/* sound.c -- sound support.
Copyright (C) 1998-1999, 2001-2013 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
/* Written by Gerd Moellmann . Tested with Luigi's
driver on FreeBSD 2.2.7 with a SoundBlaster 16. */
/*
Modified by Ben Key to add a partial
implementation of the play-sound specification for Windows.
Notes:
In the Windows implementation of play-sound-internal only the
:file and :volume keywords are supported. The :device keyword,
if present, is ignored. The :data keyword, if present, will
cause an error to be generated.
The Windows implementation of play-sound is implemented via the
Windows API functions mciSendString, waveOutGetVolume, and
waveOutSetVolume which are exported by Winmm.dll.
*/
#include
#if defined HAVE_SOUND
/* BEGIN: Common Includes */
#include
#include
#include
#include
#include "lisp.h"
#include "dispextern.h"
#include "atimer.h"
#include "syssignal.h"
/* END: Common Includes */
/* BEGIN: Non Windows Includes */
#ifndef WINDOWSNT
#include
#include
/* FreeBSD has machine/soundcard.h. Voxware sound driver docs mention
sys/soundcard.h. So, let's try whatever's there. */
#ifdef HAVE_MACHINE_SOUNDCARD_H
#include
#endif
#ifdef HAVE_SYS_SOUNDCARD_H
#include
#endif
#ifdef HAVE_SOUNDCARD_H
#include
#endif
#ifdef HAVE_ALSA
#ifdef ALSA_SUBDIR_INCLUDE
#include
#else
#include
#endif /* ALSA_SUBDIR_INCLUDE */
#endif /* HAVE_ALSA */
/* END: Non Windows Includes */
#else /* WINDOWSNT */
/* BEGIN: Windows Specific Includes */
#include
#include
#include
#include
/* END: Windows Specific Includes */
#endif /* WINDOWSNT */
/* BEGIN: Common Definitions */
/* Symbols. */
static Lisp_Object QCvolume, QCdevice;
static Lisp_Object Qsound;
static Lisp_Object Qplay_sound_functions;
/* Indices of attributes in a sound attributes vector. */
enum sound_attr
{
SOUND_FILE,
SOUND_DATA,
SOUND_DEVICE,
SOUND_VOLUME,
SOUND_ATTR_SENTINEL
};
/* END: Common Definitions */
/* BEGIN: Non Windows Definitions */
#ifndef WINDOWSNT
/* Structure forward declarations. */
struct sound;
struct sound_device;
/* The file header of RIFF-WAVE files (*.wav). Files are always in
little-endian byte-order. */
struct wav_header
{
u_int32_t magic;
u_int32_t length;
u_int32_t chunk_type;
u_int32_t chunk_format;
u_int32_t chunk_length;
u_int16_t format;
u_int16_t channels;
u_int32_t sample_rate;
u_int32_t bytes_per_second;
u_int16_t sample_size;
u_int16_t precision;
u_int32_t chunk_data;
u_int32_t data_length;
};
/* The file header of Sun adio files (*.au). Files are always in
big-endian byte-order. */
struct au_header
{
/* ASCII ".snd" */
u_int32_t magic_number;
/* Offset of data part from start of file. Minimum value is 24. */
u_int32_t data_offset;
/* Size of data part, 0xffffffff if unknown. */
u_int32_t data_size;
/* Data encoding format.
1 8-bit ISDN u-law
2 8-bit linear PCM (REF-PCM)
3 16-bit linear PCM
4 24-bit linear PCM
5 32-bit linear PCM
6 32-bit IEEE floating-point
7 64-bit IEEE floating-point
23 8-bit u-law compressed using CCITT 0.721 ADPCM voice data
encoding scheme. */
u_int32_t encoding;
/* Number of samples per second. */
u_int32_t sample_rate;
/* Number of interleaved channels. */
u_int32_t channels;
};
/* Maximum of all sound file headers sizes. */
#define MAX_SOUND_HEADER_BYTES \
max (sizeof (struct wav_header), sizeof (struct au_header))
/* Interface structure for sound devices. */
struct sound_device
{
/* If a string, the name of the device; otherwise use a default. */
Lisp_Object file;
/* File descriptor of the device. */
int fd;
/* Device-dependent format. */
int format;
/* Volume (0..100). Zero means unspecified. */
int volume;
/* Sample size. */
int sample_size;
/* Sample rate. */
int sample_rate;
/* Bytes per second. */
int bps;
/* 1 = mono, 2 = stereo, 0 = don't set. */
int channels;
/* Open device SD. */
void (* open) (struct sound_device *sd);
/* Close device SD. */
void (* close) (struct sound_device *sd);
/* Configure SD according to device-dependent parameters. */
void (* configure) (struct sound_device *device);
/* Choose a device-dependent format for outputting sound S. */
void (* choose_format) (struct sound_device *sd,
struct sound *s);
/* Return a preferred data size in bytes to be sent to write (below)
each time. 2048 is used if this is NULL. */
ptrdiff_t (* period_size) (struct sound_device *sd);
/* Write NYBTES bytes from BUFFER to device SD. */
void (* write) (struct sound_device *sd, const char *buffer,
ptrdiff_t nbytes);
/* A place for devices to store additional data. */
