%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 1999-2017. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% -module(bs_match_int_SUITE). -export([all/0, suite/0,groups/0,init_per_suite/1, end_per_suite/1, init_per_group/2,end_per_group/2, integer/1,signed_integer/1,dynamic/1,more_dynamic/1,mml/1, match_huge_int/1,bignum/1,unaligned_32_bit/1]). -include_lib("common_test/include/ct.hrl"). -import(lists, [seq/2]). suite() -> [{ct_hooks,[ts_install_cth]}]. all() -> [integer, signed_integer, dynamic, more_dynamic, mml, match_huge_int, bignum, unaligned_32_bit]. groups() -> []. init_per_suite(Config) -> Config. end_per_suite(_Config) -> ok. init_per_group(_GroupName, Config) -> Config. end_per_group(_GroupName, Config) -> Config. integer(Config) when is_list(Config) -> 0 = get_int(mkbin([])), 0 = get_int(mkbin([0])), 42 = get_int(mkbin([42])), 255 = get_int(mkbin([255])), 256 = get_int(mkbin([1,0])), 257 = get_int(mkbin([1,1])), 258 = get_int(mkbin([1,2])), 258 = get_int(mkbin([1,2])), 65534 = get_int(mkbin([255,254])), 16776455 = get_int(mkbin([255,253,7])), 4245492555 = get_int(mkbin([253,13,19,75])), 4294967294 = get_int(mkbin([255,255,255,254])), 4294967295 = get_int(mkbin([255,255,255,255])), Eight = [200,1,19,128,222,42,97,111], cmp128(Eight, uint(Eight)), fun_clause(catch get_int(mkbin(seq(1,5)))), ok. get_int(Bin) -> I = get_int1(Bin), get_int(Bin, I). get_int(Bin0, I) when size(Bin0) < 4 -> Bin = <<0,Bin0/binary>>, I = get_int1(Bin), get_int(Bin, I); get_int(_, I) -> I. get_int1(<>) -> I; get_int1(<>) -> I; get_int1(<>) -> I; get_int1(<>) -> I; get_int1(<>) -> I. cmp128(<>, I) -> equal; cmp128(_, _) -> not_equal. signed_integer(Config) when is_list(Config) -> {no_match,_} = sint(mkbin([])), {no_match,_} = sint(mkbin([1,2,3])), 127 = sint(mkbin([127])), -1 = sint(mkbin([255])), -128 = sint(mkbin([128])), 42 = sint(mkbin([42,255])), 127 = sint(mkbin([127,255])). sint(Bin) -> case Bin of <> -> I; <> -> I; Other -> {no_match,Other} end. uint(L) -> uint(L, 0). uint([H|T], Acc) -> uint(T, Acc bsl 8 bor H); uint([], Acc) -> Acc. dynamic(Config) when is_list(Config) -> dynamic(mkbin([255]), 8), dynamic(mkbin([255,255]), 16), dynamic(mkbin([255,255,255]), 24), dynamic(mkbin([255,255,255,255]), 32), ok. dynamic(Bin, S1) when S1 >= 0 -> S2 = size(Bin) * 8 - S1, dynamic(Bin, S1, S2, (1 bsl S1) - 1, (1 bsl S2) - 1), dynamic(Bin, S1-1); dynamic(_, _) -> ok. dynamic(Bin, S1, S2, A, B) -> % io:format("~p ~p ~p ~p\n", [S1,S2,A,B]), case Bin of <> -> io:format("~p ~p ~p ~p\n", [S1,S2,A,B]), ok; _Other -> erlang:error(badmatch, [Bin,S1,S2,A,B]) end. %% Extract integers at different alignments and of different sizes. more_dynamic(Config) when is_list(Config) -> % Unsigned big-endian numbers. Unsigned = fun(Bin, List, SkipBef, N) -> SkipAft = 8*size(Bin) - N - SkipBef, <<_:SkipBef,Int:N,_:SkipAft>> = Bin, Int = make_int(List, N, 0) end, more_dynamic1(Unsigned, erlang:md5(mkbin([42]))), %% Signed big-endian numbers. Signed = fun(Bin, List, SkipBef, N) -> SkipAft = 8*size(Bin) - N - SkipBef, <<_:SkipBef,Int:N/signed,_:SkipAft>> = Bin, case make_signed_int(List, N) of Int -> ok; Other -> io:format("Bin = ~p,", [Bin]), io:format("SkipBef = ~p, N = ~p", [SkipBef,N]), io:format("Expected ~p, got ~p", [Int,Other]), ct:fail(signed_big_endian_fail) end end, more_dynamic1(Signed, erlang:md5(mkbin([43]))), %% Unsigned little-endian numbers. UnsLittle = fun(Bin, List, SkipBef, N) -> SkipAft = 8*size(Bin) - N - SkipBef, <<_:SkipBef,Int:N/little,_:SkipAft>> = Bin, Int = make_int(big_to_little(List, N), N, 