State}. %% Generate an internal safe expression. These are simples without %% binaries which can fail. At this level we do not need to do a %% deep check. Must do special things with matches here. safe(E0, St0) -> {E1,Eps,St1} = expr(E0, St0), {Se,Sps,St2} = force_safe(E1, St1), {Se,Eps ++ Sps,St2}. safe_fun(A0, E0, St0) -> case safe(E0, St0) of {#c_var{name={_,A1}}=E1,Eps,St1} when A1 =/= A0 -> {V,St2} = new_var(St1), {V,Eps ++ [#iset{var=V,arg=E1}],St2}; Result -> Result end. safe_list(Es, St) -> foldr(fun (E, {Ces,Esp,St0}) -> {Ce,Ep,St1} = safe(E, St0), {[Ce|Ces],Ep ++ Esp,St1} end, {[],[],St}, Es). force_safe(#imatch{pat=P,arg=E}=Imatch, St0) -> {Le,Lps0,St1} = force_safe(E, St0), Lps = Lps0 ++ [Imatch#imatch{arg=Le}], %% Make sure we don't duplicate the expression E. sys_core_fold %% will usually optimize away the duplicate expression, but may %% generate a warning while doing so. case Le of #c_var{} -> %% Le is a variable. %% Thus: P = Le, Le. (Traditional, since the V2 compiler.) {Le,Lps,St1}; _ -> %% Le is not a variable. %% Thus: NewVar = P = Le, NewVar. (New for R12B-1.) %% %% Note: It is tempting to rewrite V = Le to V = Le, V, %% but that will generate extra warnings in sys_core_fold %% for this expression: %% %% [{X,Y} || {X,_} <- E, (Y = X) =:= (Y = 1 + 1)] %% %% (There will be a 'case Y =:= Y of...' which will generate %% a warning.) {V,St2} = new_var(St1), {V,Lps0 ++ [Imatch#imatch{pat=#c_alias{var=V,pat=P},arg=Le}],St2} end; force_safe(Ce, St0) -> case is_safe(Ce) of true -> {Ce,[],St0}; false -> {V,St1} = new_var(St0), {V,[#iset{var=V,arg=Ce}],St1} end. is_safe(#c_cons{}) -> true; is_safe(#c_tuple{}) -> true; is_safe(#c_var{name={_,_}}) -> false; %Fun. Not safe. is_safe(#c_var{name=_}) -> true; %Ordinary variable. is_safe(#c_literal{}) -> true; is_safe(_) -> false. %% fold_match(MatchExpr, Pat) -> {MatchPat,Expr}. %% Fold nested matches into one match with aliased patterns. fold_match({match,L,P0,E0}, P) -> {P1,E1} = fold_match(E0, P), {{match,L,P0,P1},E1}; fold_match(E, P) -> {P,E}. %% pattern(Pattern, State) -> {CorePat,[PreExp],State}. %% Transform a pattern by removing line numbers. We also normalise %% aliases in patterns to standard form, {alias,Pat,[Var]}. %% %% In patterns we may have expressions %% 1) Binaries -> #c_bitstr{size=Expr} %% 2) Maps -> #c_map_pair{key=Expr} %% %% Both of these may generate pre-expressions since only bound variables %% or literals are allowed for these in core patterns. %% %% Therefor, we need to drag both the state and the collection of pre-expression %% around in the whole pattern transformation tree. pattern({var,L,V}, St) -> {#c_var{anno=lineno_anno(L, St),name=V},[],St}; pattern({char,L,C}, St) -> {#c_literal{anno=lineno_anno(L, St),val=C},[],St}; pattern({integer,L,I}, St) -> {#c_literal{anno=lineno_anno(L, St),val=I},[],St}; pattern({float,L,F}, St) -> {#c_literal{anno=lineno_anno(L, St),val=F},[],St}; pattern({atom,L,A}, St) -> {#c_literal{anno=lineno_anno(L, St),val=A},[],St}; pattern({string,L,S}, St) -> {#c_literal{anno=lineno_anno(L, St),val=S},[],St}; pattern({nil,L}, St) -> {#c_literal{anno=lineno_anno(L, St),val=[]},[],St}; pattern({cons,L,H,T}, St) -> {Ph,Eps1,St1} = pattern(H, St), {Pt,Eps2,St2} = pattern(T, St1), {annotate_cons(lineno_anno(L, St), Ph, Pt, St2),Eps1++Eps2,St2}; pattern({tuple,L,Ps}, St) -> {Ps1,Eps,St1} = pattern_list(Ps,St), {annotate_tuple(record_anno(L, St), Ps1, St),Eps,St1}; pattern({map,L,Pairs}, St0) -> {Ps,Eps,St1} = pattern_map_pairs(Pairs, St0), {#c_map{anno=lineno_anno(L, St1),es=Ps,is_pat=true},Eps,St1}; pattern({bin,L,Ps}, St) -> %% We don't create a #ibinary record here, since there is %% no need to hold any used/new annotations in a pattern. {#c_binary{anno=lineno_anno(L, St),segments=pat_bin(Ps, St)},[],St}; pattern({match,_,P1,P2}, St) -> {Cp1,Eps1,St1} = pattern(P1,St), {Cp2,Eps2,St2} = pattern(P2,St1), {pat_alias(Cp1,Cp2),Eps1++Eps2,St2}; %% Evaluate compile-time