void *data;
};
/* An enumerator for each supported sound file type. */
enum sound_type
{
RIFF,
SUN_AUDIO
};
/* Interface structure for sound files. */
struct sound
{
/* The type of the file. */
enum sound_type type;
/* File descriptor of a sound file. */
int fd;
/* Pointer to sound file header. This contains header_size bytes
read from the start of a sound file. */
char *header;
/* Number of bytes read from sound file. This is always <=
MAX_SOUND_HEADER_BYTES. */
int header_size;
/* Sound data, if a string. */
Lisp_Object data;
/* Play sound file S on device SD. */
void (* play) (struct sound *s, struct sound_device *sd);
};
/* These are set during `play-sound-internal' so that sound_cleanup has
access to them. */
static struct sound_device *current_sound_device;
static struct sound *current_sound;
/* Function prototypes. */
static void vox_write (struct sound_device *, const char *, ptrdiff_t);
static bool wav_init (struct sound *);
static void wav_play (struct sound *, struct sound_device *);
static bool au_init (struct sound *);
static void au_play (struct sound *, struct sound_device *);
/* END: Non Windows Definitions */
#else /* WINDOWSNT */
/* BEGIN: Windows Specific Definitions */
static int do_play_sound (const char *, unsigned long);
/*
END: Windows Specific Definitions */
#endif /* WINDOWSNT */
/***********************************************************************
General
***********************************************************************/
/* BEGIN: Common functions */
/* Like perror, but signals an error. */
static _Noreturn void
sound_perror (const char *msg)
{
int saved_errno = errno;
turn_on_atimers (1);
#ifdef USABLE_SIGIO
{
sigset_t unblocked;
sigemptyset (&unblocked);
sigaddset (&unblocked, SIGIO);
pthread_sigmask (SIG_UNBLOCK, &unblocked, 0);
}
#endif
if (saved_errno != 0)
error ("%s: %s", msg, strerror (saved_errno));
else
error ("%s", msg);
}
/* Display a warning message. */
static void
sound_warning (const char *msg)
{
message1 (msg);
}
/* Parse sound specification SOUND, and fill ATTRS with what is
found. Value is non-zero if SOUND Is a valid sound specification.
A valid sound specification is a list starting with the symbol
`sound'. The rest of the list is a property list which may
contain the following key/value pairs:
- `:file FILE'
FILE is the sound file to play. If it isn't an absolute name,
it's searched under `data-directory'.
- `:data DATA'
DATA is a string containing sound data. Either :file or :data
may be present, but not both.
- `:device DEVICE'
DEVICE is the name of the device to play on, e.g. "/dev/dsp2".
If not specified, a default device is used.
- `:volume VOL'
VOL must be an integer in the range [0, 100], or a float in the
range [0, 1]. */
static bool
parse_sound (Lisp_Object sound, Lisp_Object *attrs)
{
/* SOUND must be a list starting with the symbol `sound'. */
if (!CONSP (sound) || !EQ (XCAR (sound), Qsound))
return 0;
sound = XCDR (sound);
attrs[SOUND_FILE] = Fplist_get (sound, QCfile);
attrs[SOUND_DATA] = Fplist_get (sound, QCdata);
attrs[SOUND_DEVICE] = Fplist_get (sound, QCdevice);
attrs[SOUND_VOLUME] = Fplist_get (sound, QCvolume);
#ifndef WINDOWSNT
/* File name or data must be specified. */
if (!STRINGP (attrs[SOUND_FILE])
&& !STRINGP (attrs[SOUND_DATA]))
return 0;
#else /* WINDOWSNT */
/*
Data is not supported in Windows. Therefore a
File name MUST be supplied.
*/
if (!STRINGP (attrs[SOUND_FILE]))
{
return 0;
}
#endif /* WINDOWSNT */
/* Volume must be in the range 0..100 or unspecified. */
if (!NILP (attrs[SOUND_VOLUME]))
{
if (INTEGERP (attrs[SOUND_VOLUME]))
{
if (XINT (attrs[SOUND_VOLUME]) < 0
|| XINT (attrs[SOUND_VOLUME]) > 100)
return 0;
}
else if (FLOATP (attrs[SOUND_VOLUME]))
{
if (XFLOAT_DATA (attrs[SOUND_VOLUME]) < 0
|| XFLOAT_DATA (attrs[SOUND_VOLUME]) > 1)
return 0;
}
else
return 0;
}
#ifndef WINDOWSNT
/* Device must be a string or unspecified. */
if (!NILP (attrs[SOUND_DEVICE])
&& !STRINGP (attrs[SOUND_DEVICE]))
return 0;
#endif /* WINDOWSNT */
/*
Since device is ignored in Windows, it does not matter
what it is.
*/
return 1;
}
/* END: Common functions */
/* BEGIN: Non Windows functions */
#ifndef WINDOWSNT
/* Return S's value as a string if S is a string, otherwise DEFAULT_VALUE. */
static char const *
string_default (Lisp_Object s, char const *default_value)
{
return STRINGP (s) ? SSDATA (s) : default_value;
}
/* Find out the type of the sound file whose file descriptor is FD.