0) end, more_dynamic1(UnsLittle, erlang:md5(mkbin([44]))), %% Signed little-endian numbers. SignLittle = fun(Bin, List, SkipBef, N) -> SkipAft = 8*size(Bin) - N - SkipBef, <<_:SkipBef,Int:N/signed-little,_:SkipAft>> = Bin, Little = big_to_little(List, N), Int = make_signed_int(Little, N) end, more_dynamic1(SignLittle, erlang:md5(mkbin([45]))), ok. more_dynamic1(Action, Bin) -> BitList = bits_to_list(binary_to_list(Bin), 16#80), more_dynamic2(Action, Bin, BitList, 0). more_dynamic2(Action, Bin, [_|T]=List, Bef) -> more_dynamic3(Action, Bin, List, Bef, size(Bin)*8), more_dynamic2(Action, Bin, T, Bef+1); more_dynamic2(_, _, [], _) -> ok. more_dynamic3(Action, Bin, List, Bef, Aft) when Bef =< Aft -> %% io:format("~p, ~p", [Bef,Aft-Bef]), Action(Bin, List, Bef, Aft-Bef), more_dynamic3(Action, Bin, List, Bef, Aft-1); more_dynamic3(_, _, _, _, _) -> ok. big_to_little(List, N) -> big_to_little(List, N, []). big_to_little([B0,B1,B2,B3,B4,B5,B6,B7|T], N, Acc) when N >= 8 -> big_to_little(T, N-8, [B0,B1,B2,B3,B4,B5,B6,B7|Acc]); big_to_little(List, N, Acc) -> lists:sublist(List, 1, N) ++ Acc. make_signed_int(_List, 0) -> 0; make_signed_int([0|_]=List, N) -> make_int(List, N, 0); make_signed_int([1|_]=List0, N) -> List1 = reversed_sublist(List0, N, []), List2 = two_complement_and_reverse(List1, 1, []), -make_int(List2, length(List2), 0). reversed_sublist(_List, 0, Acc) -> Acc; reversed_sublist([H|T], N, Acc) -> reversed_sublist(T, N-1, [H|Acc]). two_complement_and_reverse([H|T], Carry, Acc) -> Sum = 1-H+Carry, two_complement_and_reverse(T, Sum div 2, [Sum rem 2|Acc]); two_complement_and_reverse([], Carry, Acc) -> [Carry|Acc]. make_int(_List, 0, Acc) -> Acc; make_int([H|T], N, Acc) -> make_int(T, N-1, Acc bsl 1 bor H). bits_to_list([_|T], 0) -> bits_to_list(T, 16#80); bits_to_list([H|_]=List, Mask) -> [case H band Mask of 0 -> 0; _ -> 1 end|bits_to_list(List, Mask bsr 1)]; bits_to_list([], _) -> []. fun_clause({'EXIT',{function_clause,_}}) -> ok. mkbin(L) when is_list(L) -> list_to_binary(L). mml(Config) when is_list(Config) -> single_byte_binary = mml_choose(<<42>>), multi_byte_binary = mml_choose(<<42,43>>). mml_choose(<<_A:8>>) -> single_byte_binary; mml_choose(<<_A:8,_T/binary>>) -> multi_byte_binary. match_huge_int(Config) when is_list(Config) -> case ?MODULE of bs_match_int_no_opt_SUITE -> %% This test case is written with the assumption that %% bs_skip2 instructions are used when the value of the %% extracted segment will not be used. In OTP 21 and earlier, that %% assumption was always true, because the bs_skip optimization %% was included in v3_codegen and could not be disabled. %% In OTP 22, the bs_skip optimization is done by beam_ssa_opt %% and is disabled. %% %% On memory-constrained computers, using bs_get_integer2 %% instructions may cause the runtime system to terminate %% because of insufficient memory. {skip, "unoptimized code would use too much memory"}; bs_match_int_SUITE -> Sz = 1 bsl 27, Bin = <<0:Sz,13:8>>, skip_huge_int_1(Sz, Bin), 0 = match_huge_int_1(Sz, Bin), %% Test overflowing the size of an integer field. nomatch = overflow_huge_int_skip_32(Bin), case erlang:system_info(wordsize) of 4 -> nomatch = overflow_huge_int_32(Bin); 8 -> %% An attempt will be made to allocate heap space for %% the bignum (which will probably fail); only if the %% allocation succeeds will the matching fail because %% the binary is too small. ok end, nomatch = overflow_huge_int_skip_64(Bin), nomatch = overflow_huge_int_64(Bin), %% Test overflowing the size of an integer field