expressions. pattern({op,_,'++',{nil,_},R}, St) -> pattern(R, St); pattern({op,_,'++',{cons,Li,H,T},R}, St) -> pattern({cons,Li,H,{op,Li,'++',T,R}}, St); pattern({op,_,'++',{string,Li,L},R}, St) -> pattern(string_to_conses(Li, L, R), St); pattern({op,_Line,_Op,_A}=Op, St) -> pattern(erl_eval:partial_eval(Op), St); pattern({op,_Line,_Op,_L,_R}=Op, St) -> pattern(erl_eval:partial_eval(Op), St). %% pattern_map_pairs([MapFieldExact],State) -> [#c_map_pairs{}] pattern_map_pairs(Ps, St) -> %% check literal key uniqueness %% - guaranteed via aliasing map pairs %% pattern all pairs in two steps %% 1) Construct Core Pattern %% 2) Alias Keys in Core Pattern {CMapPairs, {Eps,St1}} = lists:mapfoldl(fun (P,{EpsM,Sti0}) -> {CMapPair,EpsP,Sti1} = pattern_map_pair(P,Sti0), {CMapPair, {EpsM++EpsP,Sti1}} end, {[],St}, Ps), {pat_alias_map_pairs(CMapPairs),Eps,St1}. pattern_map_pair({map_field_exact,L,K,V}, St0) -> {Ck,EpsK,St1} = safe_pattern_expr(K, St0), {Cv,EpsV,St2} = pattern(V, St1), {#c_map_pair{anno=lineno_anno(L, St2), op=#c_literal{val=exact}, key=Ck, val=Cv},EpsK++EpsV,St2}. pat_alias_map_pairs(Ps) -> D = foldl(fun(#c_map_pair{key=K0}=Pair, D0) -> K = cerl:set_ann(K0, []), dict:append(K, Pair, D0) end, dict:new(), Ps), pat_alias_map_pairs_1(dict:to_list(D)). pat_alias_map_pairs_1([{_,[#c_map_pair{val=V0}=Pair|Vs]}|T]) -> V = foldl(fun(#c_map_pair{val=V}, Pat) -> pat_alias(V, Pat) end, V0, Vs), [Pair#c_map_pair{val=V}|pat_alias_map_pairs_1(T)]; pat_alias_map_pairs_1([]) -> []. %% pat_bin([BinElement], State) -> [BinSeg]. pat_bin(Ps, St) -> [pat_segment(P, St) || P <- bin_expand_strings(Ps)]. pat_segment({bin_element,L,Val,Size0,Type0}, St) -> {Size,Type1} = make_bit_type(L, Size0, Type0), [Type,{unit,Unit}|Flags] = Type1, Anno = lineno_anno(L, St), {Pval0,[],St1} = pattern(Val, St), Pval = coerce_to_float(Pval0, Type0), {Psize,[],_St2} = pattern(Size, St1), #c_bitstr{anno=Anno, val=Pval,size=Psize, unit=#c_literal{val=Unit}, type=#c_literal{val=Type}, flags=#c_literal{val=Flags}}. coerce_to_float(#c_literal{val=Int}=E, [float|_]) when is_integer(Int) -> try E#c_literal{val=float(Int)} catch error:badarg -> E end; coerce_to_float(E, _) -> E. %% pat_alias(CorePat, CorePat) -> AliasPat. %% Normalise aliases. Trap bad aliases by throwing 'nomatch'. pat_alias(#c_var{name=V1}=P, #c_var{name=V1}) -> P; pat_alias(#c_var{name=V1}=Var, #c_alias{var=#c_var{name=V2},pat=Pat}=Alias) -> if V1 =:= V2 -> Alias; true -> Alias#c_alias{pat=pat_alias(Var, Pat)} end; pat_alias(#c_var{}=P1, P2) -> #c_alias{var=P1,pat=P2}; pat_alias(#c_alias{var=#c_var{name=V1}}=Alias, #c_var{name=V1}) -> Alias; pat_alias(#c_alias{var=#c_var{name=V1}=Var1,pat=P1}, #c_alias{var=#c_var{name=V2}=Var2,pat=P2}) -> Pat = pat_alias(P1, P2), if V1 =:= V2 -> #c_alias{var=Var1,pat=Pat}; true -> pat_alias(Var1, pat_alias(Var2, Pat)) end; pat_alias(#c_alias{var=#c_var{}=Var,pat=P1}, P2) -> #c_alias{var=Var,pat=pat_alias(P1, P2)}; pat_alias(#c_map{es=Es1}=M, #c_map{es=Es2}) -> M#c_map{es=pat_alias_map_pairs(Es1 ++ Es2)}; pat_alias(P1, #c_var{}=Var) -> #c_alias{var=Var,pat=P1}; pat_alias(P1, #c_alias{pat=P2}=Alias) -> Alias#c_alias{pat=pat_alias(P1, P2)}; pat_alias(P1, P2) -> %% Aliases between binaries are not allowed, so the only %% legal patterns that remain are data patterns. case cerl:is_data(P1) andalso cerl:is_data(P2) of false -> throw(nomatch); true -> ok end, Type = cerl:data_type(P1), case cerl:data_type(P2) of Type -> ok; _ -> throw(nomatch) end, Es1 = cerl:data_es(P1), Es2 = cerl:data_es(P2), Es = pat_alias_list(Es1, Es2), cerl:make_data(Type, Es). %% pat_alias_list([A1], [A2]) -> [A]. pat_alias_list([A1|A1s], [A2|A2s]) -> [pat_alias(A1, A2)|pat_alias_list(A1s, A2s)]; pat_alias_list([], []) -> []; pat_alias_list(_, _) -> throw(nomatch). %% pattern_list([P], State) -> {[P],Exprs,St} pattern_list([P0|Ps0], St0) -> {P1,Eps,St1} = pattern(P0, St0), {Ps1,Epsl,St2} = pattern_list(Ps0, St1), {[P1|Ps1], Eps ++ Epsl, St2}; pattern_list([], St) -> {[],[],St}. string_to_conses(Line, Cs, Tail) -> foldr(fun (C, T) -> {cons,Line,{char,Line,C},T} end, Tail, Cs). %% make_vars([Name]) -> [{Var,Name}]. make_vars(Vs) -> [ #c_var{name=V} || V <- Vs ]. new_fun_name(#core{function={F,A},fcount=I}=St) -> Name = "-" ++ atom_to_list(F) ++ "/" ++ integer_to_list(A) ++ "-fun-" ++ integer_to_list(I) ++ "-", {list_to_atom(Name),St#core{fcount=I+1}}. %% new_fun_name(Type, State) -> {FunName,State}. new_fun_name(Type, #core{fcount=C}=St) -> {list_to_atom(Type ++ "$^" ++ integer_to_list(C)),St#core{fcount=C+1}}. %% new_var_name(State) -> {VarName,State}. new_var_name(#core{vcount=C}=St) -> {C,St#core{vcount=C + 1}}. %% new_var(State) -> {{var,Name},State}. %% new_var(LineAnno, State) -> {{var,Name},State}. new_var(St) -> new_var([], St). new_var(Anno, St0) when is_list(Anno) -> {New,St} = new_var_name(St0), {#c_var{anno=Anno,name=New},St}. %% new_vars(Count, State) -> {[Var],State}. %% new_vars(Anno, Count, State) -> {[Var],State}. %% Make Count new variables. new_vars(N, St) -> new_vars_1(N, [], St, []). new_vars(Anno, N, St) -> new_vars_1(N, Anno, St, []). new_vars_1(N, Anno, St0, Vs) when N > 0 -> {V,St1} = new_var(Anno, St0), new_vars_1(N-1, Anno, St1, [V|Vs]); new_vars_1(0, _, St, Vs) -> {Vs,St}. function_clause(Ps, LineAnno, Name) -> FcAnno = [{function_name,Name}|LineAnno], fail_clause(Ps, FcAnno, ann_c_tuple(LineAnno, [#c_literal{val=function_clause}|Ps])). fail_clause(Pats, Anno, Arg) -> #iclause{anno=#a{anno=[compiler_generated]}, pats=Pats,guard=[], body=[#iprimop{anno=#a{anno=Anno},name=#c_literal{val=match_fail}, args=[Arg]}]}. %% Optimization for Dialyzer. right_assoc({op,L1,Op,{op,L2,Op,E1,E2},E3}, Op) -> right_assoc({op,L2,Op,E1,{op,L1,Op,E2,E3}}, Op); right_assoc(E, _Op) -> E. annotate_tuple(A, Es, St) -> case member(dialyzer, St#core.opts) of true -> %% Do not coalesce constant tuple elements. A Hack. Node = cerl:ann_c_tuple(A, [cerl:c_var(any)]), cerl:update_c_tuple_skel(Node, Es); false -> ann_c_tuple(A, Es) end. annotate_cons(A, H, T, St) -> case member(dialyzer, St#core.opts) of true -> %% Do not coalesce constant conses. A Hack. Node= cerl:ann_c_cons(A, cerl:c_var(any), cerl:c_var(any)), cerl:update_c_cons_skel(Node, H, T); false -> ann_c_cons(A, H, T) end. ubody(B, St) -> uexpr(B, [], St). %% uclauses([Lclause], [KnownVar], State) -> {[Lclause],State}. uclauses(Lcs, Ks, St0) -> mapfoldl(fun (Lc, St) -> uclause(Lc, Ks, St) end, St0, Lcs). %% uclause(Lclause, [KnownVar], State) -> {Lclause,State}. uclause(Cl0, Ks, St0) -> {Cl1,_Pvs,Used,New,St1} = uclause(Cl0, Ks, Ks, St0), A0 = get_anno(Cl1), A = A0#a{us=Used,ns=New}, {Cl1#iclause{anno=A},St1}. uclause(#iclause{anno=Anno,pats=Ps0,guard=G0,body=B0}, Pks, Ks0, St0) -> {Ps1,Pg,Pvs,Pus,St1} = upattern_list(Ps0, Pks, St0), Pu = union(Pus, intersection(Pvs, Ks0)), Pn = subtract(Pvs, Pu), Ks1 = union(Pn, Ks0), {G1,St2} = uguard(Pg, G0, Ks1, St1), Gu = used_in_any(G1), Gn = new_in_any(G1), Ks2 = union(Gn, Ks1), {B1,St3} = uexprs(B0, Ks2, St2), Used = intersection(union([Pu,Gu,used_in_any(B1)]), Ks0), New = union([Pn,Gn,new_in_any(B1)]), {#iclause{anno=Anno,pats=Ps1,guard=G1,body=B1},Pvs,Used,New,St3}. %% uguard([Test], [Kexpr], [KnownVar], State) -> {[Kexpr],State}. %% Build a guard expression list by folding in the equality tests. uguard([], [], _, St) -> {[],St}; uguard(Pg, [], Ks, St) -> %% No guard, so fold together equality tests. uguard(droplast(Pg), [last(Pg)], Ks, St); uguard(Pg, Gs0, Ks, St0) -> %% Gs0 must contain at least one element here. {Gs3,St5} = foldr(fun (T, {Gs1,St1}) -> {L,St2} = new_var(St1), {R,St3} = new_var(St2), {[#iset{var=L,arg=T}] ++ droplast(Gs1) ++ [#iset{var=R,arg=last(Gs1)}, #icall{anno=#a{}, %Must have an #a{} module=#c_literal{val=erlang}, name=#c_literal{val='and'}, args=[L,R]}], St3} end, {Gs0,St0}, Pg), %%ok = io:fwrite("core ~w: ~p~n", [?LINE,Gs3]), uexprs(Gs3, Ks, St5). %% uexprs([Kexpr], [KnownVar], State) -> {[Kexpr],State}. uexprs([#imatch{anno=A,pat=P0,arg=Arg,fc=Fc}|Les], Ks, St0) -> case