S is the sound file structure to fill in. */
static void
find_sound_type (struct sound *s)
{
if (!wav_init (s) && !au_init (s))
error ("Unknown sound format");
}
/* Function installed by play-sound-internal with record_unwind_protect_void. */
static void
sound_cleanup (void)
{
if (current_sound_device->close)
current_sound_device->close (current_sound_device);
if (current_sound->fd > 0)
emacs_close (current_sound->fd);
xfree (current_sound_device);
xfree (current_sound);
}
/***********************************************************************
Byte-order Conversion
***********************************************************************/
/* Convert 32-bit value VALUE which is in little-endian byte-order
to host byte-order. */
static u_int32_t
le2hl (u_int32_t value)
{
#ifdef WORDS_BIGENDIAN
value = bswap_32 (value);
#endif
return value;
}
/* Convert 16-bit value VALUE which is in little-endian byte-order
to host byte-order. */
static u_int16_t
le2hs (u_int16_t value)
{
#ifdef WORDS_BIGENDIAN
value = bswap_16 (value);
#endif
return value;
}
/* Convert 32-bit value VALUE which is in big-endian byte-order
to host byte-order. */
static u_int32_t
be2hl (u_int32_t value)
{
#ifndef WORDS_BIGENDIAN
value = bswap_32 (value);
#endif
return value;
}
/***********************************************************************
RIFF-WAVE (*.wav)
***********************************************************************/
/* Try to initialize sound file S from S->header. S->header
contains the first MAX_SOUND_HEADER_BYTES number of bytes from the
sound file. If the file is a WAV-format file, set up interface
functions in S and convert header fields to host byte-order.
Value is true if the file is a WAV file. */
static bool
wav_init (struct sound *s)
{
struct wav_header *header = (struct wav_header *) s->header;
if (s->header_size < sizeof *header
|| memcmp (s->header, "RIFF", 4) != 0)
return 0;
/* WAV files are in little-endian order. Convert the header
if on a big-endian machine. */
header->magic = le2hl (header->magic);
header->length = le2hl (header->length);
header->chunk_type = le2hl (header->chunk_type);
header->chunk_format = le2hl (header->chunk_format);
header->chunk_length = le2hl (header->chunk_length);
header->format = le2hs (header->format);
header->channels = le2hs (header->channels);
header->sample_rate = le2hl (header->sample_rate);
header->bytes_per_second = le2hl (header->bytes_per_second);
header->sample_size = le2hs (header->sample_size);
header->precision = le2hs (header->precision);
header->chunk_data = le2hl (header->chunk_data);
header->data_length = le2hl (header->data_length);
/* Set up the interface functions for WAV. */
s->type = RIFF;
s->play = wav_play;
return 1;
}
/* Play RIFF-WAVE audio file S on sound device SD. */
static void
wav_play (struct sound *s, struct sound_device *sd)
{
struct wav_header *header = (struct wav_header *) s->header;
/* Let the device choose a suitable device-dependent format
for the file. */
sd->choose_format (sd, s);
/* Configure the device. */
sd->sample_size = header->sample_size;
sd->sample_rate = header->sample_rate;
sd->bps = header->bytes_per_second;
sd->channels = header->channels;
sd->configure (sd);
/* Copy sound data to the device. The WAV file specification is
actually more complex. This simple scheme worked with all WAV
files I found so far. If someone feels inclined to implement the
whole RIFF-WAVE spec, please do. */
if (STRINGP (s->data))
sd->write (sd, SSDATA (s->data) + sizeof *header,
SBYTES (s->data) - sizeof *header);
else
{
char *buffer;
ptrdiff_t nbytes = 0;
ptrdiff_t blksize = sd->period_size ? sd->period_size (sd) : 2048;
ptrdiff_t data_left = header->data_length;
buffer = alloca (blksize);
lseek (s->fd, sizeof *header, SEEK_SET);
while (data_left > 0
&& (nbytes = emacs_read (s->fd, buffer, blksize)) > 0)
{
/* Don't play possible garbage at the end of file */
if (data_left < nbytes) nbytes = data_left;
data_left -= nbytes;
sd->write (sd, buffer, nbytes);
}
if (nbytes < 0)
sound_perror ("Error reading sound file");
}
}
/***********************************************************************
Sun Audio (*.au)
***********************************************************************/
/* Sun audio file encodings. */
enum au_encoding
{
AU_ENCODING_ULAW_8 = 1,
AU_ENCODING_8,
AU_ENCODING_16,
AU_ENCODING_24,
AU_ENCODING_32,
AU_ENCODING_IEEE32,
AU_ENCODING_IEEE64,
AU_COMPRESSED = 23,
AU_ENCODING_ALAW_8 = 27
};
/* Try to initialize sound file S from S->header. S->header
contains the first MAX_SOUND_HEADER_BYTES number of bytes from the
sound file. If the file is a AU-format file, set up interface
functions in S and convert header fields to host byte-order.
