/* Lisp parsing and input streams. Copyright (C) 1985-1989, 1993-1995, 1997-2022 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs. If not, see . */ /* Tell globals.h to define tables needed by init_obarray. */ #define DEFINE_SYMBOLS #include #include "sysstdio.h" #include #include #include #include #include #include #include #include "lisp.h" #include "dispextern.h" #include "intervals.h" #include "character.h" #include "buffer.h" #include "charset.h" #include #include "commands.h" #include "keyboard.h" #include "systime.h" #include "termhooks.h" #include "blockinput.h" #include "pdumper.h" #include #include #ifdef MSDOS #include "msdos.h" #endif #ifdef HAVE_NS #include "nsterm.h" #endif #include #ifdef HAVE_SETLOCALE #include #endif /* HAVE_SETLOCALE */ #include #ifdef HAVE_FSEEKO #define file_offset off_t #define file_tell ftello #else #define file_offset long #define file_tell ftell #endif #if IEEE_FLOATING_POINT # include # ifndef INFINITY # define INFINITY ((union ieee754_double) {.ieee = {.exponent = -1}}.d) # endif #endif /* The objects or placeholders read with the #n=object form. A hash table maps a number to either a placeholder (while the object is still being parsed, in case it's referenced within its own definition) or to the completed object. With small integers for keys, it's effectively little more than a vector, but it'll manage any needed resizing for us. The variable must be reset to an empty hash table before all top-level calls to read0. In between calls, it may be an empty hash table left unused from the previous call (to reduce allocations), or nil. */ static Lisp_Object read_objects_map; /* The recursive objects read with the #n=object form. Objects that might have circular references are stored here, so that recursive substitution knows not to keep processing them multiple times. Only objects that are completely processed, including substituting references to themselves (but not necessarily replacing placeholders for other objects still being read), are stored. A hash table is used for efficient lookups of keys. We don't care what the value slots hold. The variable must be set to an empty hash table before all top-level calls to read0. In between calls, it may be an empty hash table left unused from the previous call (to reduce allocations), or nil. */ static Lisp_Object read_objects_completed; /* File and lookahead for get-file-char and get-emacs-mule-file-char to read from. Used by Fload. */ static struct infile { /* The input stream. */ FILE *stream; /* Lookahead byte count. */ signed char lookahead; /* Lookahead bytes, in reverse order. Keep these here because it is not portable to ungetc more than one byte at a time. */ unsigned char buf[MAX_MULTIBYTE_LENGTH - 1]; } *infile; /* For use within read-from-string (this reader is non-reentrant!!) */ static ptrdiff_t read_from_string_index; static ptrdiff_t read_from_string_index_byte; static ptrdiff_t read_from_string_limit; /* Position in object from which characters are being read by `readchar'. */ static EMACS_INT readchar_offset; struct saved_string { char *string; /* string in allocated buffer */ ptrdiff_t size; /* allocated size of buffer */ ptrdiff_t length; /* length of string in buffer */ file_offset position; /* position in file the string came from */ }; /* The last two strings skipped with #@ (most recent first). */ static struct saved_string saved_strings[2]; /* A list of file names for files being loaded in Fload. Used to check for recursive loads. */ static Lisp_Object Vloads_in_progress; static int read_emacs_mule_char (int, int (*) (int, Lisp_Object), Lisp_Object); static void readevalloop (Lisp_Object, struct infile *, Lisp_Object, bool, Lisp_Object, Lisp_Object, Lisp_Object, Lisp_Object); static void build_load_history (Lisp_Object, bool); static Lisp_Object oblookup_considering_shorthand (Lisp_Object, const char *, ptrdiff_t, ptrdiff_t, char **, ptrdiff_t *, ptrdiff_t *); /* Functions that read one byte from the current source READCHARFUN or unreads one byte. If the integer argument C is -1, it returns one read byte, or -1 when there's no more byte in the source. If C is 0 or positive, it unreads C, and the return value is not interesting. */ static int readbyte_for_lambda (int, Lisp_Object); static int readbyte_from_file (int, Lisp_Object); static int readbyte_from_string (int, Lisp_Object); /* Handle unreading and rereading of characters. Write READCHAR to read a character, UNREAD(c) to unread c to be read again. These macros correctly read/unread multibyte characters. */ #define READCHAR readchar (readcharfun, NULL) #define UNREAD(c) unreadchar (readcharfun, c) /* Same as READCHAR but set *MULTIBYTE to the multibyteness of the source. */ #define READCHAR_REPORT_MULTIBYTE(multibyte) readchar (readcharfun, multibyte) /* When READCHARFUN is Qget_file_char, Qget_emacs_mule_file_char, Qlambda, or a cons, we use this to keep an unread character because a file stream can't handle multibyte-char unreading. The value -1 means that there's no unread character. */ static int unread_char = -1; static int readchar (Lisp_Object readcharfun, bool *multibyte) { Lisp_Object tem; register int c; int (*readbyte) (int, Lisp_Object); unsigned char buf[MAX_MULTIBYTE_LENGTH]; int i, len; bool emacs_mule_encoding = 0; if (multibyte) *multibyte = 0; readchar_offset++; if (BUFFERP (readcharfun)) { register struct buffer *inbuffer = XBUFFER (readcharfun); ptrdiff_t pt_byte = BUF_PT_BYTE (inbuffer); if (! BUFFER_LIVE_P (inbuffer)) return -1; if (pt_byte >= BUF_ZV_BYTE (inbuffer)) return -1; if (! NILP (BVAR (inbuffer, enable_multibyte_characters))) { /* Fetch the character code from the buffer. */ unsigned char *p = BUF_BYTE_ADDRESS (inbuffer, pt_byte); int clen; c = string_char_and_length (p, &clen); pt_byte += clen; if (multibyte) *multibyte = 1; } else { c = BUF_FETCH_BYTE (inbuffer, pt_byte); if (! ASCII_CHAR_P (c)) c = BYTE8_TO_CHAR (c); pt_byte++; } SET_BUF_PT_BOTH (inbuffer, BUF_PT (inbuffer) + 1, pt_byte); return c; } if (MARKERP (readcharfun)) { register struct buffer *inbuffer = XMARKER (readcharfun)->buffer; ptrdiff_t