upat_is_new_var(P0, Ks) of true -> %% Assignment to a new variable. uexprs([#iset{var=P0,arg=Arg}|Les], Ks, St0); false when Les =:= [] -> %% Need to explicitly return match "value", make %% safe for efficiency. {La0,Lps,St1} = force_safe(Arg, St0), La = mark_compiler_generated(La0), Mc = #iclause{anno=A,pats=[P0],guard=[],body=[La]}, uexprs(Lps ++ [#icase{anno=A, args=[La0],clauses=[Mc],fc=Fc}], Ks, St1); false -> Mc = #iclause{anno=A,pats=[P0],guard=[],body=Les}, uexprs([#icase{anno=A,args=[Arg], clauses=[Mc],fc=Fc}], Ks, St0) end; uexprs([Le0|Les0], Ks, St0) -> {Le1,St1} = uexpr(Le0, Ks, St0), {Les1,St2} = uexprs(Les0, union((get_anno(Le1))#a.ns, Ks), St1), {[Le1|Les1],St2}; uexprs([], _, St) -> {[],St}. %% upat_is_new_var(Pattern, [KnownVar]) -> true|false. %% Test whether the pattern is a single, previously unknown %% variable. upat_is_new_var(#c_var{name=V}, Ks) -> not is_element(V, Ks); upat_is_new_var(_, _) -> false. %% Mark a "safe" as compiler-generated. mark_compiler_generated(#c_cons{anno=A,hd=H,tl=T}) -> ann_c_cons([compiler_generated|A], mark_compiler_generated(H), mark_compiler_generated(T)); mark_compiler_generated(#c_tuple{anno=A,es=Es0}) -> Es = [mark_compiler_generated(E) || E <- Es0], ann_c_tuple([compiler_generated|A], Es); mark_compiler_generated(#c_var{anno=A}=Var) -> Var#c_var{anno=[compiler_generated|A]}; mark_compiler_generated(#c_literal{anno=A}=Lit) -> Lit#c_literal{anno=[compiler_generated|A]}. uexpr(#iset{anno=A,var=V,arg=A0}, Ks, St0) -> {A1,St1} = uexpr(A0, Ks, St0), {#iset{anno=A#a{us=del_element(V#c_var.name, (get_anno(A1))#a.us), ns=add_element(V#c_var.name, (get_anno(A1))#a.ns)}, var=V,arg=A1},St1}; %% imatch done in uexprs. uexpr(#iletrec{anno=A,defs=Fs0,body=B0}, Ks, St0) -> %%ok = io:fwrite("~w: ~p~n", [?LINE,{Fs0,B0}]), {Fs1,St1} = mapfoldl(fun ({Name,F0}, S0) -> {F1,S1} = uexpr(F0, Ks, S0), {{Name,F1},S1} end, St0, Fs0), {B1,St2} = uexprs(B0, Ks, St1), Used = used_in_any(map(fun ({_,F}) -> F end, Fs1) ++ B1), {#iletrec{anno=A#a{us=Used,ns=[]},defs=Fs1,body=B1},St2}; uexpr(#icase{anno=#a{anno=Anno}=A,args=As0,clauses=Cs0,fc=Fc0}, Ks, St0) -> %% As0 will never generate new variables. {As1,St1} = uexpr_list(As0, Ks, St0), {Cs1,St2} = uclauses(Cs0, Ks, St1), {Fc1,St3} = uclause(Fc0, Ks, St2), Used = union(used_in_any(As1), used_in_any(Cs1)), New = case member(list_comprehension, Anno) of true -> []; false -> new_in_all(Cs1) end, {#icase{anno=A#a{us=Used,ns=New},args=As1,clauses=Cs1,fc=Fc1},St3}; uexpr(#ifun{anno=A0,id=Id,vars=As,clauses=Cs0,fc=Fc0,name=Name}, Ks0, St0) -> Avs = lit_list_vars(As), Ks1 = case Name of unnamed -> Ks0; {named,FName} -> union(subtract([FName], Avs), Ks0) end, Ks2 = union(Avs, Ks1), {Cs1,St1} = ufun_clauses(Cs0, Ks2, St0), {Fc1,St2} = ufun_clause(Fc0, Ks2, St1), Used = subtract(intersection(used_in_any(Cs1), Ks1), Avs), A1 = A0#a{us=Used,ns=[]}, {#ifun{anno=A1,id=Id,vars=As,clauses=Cs1,fc=Fc1,name=Name},St2}; uexpr(#iapply{anno=A,op=Op,args=As}, _, St) -> Used = union(lit_vars(Op), lit_list_vars(As)), {#iapply{anno=A#a{us=Used},op=Op,args=As},St}; uexpr(#iprimop{anno=A,name=Name,args=As}, _, St) -> Used = lit_list_vars(As), {#iprimop{anno=A#a{us=Used},name=Name,args=As},St}; uexpr(#icall{anno=A,module=Mod,name=Name,args=As}, _, St) -> Used = union([lit_vars(Mod),lit_vars(Name),lit_list_vars(As)]), {#icall{anno=A#a{us=Used},module=Mod,name=Name,args=As},St}; uexpr(#itry{anno=A,args=As0,vars=Vs,body=Bs0,evars=Evs,handler=Hs0}, Ks, St0) -> %% Note that we export only from body and exception. {As1,St1} = uexprs(As0, Ks, St0), {Bs1,St2} = uexprs(Bs0, Ks, St1), {Hs1,St3} = uexprs(Hs0, Ks, St2), Used = intersection(used_in_any(Bs1++Hs1++As1), Ks), New = new_in_all(Bs1++Hs1), {#itry{anno=A#a{us=Used,ns=New}, args=As1,vars=Vs,body=Bs1,evars=Evs,handler=Hs1},St3}; uexpr(#icatch{anno=A,body=Es0}, Ks, St0) -> {Es1,St1} = uexprs(Es0, Ks, St0), {#icatch{anno=A#a{us=used_in_any(Es1)},body=Es1},St1}; uexpr(#ireceive1{anno=A,clauses=Cs0}, Ks, St0) -> {Cs1,St1} = uclauses(Cs0, Ks, St0), {#ireceive1{anno=A#a{us=used_in_any(Cs1),ns=new_in_all(Cs1)}, clauses=Cs1},St1}; uexpr(#ireceive2{anno=A,clauses=Cs0,timeout=Te0,action=Tes0}, Ks, St0) -> %% Te0 