Value is true if the file is an AU file. */
static bool
au_init (struct sound *s)
{
struct au_header *header = (struct au_header *) s->header;
if (s->header_size < sizeof *header
|| memcmp (s->header, ".snd", 4) != 0)
return 0;
header->magic_number = be2hl (header->magic_number);
header->data_offset = be2hl (header->data_offset);
header->data_size = be2hl (header->data_size);
header->encoding = be2hl (header->encoding);
header->sample_rate = be2hl (header->sample_rate);
header->channels = be2hl (header->channels);
/* Set up the interface functions for AU. */
s->type = SUN_AUDIO;
s->play = au_play;
return 1;
}
/* Play Sun audio file S on sound device SD. */
static void
au_play (struct sound *s, struct sound_device *sd)
{
struct au_header *header = (struct au_header *) s->header;
sd->sample_size = 0;
sd->sample_rate = header->sample_rate;
sd->bps = 0;
sd->channels = header->channels;
sd->choose_format (sd, s);
sd->configure (sd);
if (STRINGP (s->data))
sd->write (sd, SSDATA (s->data) + header->data_offset,
SBYTES (s->data) - header->data_offset);
else
{
ptrdiff_t blksize = sd->period_size ? sd->period_size (sd) : 2048;
char *buffer;
ptrdiff_t nbytes;
/* Seek */
lseek (s->fd, header->data_offset, SEEK_SET);
/* Copy sound data to the device. */
buffer = alloca (blksize);
while ((nbytes = emacs_read (s->fd, buffer, blksize)) > 0)
sd->write (sd, buffer, nbytes);
if (nbytes < 0)
sound_perror ("Error reading sound file");
}
}
/***********************************************************************
Voxware Driver Interface
***********************************************************************/
/* This driver is available on GNU/Linux, and the free BSDs. FreeBSD
has a compatible own driver aka Luigi's driver. */
/* Open device SD. If SD->file is a string, open that device,
otherwise use a default device name. */
static void
vox_open (struct sound_device *sd)
{
/* Open the sound device (eg /dev/dsp). */
char const *file = string_default (sd->file, DEFAULT_SOUND_DEVICE);
sd->fd = emacs_open (file, O_WRONLY, 0);
if (sd->fd < 0)
sound_perror (file);
}
/* Configure device SD from parameters in it. */
static void
vox_configure (struct sound_device *sd)
{
int val;
#ifdef USABLE_SIGIO
sigset_t blocked;
#endif
eassert (sd->fd >= 0);
/* On GNU/Linux, it seems that the device driver doesn't like to be
interrupted by a signal. Block the ones we know to cause
troubles. */
turn_on_atimers (0);
#ifdef USABLE_SIGIO
sigemptyset (&blocked);
sigaddset (&blocked, SIGIO);
pthread_sigmask (SIG_BLOCK, &blocked, 0);
#endif
val = sd->format;
if (ioctl (sd->fd, SNDCTL_DSP_SETFMT, &sd->format) < 0
|| val != sd->format)
sound_perror ("Could not set sound format");
val = sd->channels != 1;
if (ioctl (sd->fd, SNDCTL_DSP_STEREO, &val) < 0
|| val != (sd->channels != 1))
sound_perror ("Could not set stereo/mono");
/* I think bps and sampling_rate are the same, but who knows.
Check this. and use SND_DSP_SPEED for both. */
if (sd->sample_rate > 0)
{
val = sd->sample_rate;
if (ioctl (sd->fd, SNDCTL_DSP_SPEED, &sd->sample_rate) < 0)
sound_perror ("Could not set sound speed");
else if (val != sd->sample_rate)
sound_warning ("Could not set sample rate");
}
if (sd->volume > 0)
{
int volume = sd->volume & 0xff;
volume |= volume << 8;
/* This may fail if there is no mixer. Ignore the failure. */
ioctl (sd->fd, SOUND_MIXER_WRITE_PCM, &volume);
}
turn_on_atimers (1);
#ifdef USABLE_SIGIO
pthread_sigmask (SIG_UNBLOCK, &blocked, 0);
#endif
}
/* Close device SD if it is open. */
static void
vox_close (struct sound_device *sd)
{
if (sd->fd >= 0)
{
/* On GNU/Linux, it seems that the device driver doesn't like to
be interrupted by a signal. Block the ones we know to cause
troubles. */
#ifdef USABLE_SIGIO
sigset_t blocked;
sigemptyset (&blocked);
sigaddset (&blocked, SIGIO);
pthread_sigmask (SIG_BLOCK, &blocked, 0);
#endif
turn_on_atimers (0);
/* Flush sound data, and reset the device. */
ioctl (sd->fd, SNDCTL_DSP_SYNC, NULL);
turn_on_atimers (1);
#ifdef USABLE_SIGIO
pthread_sigmask (SIG_UNBLOCK, &blocked, 0);
#endif
/* Close the device. */
emacs_close (sd->fd);
sd->fd = -1;
}
}
/* Choose device-dependent format for device SD from sound file S. */