bytepos = marker_byte_position (readcharfun); if (bytepos >= BUF_ZV_BYTE (inbuffer)) return -1; if (! NILP (BVAR (inbuffer, enable_multibyte_characters))) { /* Fetch the character code from the buffer. */ unsigned char *p = BUF_BYTE_ADDRESS (inbuffer, bytepos); int clen; c = string_char_and_length (p, &clen); bytepos += clen; if (multibyte) *multibyte = 1; } else { c = BUF_FETCH_BYTE (inbuffer, bytepos); if (! ASCII_CHAR_P (c)) c = BYTE8_TO_CHAR (c); bytepos++; } XMARKER (readcharfun)->bytepos = bytepos; XMARKER (readcharfun)->charpos++; return c; } if (EQ (readcharfun, Qlambda)) { readbyte = readbyte_for_lambda; goto read_multibyte; } if (EQ (readcharfun, Qget_file_char)) { eassert (infile); readbyte = readbyte_from_file; goto read_multibyte; } if (STRINGP (readcharfun)) { if (read_from_string_index >= read_from_string_limit) c = -1; else if (STRING_MULTIBYTE (readcharfun)) { if (multibyte) *multibyte = 1; c = (fetch_string_char_advance_no_check (readcharfun, &read_from_string_index, &read_from_string_index_byte)); } else { c = SREF (readcharfun, read_from_string_index_byte); read_from_string_index++; read_from_string_index_byte++; } return c; } if (CONSP (readcharfun) && STRINGP (XCAR (readcharfun))) { /* This is the case that read_vector is reading from a unibyte string that contains a byte sequence previously skipped because of #@NUMBER. The car part of readcharfun is that string, and the cdr part is a value of readcharfun given to read_vector. */ readbyte = readbyte_from_string; eassert (infile); if (EQ (XCDR (readcharfun), Qget_emacs_mule_file_char)) emacs_mule_encoding = 1; goto read_multibyte; } if (EQ (readcharfun, Qget_emacs_mule_file_char)) { readbyte = readbyte_from_file; eassert (infile); emacs_mule_encoding = 1; goto read_multibyte; } tem = call0 (readcharfun); if (NILP (tem)) return -1; return XFIXNUM (tem); read_multibyte: if (unread_char >= 0) { c = unread_char; unread_char = -1; return c; } c = (*readbyte) (-1, readcharfun); if (c < 0) return c; if (multibyte) *multibyte = 1; if (ASCII_CHAR_P (c)) return c; if (emacs_mule_encoding) return read_emacs_mule_char (c, readbyte, readcharfun); i = 0; buf[i++] = c; len = BYTES_BY_CHAR_HEAD (c); while (i < len) { buf[i++] = c = (*readbyte) (-1, readcharfun); if (c < 0 || ! TRAILING_CODE_P (c)) { for (i -= c < 0; 0 < --i; ) (*readbyte) (buf[i], readcharfun); return BYTE8_TO_CHAR (buf[0]); } } return STRING_CHAR (buf); } #define FROM_FILE_P(readcharfun) \ (EQ (readcharfun, Qget_file_char) \ || EQ (readcharfun, Qget_emacs_mule_file_char)) static void skip_dyn_bytes (Lisp_Object readcharfun, ptrdiff_t n) { if (FROM_FILE_P (readcharfun)) { block_input (); /* FIXME: Not sure if it's needed. */ fseek (infile->stream, n - infile->lookahead, SEEK_CUR); unblock_input (); infile->lookahead = 0; } else { /* We're not reading directly from a file. In that case, it's difficult to reliably count bytes, since these are usually meant for the file's encoding, whereas we're now typically in the internal encoding. But luckily, skip_dyn_bytes is used to skip over a single dynamic-docstring (or dynamic byte-code) which is always quoted such that \037 is the final char. */ int c; do { c = READCHAR; } while (c >= 0 && c != '\037'); } } static void skip_dyn_eof (Lisp_Object readcharfun) { if (FROM_FILE_P (readcharfun)) { block_input (); /* FIXME: Not sure if it's needed. */ fseek (infile->stream, 0, SEEK_END); unblock_input (); infile->lookahead = 0; } else while (READCHAR >= 0); } /* Unread the character C in the way appropriate for the stream READCHARFUN. If the stream is a user function, call it with the char as argument. */ static void unreadchar (Lisp_Object readcharfun, int c) { readchar_offset--; if (c == -1) /* Don't back up the pointer if we're unreading the end-of-input mark, since readchar didn't advance it when we read it. */ ; else if (BUFFERP (readcharfun)) { struct buffer *b = XBUFFER (readcharfun); ptrdiff_t charpos = BUF_PT (b); ptrdiff_t bytepos = BUF_PT_BYTE (b); if (! NILP (BVAR (b, enable_multibyte_characters))) bytepos -= buf_prev_char_len (b, bytepos); else bytepos--; SET_BUF_PT_BOTH (b, charpos - 1, bytepos); } else if (MARKERP (readcharfun)) { struct buffer *b = XMARKER (readcharfun)->buffer; ptrdiff_t bytepos = XMARKER (readcharfun)->bytepos; XMARKER (readcharfun)->charpos--; if (! NILP (BVAR (b, enable_multibyte_characters))) bytepos -= buf_prev_char_len (b, bytepos); else bytepos--; XMARKER (readcharfun)->bytepos = bytepos; } else if (STRINGP (readcharfun)) { read_from_string_index--; read_from_string_index_byte = string_char_to_byte (readcharfun, read_from_string_index); } else if (CONSP (readcharfun) && STRINGP (XCAR (readcharfun))) { unread_char = c; } else if (EQ (readcharfun, Qlambda)) { unread_char = c; } else if (FROM_FILE_P (readcharfun)) { unread_char = c; } else call1 (readcharfun, make_fixnum (c)); } static int readbyte_for_lambda (int c, Lisp_Object readcharfun) { return read_bytecode_char (c >= 0); } static int readbyte_from_stdio (void) { if (infile->lookahead) return infile->buf[--infile->lookahead]; int c; FILE *instream = infile->stream; block_input (); /* Interrupted reads have been observed while reading over the network. */ while ((c = getc (instream)) == EOF && errno == EINTR && ferror (instream)) { unblock_input (); maybe_quit (); block_input (); clearerr (instream); } unblock_input (); return (c == EOF ? -1 : c); } static int readbyte_from_file (int c, Lisp_Object readcharfun) { eassert (infile); if (c >= 0) { eassert (infile->lookahead < sizeof infile->buf); infile->buf[infile->lookahead++] = c; return 0; } return readbyte_from_stdio (); } static int readbyte_from_string (int c, Lisp_Object readcharfun) { Lisp_Object string = XCAR (readcharfun); if (c >= 0) { read_from_string_index--; read_from_string_index_byte = string_char_to_byte (string, read_from_string_index); } return (read_from_string_index < read_from_string_limit ? fetch_string_char_advance (string, &read_from_string_index, &read_from_string_index_byte) : -1); } /* Signal Qinvalid_read_syntax error. S is error string of length N (if > 0) */ static AVOID