will never generate new variables. {Te1,St1} = uexpr(Te0, Ks, St0), {Cs1,St2} = uclauses(Cs0, Ks, St1), {Tes1,St3} = uexprs(Tes0, Ks, St2), Used = union([used_in_any(Cs1),used_in_any(Tes1),(get_anno(Te1))#a.us]), New = case Cs1 of [] -> new_in_any(Tes1); _ -> intersection(new_in_all(Cs1), new_in_any(Tes1)) end, {#ireceive2{anno=A#a{us=Used,ns=New}, clauses=Cs1,timeout=Te1,action=Tes1},St3}; uexpr(#iprotect{anno=A,body=Es0}, Ks, St0) -> {Es1,St1} = uexprs(Es0, Ks, St0), Used = used_in_any(Es1), {#iprotect{anno=A#a{us=Used},body=Es1},St1}; %No new variables escape! uexpr(#ibinary{anno=A,segments=Ss}, _, St) -> Used = bitstr_vars(Ss), {#ibinary{anno=A#a{us=Used},segments=Ss},St}; uexpr(#c_literal{}=Lit, _, St) -> Anno = get_anno(Lit), {set_anno(Lit, #a{us=[],anno=Anno}),St}; uexpr(Simple, _, St) -> true = is_simple(Simple), %Sanity check! Vs = lit_vars(Simple), Anno = get_anno(Simple), {#isimple{anno=#a{us=Vs,anno=Anno},term=Simple},St}. uexpr_list(Les0, Ks, St0) -> mapfoldl(fun (Le, St) -> uexpr(Le, Ks, St) end, St0, Les0). %% ufun_clauses([Lclause], [KnownVar], State) -> {[Lclause],State}. ufun_clauses(Lcs, Ks, St0) -> mapfoldl(fun (Lc, St) -> ufun_clause(Lc, Ks, St) end, St0, Lcs). %% ufun_clause(Lclause, [KnownVar], State) -> {Lclause,State}. ufun_clause(Cl0, Ks, St0) -> {Cl1,Pvs,Used,_,St1} = uclause(Cl0, [], Ks, St0), A0 = get_anno(Cl1), A = A0#a{us=subtract(intersection(Used, Ks), Pvs),ns=[]}, {Cl1#iclause{anno=A},St1}. %% upattern(Pat, [KnownVar], State) -> %% {Pat,[GuardTest],[NewVar],[UsedVar],State}. upattern(#c_var{name='_'}, _, St0) -> {New,St1} = new_var_name(St0), {#c_var{name=New},[],[New],[],St1}; upattern(#c_var{name=V}=Var, Ks, St0) -> case is_element(V, Ks) of true -> {N,St1} = new_var_name(St0), New = #c_var{name=N}, LA = get_lineno_anno(Var), Test = #icall{anno=#a{anno=LA,us=add_element(N, [V])}, module=#c_literal{val=erlang}, name=#c_literal{val='=:='}, args=[New,Var]}, %% Test doesn't need protecting. {New,[Test],[N],[],St1}; false -> {Var,[],[V],[],St0} end; upattern(#c_cons{hd=H0,tl=T0}=Cons, Ks, St0) -> {H1,Hg,Hv,Hu,St1} = upattern(H0, Ks, St0), {T1,Tg,Tv,Tu,St2} = upattern(T0, union(Hv, Ks), St1), {Cons#c_cons{hd=H1,tl=T1},Hg ++ Tg,union(Hv, Tv),union(Hu, Tu),St2}; upattern(#c_tuple{es=Es0}=Tuple, Ks, St0) -> {Es1,Esg,Esv,Eus,St1} = upattern_list(Es0, Ks, St0), {Tuple#c_tuple{es=Es1},Esg,Esv,Eus,St1}; upattern(#c_map{es=Es0}=Map, Ks, St0) -> {Es1,Esg,Esv,Eus,St1} = upattern_list(Es0, Ks, St0), {Map#c_map{es=Es1},Esg,Esv,Eus,St1}; upattern(#c_map_pair{op=#c_literal{val=exact},key=K0,val=V0}=Pair,Ks,St0) -> {V,Vg,Vn,Vu,St1} = upattern(V0, Ks, St0), % A variable key must be considered used here Ku = case K0 of #c_var{name=Name} -> [Name]; _ -> [] end, {Pair#c_map_pair{val=V},Vg,Vn,union(Ku,Vu),St1}; upattern(#c_binary{segments=Es0}=Bin, Ks, St0) -> {Es1,Esg,Esv,Eus,St1} = upat_bin(Es0, Ks, St0), {Bin#c_binary{segments=Es1},Esg,Esv,Eus,St1}; upattern(#c_alias{var=V0,pat=P0}=Alias, Ks, St0) -> {V1,Vg,Vv,Vu,St1} = upattern(V0, Ks, St0), {P1,Pg,Pv,Pu,St2} = upattern(P0, union(Vv, Ks), St1), {Alias#c_alias{var=V1,pat=P1},Vg ++ Pg,union(Vv, Pv),union(Vu, Pu),St2}; upattern(Other, _, St) -> {Other,[],[],[],St}. %Constants %% upattern_list([Pat], [KnownVar], State) -> %% {[Pat],[GuardTest],[NewVar],[UsedVar],State}. upattern_list([P0|Ps0], Ks, St0) -> {P1,Pg,Pv,Pu,St1} = upattern(P0, Ks, St0), {Ps1,Psg,Psv,Psu,St2} = upattern_list(Ps0, union(Pv, Ks), St1), {[P1|Ps1],Pg ++ Psg,union(Pv, Psv),union(Pu, Psu),St2}; upattern_list([], _, St) -> {[],[],[],[],St}. %% upat_bin([Pat], [KnownVar], State) -> %% {[Pat],[GuardTest],[NewVar],[UsedVar],State}. upat_bin(Es0, Ks, St0) -> {Es1,Pg,Pv,Pu0,St1} = upat_bin(Es0, Ks, [], St0), %% In a clause such as <> in a function head, Sz will both %% be