static void
vox_choose_format (struct sound_device *sd, struct sound *s)
{
if (s->type == RIFF)
{
struct wav_header *h = (struct wav_header *) s->header;
if (h->precision == 8)
sd->format = AFMT_U8;
else if (h->precision == 16)
sd->format = AFMT_S16_LE;
else
error ("Unsupported WAV file format");
}
else if (s->type == SUN_AUDIO)
{
struct au_header *header = (struct au_header *) s->header;
switch (header->encoding)
{
case AU_ENCODING_ULAW_8:
case AU_ENCODING_IEEE32:
case AU_ENCODING_IEEE64:
sd->format = AFMT_MU_LAW;
break;
case AU_ENCODING_8:
case AU_ENCODING_16:
case AU_ENCODING_24:
case AU_ENCODING_32:
sd->format = AFMT_S16_LE;
break;
default:
error ("Unsupported AU file format");
}
}
else
emacs_abort ();
}
/* Initialize device SD. Set up the interface functions in the device
structure. */
static bool
vox_init (struct sound_device *sd)
{
/* Open the sound device (eg /dev/dsp). */
char const *file = string_default (sd->file, DEFAULT_SOUND_DEVICE);
int fd = emacs_open (file, O_WRONLY, 0);
if (fd >= 0)
emacs_close (fd);
else
return 0;
sd->fd = -1;
sd->open = vox_open;
sd->close = vox_close;
sd->configure = vox_configure;
sd->choose_format = vox_choose_format;
sd->write = vox_write;
sd->period_size = NULL;
return 1;
}
/* Write NBYTES bytes from BUFFER to device SD. */
static void
vox_write (struct sound_device *sd, const char *buffer, ptrdiff_t nbytes)
{
if (emacs_write_sig (sd->fd, buffer, nbytes) != nbytes)
sound_perror ("Error writing to sound device");
}
#ifdef HAVE_ALSA
/***********************************************************************
ALSA Driver Interface
***********************************************************************/
/* This driver is available on GNU/Linux. */
#ifndef DEFAULT_ALSA_SOUND_DEVICE
#define DEFAULT_ALSA_SOUND_DEVICE "default"
#endif
static _Noreturn void
alsa_sound_perror (const char *msg, int err)
{
error ("%s: %s", msg, snd_strerror (err));
}
struct alsa_params
{
snd_pcm_t *handle;
snd_pcm_hw_params_t *hwparams;
snd_pcm_sw_params_t *swparams;
snd_pcm_uframes_t period_size;
};
/* Open device SD. If SD->file is a string, open that device,
otherwise use a default device name. */
static void
alsa_open (struct sound_device *sd)
{
/* Open the sound device. Default is "default". */
struct alsa_params *p = xmalloc (sizeof *p);
char const *file = string_default (sd->file, DEFAULT_ALSA_SOUND_DEVICE);
int err;
p->handle = NULL;
p->hwparams = NULL;
p->swparams = NULL;
sd->fd = -1;
sd->data = p;
err = snd_pcm_open (&p->handle, file, SND_PCM_STREAM_PLAYBACK, 0);
if (err < 0)
alsa_sound_perror (file, err);
}
static ptrdiff_t
alsa_period_size (struct sound_device *sd)
{
struct alsa_params *p = (struct alsa_params *) sd->data;
int fact = snd_pcm_format_size (sd->format, 1) * sd->channels;
return p->period_size * (fact > 0 ? fact : 1);
}
static void
alsa_configure (struct sound_device *sd)
{
int val, err, dir;
unsigned uval;
struct alsa_params *p = (struct alsa_params *) sd->data;
snd_pcm_uframes_t buffer_size;
eassert (p->handle != 0);
err = snd_pcm_hw_params_malloc (&p->hwparams);
if (err < 0)
alsa_sound_perror ("Could not allocate hardware parameter structure", err);
err = snd_pcm_sw_params_malloc (&p->swparams);
if (err < 0)
alsa_sound_perror ("Could not allocate software parameter structure", err);
err = snd_pcm_hw_params_any (p->handle, p->hwparams);
if (err < 0)
alsa_sound_perror ("Could not initialize hardware parameter structure", err);
err = snd_pcm_hw_params_set_access (p->handle, p->hwparams,
SND_PCM_ACCESS_RW_INTERLEAVED);
if (err < 0)
alsa_sound_perror ("Could not set access type", err);
val = sd->format;
err = snd_pcm_hw_params_set_format (p->handle, p->hwparams, val);
if (err < 0)
alsa_sound_perror ("Could not set sound format", err);
uval = sd->sample_rate;
err = snd_pcm_hw_params_set_rate_near (p->handle, p->hwparams, &uval, 0);
if (err < 0)
alsa_sound_perror ("Could not set sample rate", err);
val = sd->channels;
err = snd_pcm_hw_params_set_channels (p->handle, p->hwparams, val);
if (err < 0)
alsa_sound_perror ("Could not set channel count", err);
err = snd_pcm_hw_params (p->handle, p->hwparams);
if (err < 0)