invalid_syntax_lisp (Lisp_Object s, Lisp_Object readcharfun) { if (BUFFERP (readcharfun)) { ptrdiff_t line, column; /* Get the line/column in the readcharfun buffer. */ { specpdl_ref count = SPECPDL_INDEX (); record_unwind_protect_excursion (); set_buffer_internal (XBUFFER (readcharfun)); line = count_lines (BEGV_BYTE, PT_BYTE) + 1; column = current_column (); unbind_to (count, Qnil); } xsignal (Qinvalid_read_syntax, list3 (s, make_fixnum (line), make_fixnum (column))); } else xsignal1 (Qinvalid_read_syntax, s); } static AVOID invalid_syntax (const char *s, Lisp_Object readcharfun) { invalid_syntax_lisp (build_string (s), readcharfun); } /* Read one non-ASCII character from INFILE. The character is encoded in `emacs-mule' and the first byte is already read in C. */ static int read_emacs_mule_char (int c, int (*readbyte) (int, Lisp_Object), Lisp_Object readcharfun) { /* Emacs-mule coding uses at most 4-byte for one character. */ unsigned char buf[4]; int len = emacs_mule_bytes[c]; struct charset *charset; int i; unsigned code; if (len == 1) /* C is not a valid leading-code of `emacs-mule'. */ return BYTE8_TO_CHAR (c); i = 0; buf[i++] = c; while (i < len) { buf[i++] = c = (*readbyte) (-1, readcharfun); if (c < 0xA0) { for (i -= c < 0; 0 < --i; ) (*readbyte) (buf[i], readcharfun); return BYTE8_TO_CHAR (buf[0]); } } if (len == 2) { charset = CHARSET_FROM_ID (emacs_mule_charset[buf[0]]); code = buf[1] & 0x7F; } else if (len == 3) { if (buf[0] == EMACS_MULE_LEADING_CODE_PRIVATE_11 || buf[0] == EMACS_MULE_LEADING_CODE_PRIVATE_12) { charset = CHARSET_FROM_ID (emacs_mule_charset[buf[1]]); code = buf[2] & 0x7F; } else { charset = CHARSET_FROM_ID (emacs_mule_charset[buf[0]]); code = ((buf[1] << 8) | buf[2]) & 0x7F7F; } } else { charset = CHARSET_FROM_ID (emacs_mule_charset[buf[1]]); code = ((buf[2] << 8) | buf[3]) & 0x7F7F; } c = DECODE_CHAR (charset, code); if (c < 0) invalid_syntax ("invalid multibyte form", readcharfun); return c; } /* An in-progress substitution of OBJECT for PLACEHOLDER. */ struct subst { Lisp_Object object; Lisp_Object placeholder; /* Hash table of subobjects of OBJECT that might be circular. If Qt, all such objects might be circular. */ Lisp_Object completed; /* List of subobjects of OBJECT that have already been visited. */ Lisp_Object seen; }; static Lisp_Object read_internal_start (Lisp_Object, Lisp_Object, Lisp_Object, bool); static Lisp_Object read0 (Lisp_Object, bool); static Lisp_Object substitute_object_recurse (struct subst *, Lisp_Object); static void substitute_in_interval (INTERVAL, void *); /* Get a character from the tty. */ /* Read input events until we get one that's acceptable for our purposes. If NO_SWITCH_FRAME, switch-frame events are stashed until we get a character we like, and then stuffed into unread_switch_frame. If ASCII_REQUIRED, check function key events to see if the unmodified version of the symbol has a Qascii_character property, and use that character, if present. If ERROR_NONASCII, signal an error if the input we get isn't an ASCII character with modifiers. If it's false but ASCII_REQUIRED is true, just re-read until we get an ASCII character. If INPUT_METHOD, invoke the current input method if the character warrants that. If SECONDS is a number, wait that many seconds for input, and return Qnil if no input arrives within that time. */ static Lisp_Object read_filtered_event (bool no_switch_frame, bool ascii_required, bool error_nonascii, bool input_method, Lisp_Object seconds) { Lisp_Object val, delayed_switch_frame; struct timespec end_time; #ifdef HAVE_WINDOW_SYSTEM if (display_hourglass_p) cancel_hourglass (); #endif delayed_switch_frame = Qnil; /* Compute timeout. */ if (NUMBERP (seconds)) { double duration = XFLOATINT (seconds); struct timespec wait_time = dtotimespec (duration); end_time = timespec_add (current_timespec (), wait_time); } /* Read until we get an acceptable event. */ retry: do val = read_char (0, Qnil, (input_method ? Qnil : Qt), 0, NUMBERP (seconds) ? &end_time : NULL); while (FIXNUMP (val) && XFIXNUM (val) == -2); /* wrong_kboard_jmpbuf */ if (BUFFERP (val)) goto retry; /* `switch-frame' events are put off until after the next ASCII character. This is better than signaling an error just because the last characters were typed to a separate minibuffer frame, for example. Eventually, some code which can deal with switch-frame events will read it and process it. */ if (no_switch_frame && EVENT_HAS_PARAMETERS (val) && EQ (EVENT_HEAD_KIND (EVENT_HEAD (val)), Qswitch_frame)) { delayed_switch_frame = val; goto retry; } if (ascii_required && !(NUMBERP (seconds) && NILP (val))) { /* Convert certain symbols to their ASCII equivalents. */ if (SYMBOLP (val)) { Lisp_Object tem, tem1; tem = Fget (val, Qevent_symbol_element_mask); if (!NILP (tem)) { tem1 = Fget (Fcar (tem), Qascii_character); /* Merge this symbol's modifier bits with the ASCII equivalent of its basic code. */ if (!NILP (tem1)) XSETFASTINT (val, XFIXNUM (tem1) | XFIXNUM (Fcar (Fcdr (tem)))); } } /* If we don't have a character now, deal with it appropriately. */ if (!FIXNUMP (val)) { if (error_nonascii) { Vunread_command_events = list1 (val); error ("Non-character input-event"); } else goto retry; } } if (! NILP (delayed_switch_frame)) unread_switch_frame = delayed_switch_frame; #if 0 #ifdef HAVE_WINDOW_SYSTEM if (display_hourglass_p) start_hourglass (); #endif #endif return val; } DEFUN ("read-char", Fread_char, Sread_char, 0, 3, 0, doc: /* Read a character event from the command input (keyboard or macro). It is returned as a number. If the event has modifiers, they are resolved and reflected in the returned character code if possible (e.g. C-SPC yields 0 and C-a yields 97). If some of the modifiers cannot be reflected in the character code, the returned value will include those modifiers, and will not be a valid character code: it will fail the `characterp' test. Use `event-basic-type' to recover the character code with the modifiers removed. If the user generates an event which is not a character (i.e. a mouse click or function key event), `read-char' signals an error. As an