new and used; a situation that is not handled properly by %% uclause/4. (Basically, since Sz occurs in two sets that are %% subtracted from each other, Sz will not be added to the list of %% known variables and will seem to be new the next time it is %% used in a match.) %% Since the variable Sz really is new (it does not use a %% value bound prior to the binary matching), Sz should only be %% included in the set of new variables. Thus we should take it %% out of the set of used variables. Pu1 = subtract(Pu0, intersection(Pv, Pu0)), {Es1,Pg,Pv,Pu1,St1}. %% upat_bin([Pat], [KnownVar], [LocalVar], State) -> %% {[Pat],[GuardTest],[NewVar],[UsedVar],State}. upat_bin([P0|Ps0], Ks, Bs, St0) -> {P1,Pg,Pv,Pu,Bs1,St1} = upat_element(P0, Ks, Bs, St0), {Ps1,Psg,Psv,Psu,St2} = upat_bin(Ps0, union(Pv, Ks), Bs1, St1), {[P1|Ps1],Pg ++ Psg,union(Pv, Psv),union(Pu, Psu),St2}; upat_bin([], _, _, St) -> {[],[],[],[],St}. %% upat_element(Segment, [KnownVar], [LocalVar], State) -> %% {Segment,[GuardTest],[NewVar],[UsedVar],[LocalVar],State} upat_element(#c_bitstr{val=H0,size=Sz0}=Seg, Ks, Bs0, St0) -> {H1,Hg,Hv,[],St1} = upattern(H0, Ks, St0), Bs1 = case H0 of #c_var{name=Hname} -> case H1 of #c_var{name=Hname} -> Bs0; #c_var{name=Other} -> [{Hname,Other}|Bs0] end; _ -> Bs0 end, {Sz1,Us} = case Sz0 of #c_var{name=Vname} -> rename_bitstr_size(Vname, Bs0); _Other -> {Sz0,[]} end, {Seg#c_bitstr{val=H1,size=Sz1},Hg,Hv,Us,Bs1,St1}. rename_bitstr_size(V, [{V,N}|_]) -> New = #c_var{name=N}, {New,[N]}; rename_bitstr_size(V, [_|Rest]) -> rename_bitstr_size(V, Rest); rename_bitstr_size(V, []) -> Old = #c_var{name=V}, {Old,[V]}. used_in_any(Les) -> foldl(fun (Le, Ns) -> union((get_anno(Le))#a.us, Ns) end, [], Les). new_in_any(Les) -> foldl(fun (Le, Ns) -> union((get_anno(Le))#a.ns, Ns) end, [], Les). new_in_all([Le|Les]) -> foldl(fun (L, Ns) -> intersection((get_anno(L))#a.ns, Ns) end, (get_anno(Le))#a.ns, Les); new_in_all([]) -> []. %% The AfterVars are the variables which are used afterwards. We need %% this to work out which variables are actually exported and used %% from case/receive. In subblocks/clauses the AfterVars of the block %% are just the exported variables. cbody(B0, St0) -> {B1,_,_,St1} = cexpr(B0, [], St0), {B1,St1}. %% cclause(Lclause, [AfterVar], State) -> {Cclause,State}. %% The AfterVars are the exported variables. cclause(#iclause{anno=#a{anno=Anno},pats=Ps,guard=G0,body=B0}, Exp, St0) -> {B1,_Us1,St1} = cexprs(B0, Exp, St0), {G1,St2} = cguard(G0, St1), {#c_clause{anno=Anno,pats=Ps,guard=G1,body=B1},St2}. cclauses(Lcs, Es, St0) -> mapfoldl(fun (Lc, St) -> cclause(Lc, Es, St) end, St0, Lcs). cguard([], St) -> {#c_literal{val=true},St}; cguard(Gs, St0) -> {G,_,St1} = cexprs(Gs, [], St0), {G,St1}. %% cexprs([Lexpr], [AfterVar], State) -> {Cexpr,[AfterVar],State}. %% Must be sneaky here at the last expr when combining exports for the %% whole sequence and exports for that expr. cexprs([#iset{var=#c_var{name=Name}=Var}=Iset], As, St) -> %% Make return value explicit, and make Var true top level. Isimple = #isimple{anno=#a{us=[Name]},term=Var}, cexprs([Iset,Isimple], As, St); cexprs([Le], As, St0) -> {Ce,Es,Us,St1} = cexpr(Le, As, St0), Exp = make_vars(As), %The export variables if Es =:= [] -> {core_lib:make_values([Ce|Exp]),union(Us, As),St1}; true -> {R,St2} = new_var(St1), {#c_let{anno=get_lineno_anno(Ce), vars=[R|make_vars(Es)],arg=Ce, body=core_lib:make_values([R|Exp])}, union(Us, As),St2} end; cexprs([#iset{anno=#a{anno=A},var=V,arg=A0}|Les], As0, St0) -> {Ces,As1,St1} = cexprs(Les, As0, St0), {A1,Es,Us,St2} = cexpr(A0, As1, St1), {#c_let{anno=A,vars=[V|make_vars(Es)],arg=A1,body=Ces}, union(Us, As1),St2}; cexprs([Le|Les], As0, St0) -> {Ces,As1,St1} = cexprs(Les, As0, St0), {Ce,Es,Us,St2} = cexpr(Le, As1, St1), if Es =:= [] -> {#c_seq{arg=Ce,body=Ces},union(Us, As1),St2}; true -> {R,St3} = new_var(St2), {#c_let{vars=[R|make_vars(Es)],arg=Ce,body=Ces}, union(Us, As1),St3} end. %% cexpr(Lexpr, [AfterVar], State) -> {Cexpr,[ExpVar],[UsedVar],State}. cexpr(#iletrec{anno=A,defs=Fs0,body=B0}, As, St0) -> {Fs1,{_,St1}} = mapfoldl(fun ({{_Name,_Arity}=NA,F0}, {Used,S0}) -> {F1,[],Us,S1} = cexpr(F0, [], S0), {{#c_var{name=NA},F1}, {union(Us, Used),S1}} end, {[],St0}, Fs0), Exp = intersection(A#a.ns, As), {B1,_Us,St2} = cexprs(B0, Exp, St1), {#c_letrec{anno=A#a.anno,defs=Fs1,body=B1},Exp,A#a.us,St2}; cexpr(#icase{anno=A,args=Largs,clauses=Lcs,fc=Lfc}, As, St0) -> Exp = intersection(A#a.ns, As), %Exports {Cargs,St1} = foldr(fun (La, {Cas,Sta}) -> {Ca,[],_Us1,Stb} = cexpr(La, As, Sta), {[Ca|Cas],Stb} end, {[],St0}, Largs), {Ccs,St2} = cclauses(Lcs, Exp, St1), {Cfc,St3} = cclause(Lfc, [], St2), %Never exports {#c_case{anno=A#a.anno, arg=core_lib:make_values(Cargs),clauses=Ccs ++ [Cfc]}, Exp,A#a.us,St3}; cexpr(#ireceive1{anno=A,clauses=Lcs}, As, St0) -> Exp = intersection(A#a.ns, As), %Exports {Ccs,St1} = cclauses(Lcs, Exp, St0), True = #c_literal{val=true}, Action = core_lib:make_values(lists:duplicate(1+length(Exp), True)), {#c_receive{anno=A#a.anno, clauses=Ccs, timeout=#c_literal{val=infinity},action=Action}, Exp,A#a.us,St1}; cexpr(#ireceive2{anno=A,clauses=Lcs,timeout=Lto,action=Les}, As, St0) -> Exp = intersection(A#a.ns, As), %Exports {Cto,[],_Us1,St1} = cexpr(Lto, As, St0), {Ccs,St2} = cclauses(Lcs, Exp, St1), {Ces,_Us2,St3} = cexprs(Les, Exp, St2), {#c_receive{anno=A#a.anno, clauses=Ccs,timeout=Cto,action=Ces}, Exp,A#a.us,St3}; cexpr(#itry{anno=A,args=La,vars=Vs,body=Lb,evars=Evs,handler=Lh}, As, St0) -> Exp = intersection(A#a.ns, As), %Exports {Ca,_Us1,St1} = cexprs(La, [], St0), {Cb,_Us2,St2} = cexprs(Lb, Exp, St1), {Ch,_Us3,St3} = cexprs(Lh, Exp, St2), {#c_try{anno=A#a.anno,arg=Ca,vars=Vs,body=Cb,evars=Evs,handler=Ch}, Exp,A#a.us,St3}; cexpr(#icatch{anno=A,body=Les}, _As, St0) -> {Ces,_Us1,St1} = cexprs(Les, [], St0), %Never export! {#c_catch{body=Ces},[],A#a.us,St1}; cexpr(#ifun{name=unnamed}=Fun, As, St0) -> cfun(Fun, As, St0); cexpr(#ifun{anno=#a{us=Us0}=A0,name={named,Name},fc=#iclause{pats=Ps}}=Fun0, As, St0) -> case is_element(Name, Us0) of false -> cfun(Fun0, As, St0); true -> A1 = A0#a{us=del_element(Name, Us0)}, Fun1 = Fun0#ifun{anno=A1}, {#c_fun{body=Body}=CFun0,[],Us1,St1} = cfun(Fun1, As, St0), RecVar = #c_var{name={Name,length(Ps)}}, Let = #c_let{vars=[#c_var{name=Name}],arg=RecVar,body=Body}, CFun1 = CFun0#c_fun{body=Let}, Letrec = #c_letrec{anno=A0#a.anno, defs=[{RecVar,CFun1}], body=RecVar}, {Letrec,[],Us1,St1} end; cexpr(#iapply{anno=A,op=Op,args=Args}, _As, St) -> {#c_apply{anno=A#a.anno,op=Op,args=Args},[],A#a.us,St}; cexpr(#icall{anno=A,module=Mod,name=Name,args=Args}, _As, St0) -> Anno = A#a.anno, case (not cerl:is_c_atom(Mod)) andalso member(tuple_calls, St0#core.opts) of true -> GenAnno = [compiler_generated|Anno], %% Generate the clause that matches on the tuple {TupleVar,St1} = new_var(GenAnno, St0), {TupleSizeVar, St2} = new_var(GenAnno, St1), {TupleModVar, St3} = new_var(GenAnno, St2), {TupleArgsVar, St4} = new_var(GenAnno, St3), TryVar = cerl:c_var('Try'), TupleGuardExpr = cerl:c_let([TupleSizeVar], c_call_erl(tuple_size, [TupleVar]), c_call_erl('>', [TupleSizeVar, cerl:c_int(0)])), TupleGuard = cerl:c_try(TupleGuardExpr, [TryVar], TryVar, [cerl:c_var('T'),cerl:c_var('R')], cerl:c_atom(false)), TupleApply = cerl:c_let([TupleModVar], c_call_erl(element, [cerl:c_int(1),TupleVar]), cerl:c_let([TupleArgsVar], cerl:make_list(Args ++ [TupleVar]), c_call_erl(apply, [TupleModVar,Name,TupleArgsVar]))), TupleClause = cerl:ann_c_clause(GenAnno, [TupleVar], TupleGuard, TupleApply), %% Generate the fallback clause {OtherVar,St5} = new_var(GenAnno, St4), OtherApply = cerl:ann_c_call(GenAnno, OtherVar, Name, Args), OtherClause = cerl:ann_c_clause(GenAnno, [OtherVar], OtherApply), {cerl:ann_c_case(GenAnno, Mod, [TupleClause,OtherClause]),[],A#a.us,St5}; false -> {#c_call{anno=Anno,module=Mod,name=Name,args=Args},[],A#a.us,St0} end; cexpr(#iprimop{anno=A,name=Name,args=Args}, _As, St) -> {#c_primop{anno=A#a.anno,name=Name,args=Args},[],A#a.us,St}; cexpr(#iprotect{anno=A,body=Es}, _As, St0) -> {Ce,_,St1} = cexprs(Es, [], St0), V = #c_var{name='Try'}, %The names are arbitrary Vs = [#c_var{name='T'},#c_var{name='R'}], {#c_try{anno=A#a.anno,arg=Ce,vars=[V],body=V, evars=Vs,handler=#c_literal{val=false}}, [],A#a.us,St1}; cexpr(#ibinary{anno=#a{anno=Anno,us=Us},segments=Segs}, _As, St) -> {#c_binary{anno=Anno,segments=Segs},[],Us,St}; cexpr(#c_literal{}=Lit, _As, St) -> Anno = get_anno(Lit), Vs = Anno#a.us, {set_anno(Lit, Anno#a.anno),[],Vs,St}; cexpr(#isimple{anno=#a{us=Vs},term=Simple}, _As, St) -> true = is_simple(Simple), %Sanity check! {Simple,[],Vs,St}. cfun(#ifun{anno=A,id=Id,vars=Args,clauses=Lcs,fc=Lfc}, _As, St0) -> {Ccs,St1} = cclauses(Lcs, [], St0), %NEVER export! {Cfc,St2} = cclause(Lfc, [], St1), Anno = A#a.anno, {#c_fun{anno=Id++Anno,vars=Args, body=#c_case{anno=Anno, arg=set_anno(core_lib:make_values(Args), Anno), clauses=Ccs ++ [Cfc]}}, [],A#a.us,St2}. c_call_erl(Fun, Args) -> As = [compiler_generated], cerl:ann_c_call(As, cerl:c_atom(erlang), cerl:c_atom(Fun), Args). %% lit_vars(Literal) -> [Var]. lit_vars(Lit) -> lit_vars(Lit, []). lit_vars(#c_cons{hd=H,tl=T}, Vs) -> lit_vars(H, lit_vars(T, Vs)); lit_vars(#c_tuple{es=Es}, Vs) -> lit_list_vars(Es, Vs); lit_vars(#c_map{arg=V,es=Es}, Vs) -> lit_vars(V, lit_list_vars(Es, Vs)); lit_vars(#c_map_pair{key=K,val=V}, Vs) -> lit_vars(K, lit_vars(V, Vs)); lit_vars(#c_var{name=V}, Vs) -> add_element(V, Vs); lit_vars(_, Vs) -> Vs. %These are atomic lit_list_vars(Ls) -> lit_list_vars(Ls, []). lit_list_vars(Ls, Vs) -> foldl(fun (L, Vs0) -> lit_vars(L, Vs0) end, Vs, Ls). bitstr_vars(Segs) -> bitstr_vars(Segs, []). bitstr_vars(Segs, Vs) -> foldl(fun (#c_bitstr{val=V,size=S}, Vs0) -> lit_vars(V, lit_vars(S, Vs0)) end, Vs, Segs). record_anno(L, St) -> case erl_anno:record(L) andalso member(dialyzer, St#core.opts) of true -> [record | lineno_anno(L, St)]; false -> full_anno(L, St) end. full_anno(L, #core{wanted=false}=St) -> [result_not_wanted|lineno_anno(L, St)]; full_anno(L, #core{wanted=true}=St) -> lineno_anno(L, St). lineno_anno(L, St) -> Line = erl_anno:line(L), Generated = erl_anno:generated(L), CompilerGenerated = [compiler_generated || Generated], [Line] ++ St#core.file ++ CompilerGenerated. get_lineno_anno(Ce) -> case get_anno(Ce) of #a{anno=A} -> A; A when is_list(A) -> A end. no_compiler_warning(Anno) -> erl_anno:set_generated(true, Anno). %% %% The following three functions are used both with cerl:cerl() and with i()'s %% -spec get_anno(cerl:cerl() | i()) -> term(). get_anno(C) -> element(2, C). -spec set_anno(cerl:cerl() | i(), term()) -> cerl:cerl(). set_anno(C, A) -> setelement(2, C, A). -spec is_simple(cerl:cerl() | i()) -> boolean(). is_simple(#c_var{}) -> true; is_simple(#c_literal{}) -> true; is_simple(#c_cons{hd=H,tl=T}) -> is_simple(H) andalso is_simple(T); is_simple(#c_tuple{es=Es}) -> is_simple_list(Es); is_simple(#c_map{es=Es}) -> is_simple_list(Es); is_simple(#c_map_pair{key=K,val=V}) -> is_simple(K) andalso is_simple(V); is_simple(_) -> false. -spec is_simple_list([cerl:cerl()]) -> boolean(). is_simple_list(Es) -> lists:all(fun is_simple/1, Es). %%% %%% Handling of warnings. %%% -type err_desc() :: 'bad_binary' | 'nomatch'. -spec format_error(err_desc()) -> nonempty_string(). format_error(nomatch) -> "pattern cannot possibly match"; format_error(bad_binary) -> "binary construction will fail because of a type mismatch"; format_error(badmap) -> "map construction will fail because of a type mismatch"; format_error({map_key_repeated,Key}) when is_atom(Key) -> io_lib:format("key '~w' will be overridden in expression", [Key]); format_error({map_key_repeated,Key}) -> io_lib:format("key ~p will be overridden in expression", [Key]). add_warning(Anno, Term, #core{ws=Ws,file=[{file,File}]}=St) -> case erl_anno:generated(Anno) of false -> St#core{ws=[{File,[{erl_anno:location(Anno),?MODULE,Term}]}|Ws]}; true -> St end.