using %% variables as sizes. Sizes = case erlang:system_info(wordsize) of 4 -> lists:seq(25, 32); 8 -> [] end ++ lists:seq(50, 64), ok = overflow_huge_int_unit128(Bin, Sizes) end. overflow_huge_int_unit128(Bin, [Sz0|Sizes]) -> Sz = id(1 bsl Sz0), case Bin of <<_:Sz/unit:128,0,_/binary>> -> {error,Sz}; _ -> case Bin of <> -> {error,Sz,Var}; _ -> overflow_huge_int_unit128(Bin, Sizes) end end; overflow_huge_int_unit128(_, []) -> ok. match_huge_int_1(I, Bin) -> <> = Bin, Int. skip_huge_int_1(I, Bin) -> <<_:I,13>> = Bin. overflow_huge_int_skip_32(<<_:4294967296,0,_/binary>>) -> 1; % 1 bsl 32 overflow_huge_int_skip_32(<<_:33554432/unit:128,0,_/binary>>) -> 2; % 1 bsl 25 overflow_huge_int_skip_32(<<_:67108864/unit:64,0,_/binary>>) -> 3; % 1 bsl 26 overflow_huge_int_skip_32(<<_:134217728/unit:32,0,_/binary>>) -> 4; % 1 bsl 27 overflow_huge_int_skip_32(<<_:268435456/unit:16,0,_/binary>>) -> 5; % 1 bsl 28 overflow_huge_int_skip_32(<<_:536870912/unit:8,0,_/binary>>) -> 6; % 1 bsl 29 overflow_huge_int_skip_32(<<_:1073741824/unit:8,0,_/binary>>) -> 7; % 1 bsl 30 overflow_huge_int_skip_32(<<_:2147483648/unit:8,0,_/binary>>) -> 8; % 1 bsl 31 overflow_huge_int_skip_32(_) -> nomatch. overflow_huge_int_32(<>) -> {1,Int}; % 1 bsl 32 overflow_huge_int_32(<>) -> {2,Int}; % 1 bsl 25 overflow_huge_int_32(<>) -> {3,Int}; % 1 bsl 26 overflow_huge_int_32(<>) -> {4,Int}; % 1 bsl 27 overflow_huge_int_32(<>) -> {5,Int}; % 1 bsl 28 overflow_huge_int_32(<>) -> {6,Int}; % 1 bsl 29 overflow_huge_int_32(<>) -> {7,Int}; % 1 bsl 30 overflow_huge_int_32(<>) -> {8,Int}; % 1 bsl 31 overflow_huge_int_32(_) -> nomatch. overflow_huge_int_skip_64(<<_:18446744073709551616,_/binary>>) -> 1; % 1 bsl 64 overflow_huge_int_skip_64(<<_:144115188075855872/unit:128,0,_/binary>>) -> 2; % 1 bsl 57 overflow_huge_int_skip_64(<<_:288230376151711744/unit:64,0,_/binary>>) -> 3; % 1 bsl 58 overflow_huge_int_skip_64(<<_:576460752303423488/unit:32,0,_/binary>>) -> 4; % 1 bsl 59 overflow_huge_int_skip_64(<<_:1152921504606846976/unit:16,0,_/binary>>) -> 5; % 1 bsl 60 overflow_huge_int_skip_64(<<_:2305843009213693952/unit:8,0,_/binary>>) -> 6; % 1 bsl 61 overflow_huge_int_skip_64(<<_:4611686018427387904/unit:8,0,_/binary>>) -> 7; % 1 bsl 62 overflow_huge_int_skip_64(<<_:9223372036854775808/unit:8,0,_/binary>>) -> 8; % 1 bsl 63 overflow_huge_int_skip_64(_) -> nomatch. overflow_huge_int_64(<>) -> {1,Int}; % 1 bsl 64 overflow_huge_int_64(<>) -> {2,Int}; % 1 bsl 57 overflow_huge_int_64(<>) -> {3,Int}; % 1 bsl 58 overflow_huge_int_64(<>) -> {4,Int}; % 1 bsl 59 overflow_huge_int_64(<>) -> {5,Int}; % 1 bsl 60 overflow_huge_int_64(<>) -> {6,Int}; % 1 bsl 61 overflow_huge_int_64(<>) -> {7,Int}; % 1 bsl 62 overflow_huge_int_64(<>) -> {8,Int}; % 1 bsl 63 overflow_huge_int_64(_) -> nomatch. bignum(Config) when is_list(Config) -> Bin = id(<<42,0:1024/unit:8,43>>), <<42:1025/little-integer-unit:8,_:8>> = Bin, <<_:8,43:1025/integer-unit:8>> = Bin, BignumBin = id(<<0:512/unit:8,258254417031933722623:9/unit:8>>), <<258254417031933722623:(512+9)/unit:8>> = BignumBin, erlang:garbage_collect(), %Search for holes in debug-build. ok. unaligned_32_bit(Config) when is_list(Config) -> %% There used to be a risk for heap overflow (fixed in R11B-5). L = unaligned_32_bit_1(<<-1:(64*1024)>>), unaligned_32_bit_verify(L, 1638). unaligned_32_bit_1(<<1:1,U:32,_:7,T/binary>>) -> [U|unaligned_32_bit_1(T)]; unaligned_32_bit_1(_) -> []. unaligned_32_bit_verify([], 0) -> ok; unaligned_32_bit_verify([4294967295|T], N) when N > 0 -> unaligned_32_bit_verify(T, N-1). id(I) -> I.