exception, switch-frame events are put off until non-character events can be read. If you want to read non-character events, or ignore them, call `read-event' or `read-char-exclusive' instead. If the optional argument PROMPT is non-nil, display that as a prompt. If PROMPT is nil or the string \"\", the key sequence/events that led to the current command is used as the prompt. If the optional argument INHERIT-INPUT-METHOD is non-nil and some input method is turned on in the current buffer, that input method is used for reading a character. If the optional argument SECONDS is non-nil, it should be a number specifying the maximum number of seconds to wait for input. If no input arrives in that time, return nil. SECONDS may be a floating-point value. If `inhibit-interaction' is non-nil, this function will signal an `inhibited-interaction' error. */) (Lisp_Object prompt, Lisp_Object inherit_input_method, Lisp_Object seconds) { Lisp_Object val; barf_if_interaction_inhibited (); if (! NILP (prompt)) { cancel_echoing (); message_with_string ("%s", prompt, 0); } val = read_filtered_event (1, 1, 1, ! NILP (inherit_input_method), seconds); return (NILP (val) ? Qnil : make_fixnum (char_resolve_modifier_mask (XFIXNUM (val)))); } DEFUN ("read-event", Fread_event, Sread_event, 0, 3, 0, doc: /* Read an event object from the input stream. If you want to read non-character events, consider calling `read-key' instead. `read-key' will decode events via `input-decode-map' that `read-event' will not. On a terminal this includes function keys such as and , or mouse events generated by `xterm-mouse-mode'. If the optional argument PROMPT is non-nil, display that as a prompt. If PROMPT is nil or the string \"\", the key sequence/events that led to the current command is used as the prompt. If the optional argument INHERIT-INPUT-METHOD is non-nil and some input method is turned on in the current buffer, that input method is used for reading a character. If the optional argument SECONDS is non-nil, it should be a number specifying the maximum number of seconds to wait for input. If no input arrives in that time, return nil. SECONDS may be a floating-point value. If `inhibit-interaction' is non-nil, this function will signal an `inhibited-interaction' error. */) (Lisp_Object prompt, Lisp_Object inherit_input_method, Lisp_Object seconds) { barf_if_interaction_inhibited (); if (! NILP (prompt)) { cancel_echoing (); message_with_string ("%s", prompt, 0); } return read_filtered_event (0, 0, 0, ! NILP (inherit_input_method), seconds); } DEFUN ("read-char-exclusive", Fread_char_exclusive, Sread_char_exclusive, 0, 3, 0, doc: /* Read a character event from the command input (keyboard or macro). It is returned as a number. Non-character events are ignored. If the event has modifiers, they are resolved and reflected in the returned character code if possible (e.g. C-SPC yields 0 and C-a yields 97). If some of the modifiers cannot be reflected in the character code, the returned value will include those modifiers, and will not be a valid character code: it will fail the `characterp' test. Use `event-basic-type' to recover the character code with the modifiers removed. If the optional argument PROMPT is non-nil, display that as a prompt. If PROMPT is nil or the string \"\", the key sequence/events that led to the current command is used as the prompt. If the optional argument INHERIT-INPUT-METHOD is non-nil and some input method is turned on in the current buffer, that input method is used for reading a character. If the optional argument SECONDS is non-nil, it should be a number specifying the maximum number of seconds to wait for input. If no input arrives in that time, return nil. SECONDS may be a floating-point value. If `inhibit-interaction' is non-nil, this function will signal an `inhibited-interaction' error. */) (Lisp_Object prompt, Lisp_Object inherit_input_method, Lisp_Object seconds) { Lisp_Object val; barf_if_interaction_inhibited (); if (! NILP (prompt)) { cancel_echoing (); message_with_string ("%s", prompt, 0); } val = read_filtered_event (1, 1, 0, ! NILP (inherit_input_method), seconds); return (NILP (val) ? Qnil : make_fixnum (char_resolve_modifier_mask (XFIXNUM (val)))); } DEFUN ("get-file-char", Fget_file_char, Sget_file_char, 0, 0, 0, doc: /* Don't use this yourself. */) (void) { if (!infile) error ("get-file-char misused"); return make_fixnum (readbyte_from_stdio ()); } /* Return true if the lisp code read using READCHARFUN defines a non-nil `lexical-binding' file variable. After returning, the stream is positioned following the first line, if it is a comment or #! line, otherwise nothing is read. */ static bool lisp_file_lexically_bound_p (Lisp_Object readcharfun) { int ch = READCHAR; if (ch == '#') { ch = READCHAR; if (ch != '!') { UNREAD (ch); UNREAD ('#'); return 0; } while (ch != '\n' && ch != EOF) ch = READCHAR; if (ch == '\n') ch = READCHAR; /* It is OK to leave the position after a #! line, since that is what read0 does. */ } if (ch != ';') /* The first line isn't a comment, just give up. */ { UNREAD (ch); return 0; } else /* Look for an appropriate file-variable in the first line. */ { bool rv = 0; enum { NOMINAL, AFTER_FIRST_DASH, AFTER_ASTERIX } beg_end_state = NOMINAL; bool in_file_vars = 0; #define UPDATE_BEG_END_STATE(ch) \ if (beg_end_state == NOMINAL) \ beg_end_state = (ch == '-' ? AFTER_FIRST_DASH : NOMINAL); \ else if (beg_end_state == AFTER_FIRST_DASH) \ beg_end_state = (ch == '*' ? AFTER_ASTERIX : NOMINAL); \ else if (beg_end_state == AFTER_ASTERIX) \ { \ if (ch == '-') \ in_file_vars = !in_file_vars; \ beg_end_state = NOMINAL; \ } /* Skip until we get to the file vars, if any. */ do { ch = READCHAR; UPDATE_BEG_END_STATE (ch); } while (!in_file_vars && ch != '\n' && ch != EOF); while (in_file_vars) { char var[100], val[100]; unsigned i; ch = READCHAR; /* Read a variable name. */ while (ch == ' ' || ch == '\t') ch = READCHAR; i = 0; beg_end_state = NOMINAL; while (ch != ':' && ch != '\n' && ch != EOF && in_file_vars) { if (i < sizeof var - 1) var[i++] = ch; UPDATE_BEG_END_STATE (ch); ch = READCHAR; } /* Stop scanning