alsa_sound_perror ("Could not set parameters", err);
err = snd_pcm_hw_params_get_period_size (p->hwparams, &p->period_size, &dir);
if (err < 0)
alsa_sound_perror ("Unable to get period size for playback", err);
err = snd_pcm_hw_params_get_buffer_size (p->hwparams, &buffer_size);
if (err < 0)
alsa_sound_perror ("Unable to get buffer size for playback", err);
err = snd_pcm_sw_params_current (p->handle, p->swparams);
if (err < 0)
alsa_sound_perror ("Unable to determine current swparams for playback",
err);
/* Start the transfer when the buffer is almost full */
err = snd_pcm_sw_params_set_start_threshold (p->handle, p->swparams,
(buffer_size / p->period_size)
* p->period_size);
if (err < 0)
alsa_sound_perror ("Unable to set start threshold mode for playback", err);
/* Allow the transfer when at least period_size samples can be processed */
err = snd_pcm_sw_params_set_avail_min (p->handle, p->swparams, p->period_size);
if (err < 0)
alsa_sound_perror ("Unable to set avail min for playback", err);
err = snd_pcm_sw_params (p->handle, p->swparams);
if (err < 0)
alsa_sound_perror ("Unable to set sw params for playback\n", err);
snd_pcm_hw_params_free (p->hwparams);
p->hwparams = NULL;
snd_pcm_sw_params_free (p->swparams);
p->swparams = NULL;
err = snd_pcm_prepare (p->handle);
if (err < 0)
alsa_sound_perror ("Could not prepare audio interface for use", err);
if (sd->volume > 0)
{
int chn;
snd_mixer_t *handle;
snd_mixer_elem_t *e;
if (snd_mixer_open (&handle, 0) >= 0)
{
char const *file = string_default (sd->file,
DEFAULT_ALSA_SOUND_DEVICE);
if (snd_mixer_attach (handle, file) >= 0
&& snd_mixer_load (handle) >= 0
&& snd_mixer_selem_register (handle, NULL, NULL) >= 0)
for (e = snd_mixer_first_elem (handle);
e;
e = snd_mixer_elem_next (e))
{
if (snd_mixer_selem_has_playback_volume (e))
{
long pmin, pmax, vol;
snd_mixer_selem_get_playback_volume_range (e, &pmin, &pmax);
vol = pmin + (sd->volume * (pmax - pmin)) / 100;
for (chn = 0; chn <= SND_MIXER_SCHN_LAST; chn++)
snd_mixer_selem_set_playback_volume (e, chn, vol);
}
}
snd_mixer_close (handle);
}
}
}
/* Close device SD if it is open. */
static void
alsa_close (struct sound_device *sd)
{
struct alsa_params *p = (struct alsa_params *) sd->data;
if (p)
{
if (p->hwparams)
snd_pcm_hw_params_free (p->hwparams);
if (p->swparams)
snd_pcm_sw_params_free (p->swparams);
if (p->handle)
{
snd_pcm_drain (p->handle);
snd_pcm_close (p->handle);
}
xfree (p);
}
}
/* Choose device-dependent format for device SD from sound file S. */
static void
alsa_choose_format (struct sound_device *sd, struct sound *s)
{
if (s->type == RIFF)
{
struct wav_header *h = (struct wav_header *) s->header;
if (h->precision == 8)
sd->format = SND_PCM_FORMAT_U8;
else if (h->precision == 16)
sd->format = SND_PCM_FORMAT_S16_LE;
else
error ("Unsupported WAV file format");
}
else if (s->type == SUN_AUDIO)
{
struct au_header *header = (struct au_header *) s->header;
switch (header->encoding)
{
case AU_ENCODING_ULAW_8:
sd->format = SND_PCM_FORMAT_MU_LAW;
break;
case AU_ENCODING_ALAW_8:
sd->format = SND_PCM_FORMAT_A_LAW;
break;
case AU_ENCODING_IEEE32:
sd->format = SND_PCM_FORMAT_FLOAT_BE;
break;
case AU_ENCODING_IEEE64:
sd->format = SND_PCM_FORMAT_FLOAT64_BE;
break;
case AU_ENCODING_8:
sd->format = SND_PCM_FORMAT_S8;
break;
case AU_ENCODING_16:
sd->format = SND_PCM_FORMAT_S16_BE;
break;
case AU_ENCODING_24:
sd->format = SND_PCM_FORMAT_S24_BE;
break;
case AU_ENCODING_32:
sd->format = SND_PCM_FORMAT_S32_BE;
break;
default:
error ("Unsupported AU file format");
}
}
else
emacs_abort ();
}
/* Write NBYTES bytes from BUFFER to device SD. */
static void
alsa_write (struct sound_device *sd, const char *buffer, ptrdiff_t nbytes)
{
struct alsa_params *p = (struct alsa_params *) sd->data;
/* The the third parameter to snd_pcm_writei is frames, not bytes. */
int fact = snd_pcm_format_size (sd->format, 1) * sd->channels;
ptrdiff_t nwritten = 0;
int err;
while (nwritten < nbytes)
{
snd_pcm_uframes_t frames = (nbytes - nwritten)/fact;
if (frames == 0) break;
err = snd_pcm_writei (p->handle, buffer + nwritten, frames);
if (err < 0)
{
if (err == -EPIPE)
{ /* under-run */
err = snd_pcm_prepare (p->handle);
if (err < 0)