if no colon was found before end marker. */ if (!in_file_vars || ch == '\n' || ch == EOF) break; while (i > 0 && (var[i - 1] == ' ' || var[i - 1] == '\t')) i--; var[i] = '\0'; if (ch == ':') { /* Read a variable value. */ ch = READCHAR; while (ch == ' ' || ch == '\t') ch = READCHAR; i = 0; beg_end_state = NOMINAL; while (ch != ';' && ch != '\n' && ch != EOF && in_file_vars) { if (i < sizeof val - 1) val[i++] = ch; UPDATE_BEG_END_STATE (ch); ch = READCHAR; } if (! in_file_vars) /* The value was terminated by an end-marker, which remove. */ i -= 3; while (i > 0 && (val[i - 1] == ' ' || val[i - 1] == '\t')) i--; val[i] = '\0'; if (strcmp (var, "lexical-binding") == 0) /* This is it... */ { rv = (strcmp (val, "nil") != 0); break; } } } while (ch != '\n' && ch != EOF) ch = READCHAR; return rv; } } /* Value is a version number of byte compiled code if the file associated with file descriptor FD is a compiled Lisp file that's safe to load. Only files compiled with Emacs can be loaded. */ static int safe_to_load_version (Lisp_Object file, int fd) { struct stat st; char buf[512]; int nbytes, i; int version = 1; /* If the file is not regular, then we cannot safely seek it. Assume that it is not safe to load as a compiled file. */ if (fstat (fd, &st) == 0 && !S_ISREG (st.st_mode)) return 0; /* Read the first few bytes from the file, and look for a line specifying the byte compiler version used. */ nbytes = emacs_read_quit (fd, buf, sizeof buf); if (nbytes > 0) { /* Skip to the next newline, skipping over the initial `ELC' with NUL bytes following it, but note the version. */ for (i = 0; i < nbytes && buf[i] != '\n'; ++i) if (i == 4) version = buf[i]; if (i >= nbytes || fast_c_string_match_ignore_case (Vbytecomp_version_regexp, buf + i, nbytes - i) < 0) version = 0; } if (lseek (fd, 0, SEEK_SET) < 0) report_file_error ("Seeking to start of file", file); return version; } /* Callback for record_unwind_protect. Restore the old load list OLD, after loading a file successfully. */ static void record_load_unwind (Lisp_Object old) { Vloads_in_progress = old; } /* This handler function is used via internal_condition_case_1. */ static Lisp_Object load_error_handler (Lisp_Object data) { return Qnil; } static void load_warn_unescaped_character_literals (Lisp_Object file) { Lisp_Object function = Fsymbol_function (Qbyte_run_unescaped_character_literals_warning); /* If byte-run.el is being loaded, `byte-run--unescaped-character-literals-warning' isn't yet defined. Since it'll be byte-compiled later, ignore potential unescaped character literals. */ Lisp_Object warning = NILP (function) ? Qnil : call0 (function); if (!NILP (warning)) { AUTO_STRING (format, "Loading `%s': %s"); CALLN (Fmessage, format, file, warning); } } DEFUN ("get-load-suffixes", Fget_load_suffixes, Sget_load_suffixes, 0, 0, 0, doc: /* Return the suffixes that `load' should try if a suffix is \ required. This uses the variables `load-suffixes' and `load-file-rep-suffixes'. */) (void) { Lisp_Object lst = Qnil, suffixes = Vload_suffixes; FOR_EACH_TAIL (suffixes) { Lisp_Object exts = Vload_file_rep_suffixes; Lisp_Object suffix = XCAR (suffixes); FOR_EACH_TAIL (exts) lst = Fcons (concat2 (suffix, XCAR (exts)), lst); } return Fnreverse (lst); } /* Return true if STRING ends with SUFFIX. */ bool suffix_p (Lisp_Object string, const char *suffix) { ptrdiff_t suffix_len = strlen (suffix); ptrdiff_t string_len = SBYTES (string); return (suffix_len <= string_len && strcmp (SSDATA (string) + string_len - suffix_len, suffix) == 0); } static void close_infile_unwind (void *arg) { struct infile *prev_infile = arg; eassert (infile && infile != prev_infile); fclose (infile->stream); infile = prev_infile; } /* Compute the filename we want in `load-history' and `load-file-name'. */ static Lisp_Object compute_found_effective (Lisp_Object found) { /* Reconstruct the .elc filename. */ Lisp_Object src_name = Fgethash (Ffile_name_nondirectory (found), Vcomp_eln_to_el_h, Qnil); if (NILP (src_name)) /* Manual eln load. */ return found; if (suffix_p (src_name, "el.gz")) src_name = Fsubstring (src_name, make_fixnum (0), make_fixnum (-3)); return concat2 (src_name, build_string ("c")); } static void loadhist_initialize (Lisp_Object filename) { eassert (STRINGP (filename) || NILP (filename)); specbind (Qcurrent_load_list, Fcons (filename, Qnil)); } DEFUN ("load", Fload, Sload, 1, 5, 0, doc: /* Execute a file of Lisp code named FILE. First try FILE with `.elc' appended, then try with `.el', then try with a system-dependent suffix of dynamic modules (see `load-suffixes'), then try FILE unmodified (the exact suffixes in the exact order are determined by `load-suffixes'). Environment variable references in FILE are replaced with their values by calling `substitute-in-file-name'. This function searches the directories in `load-path'. If optional second arg NOERROR is non-nil, report no error if FILE doesn't exist. Print messages at start and end of loading unless optional third arg NOMESSAGE is non-nil (but `force-load-messages' overrides that). If optional fourth arg NOSUFFIX is non-nil, don't try adding suffixes to the specified name FILE. If optional fifth arg MUST-SUFFIX is non-nil, insist on the suffix `.elc' or `.el' or the module suffix; don't accept just FILE unless it ends in one of those suffixes or includes a directory name. If NOSUFFIX is nil, then if a file could not be found, try looking for a different representation of the file by adding non-empty suffixes to its name, before trying another file. Emacs uses this feature to find compressed versions of files when Auto Compression mode is enabled. If NOSUFFIX is non-nil, disable this feature. The suffixes that this function tries out, when NOSUFFIX is nil, are given by the return value of `get-load-suffixes' and the values listed in `load-file-rep-suffixes'. If MUST-SUFFIX is non-nil, only the return value of `get-load-suffixes' is used, i.e. the file name is required to have a non-empty suffix. When searching suffixes, this function normally stops at the first one that exists. If the option `load-prefer-newer' is non-nil, however, it tries all suffixes, and uses whichever file is the newest. Loading a file records its definitions, and its `provide' and `require' calls, in an element of `load-history' whose car is the file name loaded. See `load-history'. While the file is in the process of being loaded, the variable `load-in-progress' is non-nil and the variable `load-file-name' is bound to the file's name. Return t if the file exists and loads successfully. */) (Lisp_Object file, Lisp_Object noerror, Lisp_Object nomessage, Lisp_Object nosuffix, Lisp_Object must_suffix) { FILE *stream UNINIT; int fd; specpdl_ref fd_index UNINIT; specpdl_ref count = SPECPDL_INDEX (); Lisp_Object found, efound, hist_file_name; /* True means we printed the ".el is newer" message. */ bool newer = 0; /* True means we are loading a compiled file. */ bool compiled = 0; Lisp_Object handler; const char *fmode = "r" FOPEN_TEXT; int version; CHECK_STRING (file); /* If file name is magic, call the handler. */ handler = Ffind_file_name_handler (file, Qload); if (!NILP (handler)) return call5 (handler, Qload, file, noerror, nomessage, nosuffix); /* The presence of this call is the result of a historical accident: it used to be in every file-operation and when it got removed everywhere, it accidentally stayed here. Since then, enough people supposedly have things like (load "$PROJECT/foo.el") in their .emacs that it seemed risky to remove. */ if (! NILP (noerror)) { file = internal_condition_case_1 (Fsubstitute_in_file_name, file, Qt, load_error_handler); if (NILP (file)) return Qnil; } else file = Fsubstitute_in_file_name (file); bool no_native = suffix_p (file, ".elc"); /* Avoid weird lossage with null string as arg, since it would try to load a directory as a Lisp file. */ if (SCHARS (file) == 0) { fd = -1; errno = ENOENT; } else { Lisp_Object suffixes; found = Qnil; if (! NILP (must_suffix)) { /* Don't insist on adding a suffix if FILE already ends with one. */ if (suffix_p (file, ".el") || suffix_p (file, ".elc") #ifdef HAVE_MODULES || suffix_p (file, MODULES_SUFFIX) #ifdef MODULES_SECONDARY_SUFFIX || suffix_p (file, MODULES_SECONDARY_SUFFIX) #endif #endif #ifdef HAVE_NATIVE_COMP || suffix_p (file, NATIVE_ELISP_SUFFIX) #endif ) must_suffix = Qnil; /* Don't insist on adding a suffix if the argument includes a directory name. */ else if (! NILP (Ffile_name_directory (file))) must_suffix = Qnil; } if (!NILP (nosuffix)) suffixes = Qnil; else { suffixes = Fget_load_suffixes (); if (NILP (must_suffix)) suffixes = CALLN (Fappend, suffixes, Vload_file_rep_suffixes); } fd = openp (Vload_path, file, suffixes, &found, Qnil, load_prefer_newer, no_native); } if (fd == -1) { if (NILP (noerror)) report_file_error ("Cannot open load file", file); return Qnil; } /* Tell startup.el whether or not we found the user's init file. */ if (EQ (Qt, Vuser_init_file)) Vuser_init_file = found; /* If FD is -2, that means openp found a magic file. */ if (fd == -2) { if (NILP (Fequal (found, file))) /* If FOUND is a different file name from FILE, find its handler even if we have already inhibited the `load' operation on FILE. */ handler = Ffind_file_name_handler (found, Qt); else handler = Ffind_file_name_handler (found, Qload); if (! NILP (handler)) return call5 (handler, Qload, found, noerror, nomessage, Qt); #ifdef DOS_NT /* Tramp has to deal with semi-broken packages that prepend drive letters to remote files. For that reason, Tramp catches file operations that test for file existence, which makes openp think X:/foo.elc files are remote. However, Tramp does not catch `load' operations for such files, so we end up with a nil as the `load' handler above. If we would continue with fd = -2, we will behave wrongly, and in particular try reading a .elc file in the "rt" mode instead of "rb". See bug #9311 for the results. To work around this, we try to open the file locally, and go with that if it succeeds. */ fd = emacs_open (SSDATA (ENCODE_FILE (found)), O_RDONLY, 0); if (fd == -1) fd = -2; #endif } if (0 <= fd) { fd_index = SPECPDL_INDEX (); record_unwind_protect_int (close_file_unwind, fd); } #ifdef HAVE_MODULES bool is_module = suffix_p (found, MODULES_SUFFIX) #ifdef MODULES_SECONDARY_SUFFIX || suffix_p (found, MODULES_SECONDARY_SUFFIX) #endif ; #else bool is_module = false; #endif #ifdef HAVE_NATIVE_COMP bool is_native_elisp = suffix_p (found, NATIVE_ELISP_SUFFIX); #else bool is_native_elisp = false; #endif /* Check if we're stuck in a recursive load cycle. 2000-09-21: It's not possible to just check for the file loaded being a member of Vloads_in_progress. This fails because of the way the byte compiler currently works; `provide's are not evaluated, see font-lock.el/jit-lock.el as an example. This leads to a certain amount of ``normal'' recursion. Also, just loading a file recursively is not always an error in the general case; the second load may do something different. */ { int load_count = 0; Lisp_Object tem = Vloads_in_progress; FOR_EACH_TAIL_SAFE (tem) if (!NILP (Fequal (found, XCAR (tem))) && (++load_count > 3)) signal_error ("Recursive load", Fcons (found, Vloads_in_progress)); record_unwind_protect (record_load_unwind, Vloads_in_progress); Vloads_in_progress = Fcons (found, Vloads_in_progress); } /* All loads are by default dynamic, unless the file itself specifies otherwise using a file-variable in the first line. This is bound here so that it takes effect whether or not we use Vload_source_file_function. */ specbind (Qlexical_binding, Qnil); Lisp_Object found_eff = is_native_elisp ? compute_found_effective (found) : found; hist_file_name = (! NILP (Vpurify_flag) ? concat2 (Ffile_name_directory (file), Ffile_name_nondirectory (found_eff)) : found_eff); version = -1; /* Check for the presence of unescaped character literals and warn about them. */ specbind (Qlread_unescaped_character_literals, Qnil); record_unwind_protect (load_warn_unescaped_character_literals, file); bool is_elc = suffix_p (found, ".elc"); if (is_elc /* version = 1 means the file is empty, in which case we can treat it as not byte-compiled. */ || (fd >= 0 && (version = safe_to_load_version (file, fd)) > 1)) /* Load .elc files directly, but not when they are remote and have no handler! */ { if (fd != -2) { struct stat s1, s2; int result; if (version < 0 && !