alsa_sound_perror ("Can't recover from underrun, prepare failed",
err);
}
else if (err == -ESTRPIPE)
{
while ((err = snd_pcm_resume (p->handle)) == -EAGAIN)
sleep (1); /* wait until the suspend flag is released */
if (err < 0)
{
err = snd_pcm_prepare (p->handle);
if (err < 0)
alsa_sound_perror ("Can't recover from suspend, "
"prepare failed",
err);
}
}
else
alsa_sound_perror ("Error writing to sound device", err);
}
else
nwritten += err * fact;
}
}
static void
snd_error_quiet (const char *file, int line, const char *function, int err,
const char *fmt)
{
}
/* Initialize device SD. Set up the interface functions in the device
structure. */
static bool
alsa_init (struct sound_device *sd)
{
/* Open the sound device. Default is "default". */
char const *file = string_default (sd->file, DEFAULT_ALSA_SOUND_DEVICE);
snd_pcm_t *handle;
int err;
snd_lib_error_set_handler ((snd_lib_error_handler_t) snd_error_quiet);
err = snd_pcm_open (&handle, file, SND_PCM_STREAM_PLAYBACK, 0);
snd_lib_error_set_handler (NULL);
if (err < 0)
return 0;
snd_pcm_close (handle);
sd->fd = -1;
sd->open = alsa_open;
sd->close = alsa_close;
sd->configure = alsa_configure;
sd->choose_format = alsa_choose_format;
sd->write = alsa_write;
sd->period_size = alsa_period_size;
return 1;
}
#endif /* HAVE_ALSA */
/* END: Non Windows functions */
#else /* WINDOWSNT */
/* BEGIN: Windows specific functions */
#define SOUND_WARNING(fun, error, text) \
{ \
char buf[1024]; \
char err_string[MAXERRORLENGTH]; \
fun (error, err_string, sizeof (err_string)); \
_snprintf (buf, sizeof (buf), "%s\nError: %s", \
text, err_string); \
sound_warning (buf); \
}
static int
do_play_sound (const char *psz_file, unsigned long ui_volume)
{
int i_result = 0;
MCIERROR mci_error = 0;
char sz_cmd_buf[520] = {0};
char sz_ret_buf[520] = {0};
MMRESULT mm_result = MMSYSERR_NOERROR;
unsigned long ui_volume_org = 0;
BOOL b_reset_volume = FALSE;
memset (sz_cmd_buf, 0, sizeof (sz_cmd_buf));
memset (sz_ret_buf, 0, sizeof (sz_ret_buf));
sprintf (sz_cmd_buf,
"open \"%s\" alias GNUEmacs_PlaySound_Device wait",
psz_file);
mci_error = mciSendString (sz_cmd_buf, sz_ret_buf, sizeof (sz_ret_buf), NULL);
if (mci_error != 0)
{
SOUND_WARNING (mciGetErrorString, mci_error,
"The open mciSendString command failed to open "
"the specified sound file.");
i_result = (int) mci_error;
return i_result;
}
if ((ui_volume > 0) && (ui_volume != UINT_MAX))
{
mm_result = waveOutGetVolume ((HWAVEOUT) WAVE_MAPPER, &ui_volume_org);
if (mm_result == MMSYSERR_NOERROR)
{
b_reset_volume = TRUE;
mm_result = waveOutSetVolume ((HWAVEOUT) WAVE_MAPPER, ui_volume);
if (mm_result != MMSYSERR_NOERROR)
{
SOUND_WARNING (waveOutGetErrorText, mm_result,
"waveOutSetVolume failed to set the volume level "
"of the WAVE_MAPPER device.\n"
"As a result, the user selected volume level will "
"not be used.");
}
}
else
{
SOUND_WARNING (waveOutGetErrorText, mm_result,
"waveOutGetVolume failed to obtain the original "
"volume level of the WAVE_MAPPER device.\n"
"As a result, the user selected volume level will "
"not be used.");
}
}
memset (sz_cmd_buf, 0, sizeof (sz_cmd_buf));
memset (sz_ret_buf, 0, sizeof (sz_ret_buf));
strcpy (sz_cmd_buf, "play GNUEmacs_PlaySound_Device wait");
mci_error = mciSendString (sz_cmd_buf, sz_ret_buf, sizeof (sz_ret_buf), NULL);
if (mci_error != 0)
{
SOUND_WARNING (mciGetErrorString, mci_error,
"The play mciSendString command failed to play the "
"opened sound file.");
i_result = (int) mci_error;
}
memset (sz_cmd_buf, 0, sizeof (sz_cmd_buf));
memset (sz_ret_buf, 0, sizeof (sz_ret_buf));
strcpy (sz_cmd_buf, "close GNUEmacs_PlaySound_Device wait");
mci_error = mciSendString (sz_cmd_buf, sz_ret_buf, sizeof (sz_ret_buf), NULL);
if (b_reset_volume == TRUE)
{
mm_result = waveOutSetVolume ((HWAVEOUT) WAVE_MAPPER, ui_volume_org);
if (mm_result != MMSYSERR_NOERROR)
{
SOUND_WARNING (waveOutGetErrorText, mm_result,
"waveOutSetVolume failed to reset the original volume "
"level of the WAVE_MAPPER device.");
}
}
return i_result;
}
/* END: Windows specific functions */
#endif /* WINDOWSNT */
DEFUN ("play-sound-internal", Fplay_sound_internal, Splay_sound_internal, 1, 1, 0,
doc: /* Play sound SOUND.