(version = safe_to_load_version (file, fd))) error ("File `%s' was not compiled in Emacs", SDATA (found)); compiled = 1; efound = ENCODE_FILE (found); fmode = "r" FOPEN_BINARY; /* openp already checked for newness, no point doing it again. FIXME would be nice to get a message when openp ignores suffix order due to load_prefer_newer. */ if (!load_prefer_newer && is_elc) { result = emacs_fstatat (AT_FDCWD, SSDATA (efound), &s1, 0); if (result == 0) { SSET (efound, SBYTES (efound) - 1, 0); result = emacs_fstatat (AT_FDCWD, SSDATA (efound), &s2, 0); SSET (efound, SBYTES (efound) - 1, 'c'); } if (result == 0 && timespec_cmp (get_stat_mtime (&s1), get_stat_mtime (&s2)) < 0) { /* Make the progress messages mention that source is newer. */ newer = 1; /* If we won't print another message, mention this anyway. */ if (!NILP (nomessage) && !force_load_messages) { Lisp_Object msg_file; msg_file = Fsubstring (found, make_fixnum (0), make_fixnum (-1)); message_with_string ("Source file `%s' newer than byte-compiled file; using older file", msg_file, 1); } } } /* !load_prefer_newer */ } } else if (!is_module && !is_native_elisp) { /* We are loading a source file (*.el). */ if (!NILP (Vload_source_file_function)) { Lisp_Object val; if (fd >= 0) { emacs_close (fd); clear_unwind_protect (fd_index); } val = call4 (Vload_source_file_function, found, hist_file_name, NILP (noerror) ? Qnil : Qt, (NILP (nomessage) || force_load_messages) ? Qnil : Qt); return unbind_to (count, val); } } if (fd < 0) { /* We somehow got here with fd == -2, meaning the file is deemed to be remote. Don't even try to reopen the file locally; just force a failure. */ stream = NULL; errno = EINVAL; } else if (!is_module && !is_native_elisp) { #ifdef WINDOWSNT emacs_close (fd); clear_unwind_protect (fd_index); efound = ENCODE_FILE (found); stream = emacs_fopen (SSDATA (efound), fmode); #else stream = fdopen (fd, fmode); #endif } /* Declare here rather than inside the else-part because the storage might be accessed by the unbind_to call below. */ struct infile input; if (is_module || is_native_elisp) { /* `module-load' uses the file name, so we can close the stream now. */ if (fd >= 0) { emacs_close (fd); clear_unwind_protect (fd_index); } } else { if (! stream) report_file_error ("Opening stdio stream", file); set_unwind_protect_ptr (fd_index, close_infile_unwind, infile); input.stream = stream; input.lookahead = 0; infile = &input; unread_char = -1; } if (! NILP (Vpurify_flag)) Vpreloaded_file_list = Fcons (Fpurecopy (file), Vpreloaded_file_list); if (NILP (nomessage) || force_load_messages) { if (is_module) message_with_string ("Loading %s (module)...", file, 1); else if (is_native_elisp) message_with_string ("Loading %s (native compiled elisp)...", file, 1); else if (!compiled) message_with_string ("Loading %s (source)...", file, 1); else if (newer) message_with_string ("Loading %s (compiled; note, source file is newer)...", file, 1); else /* The typical case; compiled file newer than source file. */ message_with_string ("Loading %s...", file, 1); } specbind (Qload_file_name, hist_file_name); specbind (Qload_true_file_name, found); specbind (Qinhibit_file_name_operation, Qnil); specbind (Qload_in_progress, Qt); if (is_module) { #ifdef HAVE_MODULES loadhist_initialize (found); Fmodule_load (found); build_load_history (found, true); #else /* This cannot happen. */ emacs_abort (); #endif } else if (is_native_elisp) { #ifdef HAVE_NATIVE_COMP loadhist_initialize (hist_file_name); Fnative_elisp_load (found, Qnil); build_load_history (hist_file_name, true); #else /* This cannot happen. */ emacs_abort (); #endif } else { if (lisp_file_lexically_bound_p (Qget_file_char)) Fset (Qlexical_binding, Qt); if (! version || version >= 22) readevalloop (Qget_file_char, &input, hist_file_name, 0, Qnil, Qnil, Qnil, Qnil); else { /* We can't handle a file which was compiled with byte-compile-dynamic by older version of Emacs. */ specbind (Qload_force_doc_strings, Qt); readevalloop (Qget_emacs_mule_file_char, &input, hist_file_name, 0, Qnil, Qnil, Qnil, Qnil); } } unbind_to (count, Qnil); /* Run any eval-after-load forms for this file. */ if (!NILP (Ffboundp (Qdo_after_load_evaluation))) call1 (Qdo_after_load_evaluation, hist_file_name) ; for (int i = 0; i < ARRAYELTS (saved_strings); i++) { xfree (saved_strings[i].string); saved_strings[i].string = NULL; saved_strings[i].size = 0; } if (!noninteractive && (NILP (nomessage) || force_load_messages)) { if (is_module) message_with_string ("Loading %s (module)...done", file, 1); else if (is_native_elisp) message_with_string ("Loading %s (native compiled elisp)...done", file, 1); else if (!compiled) message_with_string ("Loading %s (source)...done", file, 1); else if (newer) message_with_string ("Loading %s (compiled; note, source file is newer)...done", file, 1); else /* The typical case; compiled file newer than source file. */ message_with_string ("Loading %s...done", file, 1); } return Qt; } Lisp_Object save_match_data_load (Lisp_Object file, Lisp_Object noerror, Lisp_Object nomessage, Lisp_Object nosuffix, Lisp_Object must_suffix) { specpdl_ref count = SPECPDL_INDEX (); record_unwind_save_match_data (); Lisp_Object result = Fload (file, noerror, nomessage, nosuffix, must_suffix); return unbind_to (count, result); } static bool complete_filename_p (Lisp_Object pathname) { const unsigned char *s = SDATA (pathname); return (IS_DIRECTORY_SEP (s[0]) || (SCHARS (pathname) > 2 && IS_DEVICE_SEP (s[1]) && IS_DIRECTORY_SEP (s[2]))); } DEFUN ("locate-file-internal", Flocate_file_internal, Slocate_file_internal, 2, 4, 0, doc: /* Search for FILENAME through PATH. Returns the file's name in absolute form, or nil if not found. If SUFFIXES is non-nil, it should be a list of suffixes to append to file name when searching. If non-nil, PREDICATE is used instead of `file-readable-p'. PREDICATE can also be an integer to pass to the faccessat(2) function, in which case file-name-handlers