Internal use only, use `play-sound' instead. */)
(Lisp_Object sound)
{
Lisp_Object attrs[SOUND_ATTR_SENTINEL];
ptrdiff_t count = SPECPDL_INDEX ();
#ifndef WINDOWSNT
Lisp_Object file;
struct gcpro gcpro1, gcpro2;
Lisp_Object args[2];
#else /* WINDOWSNT */
int len = 0;
Lisp_Object lo_file = {0};
char * psz_file = NULL;
unsigned long ui_volume_tmp = UINT_MAX;
unsigned long ui_volume = UINT_MAX;
#endif /* WINDOWSNT */
/* Parse the sound specification. Give up if it is invalid. */
if (!parse_sound (sound, attrs))
error ("Invalid sound specification");
#ifndef WINDOWSNT
file = Qnil;
GCPRO2 (sound, file);
current_sound_device = xzalloc (sizeof *current_sound_device);
current_sound = xzalloc (sizeof *current_sound);
record_unwind_protect_void (sound_cleanup);
current_sound->header = alloca (MAX_SOUND_HEADER_BYTES);
if (STRINGP (attrs[SOUND_FILE]))
{
/* Open the sound file. */
current_sound->fd = openp (list1 (Vdata_directory),
attrs[SOUND_FILE], Qnil, &file, Qnil);
if (current_sound->fd < 0)
sound_perror ("Could not open sound file");
/* Read the first bytes from the file. */
current_sound->header_size
= emacs_read (current_sound->fd, current_sound->header,
MAX_SOUND_HEADER_BYTES);
if (current_sound->header_size < 0)
sound_perror ("Invalid sound file header");
}
else
{
current_sound->data = attrs[SOUND_DATA];
current_sound->header_size = min (MAX_SOUND_HEADER_BYTES, SBYTES (current_sound->data));
memcpy (current_sound->header, SDATA (current_sound->data),
current_sound->header_size);
}
/* Find out the type of sound. Give up if we can't tell. */
find_sound_type (current_sound);
/* Set up a device. */
current_sound_device->file = attrs[SOUND_DEVICE];
if (INTEGERP (attrs[SOUND_VOLUME]))
current_sound_device->volume = XFASTINT (attrs[SOUND_VOLUME]);
else if (FLOATP (attrs[SOUND_VOLUME]))
current_sound_device->volume = XFLOAT_DATA (attrs[SOUND_VOLUME]) * 100;
args[0] = Qplay_sound_functions;
args[1] = sound;
Frun_hook_with_args (2, args);
#ifdef HAVE_ALSA
if (!alsa_init (current_sound_device))
#endif
if (!vox_init (current_sound_device))
error ("No usable sound device driver found");
/* Open the device. */
current_sound_device->open (current_sound_device);
/* Play the sound. */
current_sound->play (current_sound, current_sound_device);
/* Clean up. */
UNGCPRO;
#else /* WINDOWSNT */
lo_file = Fexpand_file_name (attrs[SOUND_FILE], Qnil);
len = XSTRING (lo_file)->size;
psz_file = alloca (len + 1);
strcpy (psz_file, XSTRING (lo_file)->data);
if (INTEGERP (attrs[SOUND_VOLUME]))
{
ui_volume_tmp = XFASTINT (attrs[SOUND_VOLUME]);
}
else if (FLOATP (attrs[SOUND_VOLUME]))
{
ui_volume_tmp = XFLOAT_DATA (attrs[SOUND_VOLUME]) * 100;
}
/*
Based on some experiments I have conducted, a value of 100 or less
for the sound volume is much too low. You cannot even hear it.
A value of UINT_MAX indicates that you wish for the sound to played
at the maximum possible volume. A value of UINT_MAX/2 plays the
sound at 50% maximum volume. Therefore the value passed to do_play_sound
(and thus to waveOutSetVolume) must be some fraction of UINT_MAX.
The following code adjusts the user specified volume level appropriately.
*/
if ((ui_volume_tmp > 0) && (ui_volume_tmp <= 100))
{
ui_volume = ui_volume_tmp * (UINT_MAX / 100);
}
do_play_sound (psz_file, ui_volume);
#endif /* WINDOWSNT */
unbind_to (count, Qnil);
return Qnil;
}
/***********************************************************************
Initialization
***********************************************************************/
void
syms_of_sound (void)
{
DEFSYM (QCdevice, ":device");
DEFSYM (QCvolume, ":volume");
DEFSYM (Qsound, "sound");
DEFSYM (Qplay_sound_functions, "play-sound-functions");
defsubr (&Splay_sound_internal);
}
#endif /* HAVE_SOUND */