are ignored. This function will normally skip directories, so if you want it to find directories, make sure the PREDICATE function returns `dir-ok' for them. */) (Lisp_Object filename, Lisp_Object path, Lisp_Object suffixes, Lisp_Object predicate) { Lisp_Object file; int fd = openp (path, filename, suffixes, &file, predicate, false, true); if (NILP (predicate) && fd >= 0) emacs_close (fd); return file; } #ifdef HAVE_NATIVE_COMP static bool maybe_swap_for_eln1 (Lisp_Object src_name, Lisp_Object eln_name, Lisp_Object *filename, int *fd, struct timespec mtime) { struct stat eln_st; int eln_fd = emacs_open (SSDATA (ENCODE_FILE (eln_name)), O_RDONLY, 0); if (eln_fd > 0) { if (fstat (eln_fd, &eln_st) || S_ISDIR (eln_st.st_mode)) emacs_close (eln_fd); else { struct timespec eln_mtime = get_stat_mtime (&eln_st); if (timespec_cmp (eln_mtime, mtime) >= 0) { emacs_close (*fd); *fd = eln_fd; *filename = eln_name; /* Store the eln -> el relation. */ Fputhash (Ffile_name_nondirectory (eln_name), src_name, Vcomp_eln_to_el_h); return true; } else emacs_close (eln_fd); } } return false; } #endif /* Look for a suitable .eln file to be loaded in place of FILENAME. If found replace the content of FILENAME and FD. */ static void maybe_swap_for_eln (bool no_native, Lisp_Object *filename, int *fd, struct timespec mtime) { #ifdef HAVE_NATIVE_COMP if (no_native || load_no_native) Fputhash (*filename, Qt, V_comp_no_native_file_h); else Fremhash (*filename, V_comp_no_native_file_h); if (no_native || load_no_native || !suffix_p (*filename, ".elc")) return; /* Search eln in the eln-cache directories. */ Lisp_Object eln_path_tail = Vnative_comp_eln_load_path; Lisp_Object src_name = Fsubstring (*filename, Qnil, make_fixnum (-1)); if (NILP (Ffile_exists_p (src_name))) { src_name = concat2 (src_name, build_string (".gz")); if (NILP (Ffile_exists_p (src_name))) { if (!NILP (find_symbol_value ( Qnative_comp_warning_on_missing_source))) { /* If we have an installation without any .el files, there's really no point in giving a warning here, because that will trigger a cascade of warnings. So just do a sanity check and refuse to do anything if we can't find even central .el files. */ if (NILP (Flocate_file_internal (build_string ("simple.el"), Vload_path, Qnil, Qnil))) return; call2 (intern_c_string ("display-warning"), Qcomp, CALLN (Fformat, build_string ("Cannot look up eln file as " "no source file was found for %s"), *filename)); return; } } } Lisp_Object eln_rel_name = Fcomp_el_to_eln_rel_filename (src_name); Lisp_Object dir = Qnil; FOR_EACH_TAIL_SAFE (eln_path_tail) { dir = XCAR (eln_path_tail); Lisp_Object eln_name = Fexpand_file_name (eln_rel_name, Fexpand_file_name (Vcomp_native_version_dir, dir)); if (maybe_swap_for_eln1 (src_name, eln_name, filename, fd, mtime)) return; } /* Look also in preloaded subfolder of the last entry in `comp-eln-load-path'. */ dir = Fexpand_file_name (build_string ("preloaded"), Fexpand_file_name (Vcomp_native_version_dir, dir)); maybe_swap_for_eln1 (src_name, Fexpand_file_name (eln_rel_name, dir), filename, fd, mtime); #endif } /* Search for a file whose name is STR, looking in directories in the Lisp list PATH, and trying suffixes from SUFFIX. On success, return a file descriptor (or 1 or -2 as described below). On failure, return -1 and set errno. SUFFIXES is a list of strings containing possible suffixes. The empty suffix is automatically added if the list is empty. PREDICATE t means the files are binary. PREDICATE non-nil and non-t means don't open the files, just look for one that satisfies the predicate. In this case, return -2 on success. The predicate can be a lisp function or an integer to pass to `access' (in which case file-name-handlers are ignored). If STOREPTR is nonzero, it points to a slot where the name of the file actually found should be stored as a Lisp string. nil is stored there on failure. If the file we find is remote, return -2 but store the found remote file name in *STOREPTR. If NEWER is true, try all SUFFIXes and return the result for the newest file that exists. Does not apply to remote files, or if a non-nil and non-t PREDICATE is specified. if NO_NATIVE is true do not try to load native code. */ int openp (Lisp_Object path, Lisp_Object str, Lisp_Object suffixes, Lisp_Object *storeptr, Lisp_Object predicate, bool newer, bool no_native) { ptrdiff_t fn_size = 100; char buf[100]; char *fn = buf; bool absolute; ptrdiff_t want_length; Lisp_Object filename; Lisp_Object string, tail, encoded_fn, save_string; ptrdiff_t max_suffix_len = 0; int last_errno = ENOENT; int save_fd = -1; USE_SAFE_ALLOCA; /* The last-modified time of the newest matching file found. Initialize it to something less than all valid timestamps. */ struct timespec save_mtime = make_timespec (TYPE_MINIMUM (time_t), -1); CHECK_STRING (str); tail = suffixes; FOR_EACH_TAIL_SAFE (tail) { CHECK_STRING_CAR (tail); max_suffix_len = max (max_suffix_len, SBYTES (XCAR (tail))); } string = filename = encoded_fn = save_string = Qnil; if (storeptr) *storeptr = Qnil; absolute = complete_filename_p (str); AUTO_LIST1 (just_use_str, Qnil); if (NILP (path)) path = just_use_str; /* Go through all entries in the path and see whether we find the executable. */ FOR_EACH_TAIL_SAFE (path) { ptrdiff_t baselen, prefixlen; if (EQ (path, just_use_str)) filename = str; else filename = Fexpand_file_name (str, XCAR (path)); if (!complete_filename_p (filename)) /* If there are non-absolute elts in PATH (eg "."). */ /* Of course, this could conceivably lose if luser sets default-directory to be something non-absolute... */ { filename = Fexpand_file_name (filename, BVAR (current_buffer, directory)); if (!complete_filename_p (filename)) /* Give up on this path element! */ continue; } /* Calculate maximum length of any filename made from this path element/specified file name and any possible suffix. */ want_length = max_suffix_len + SBYTES (filename); if (fn_size <= want_length) { fn_size = 100 + want_length; fn = SAFE_ALLOCA (fn_size); } /* Copy FILENAME's data to FN but remove starting /: if any. */ prefixlen = ((SCHARS (filename) > 2 && SREF (filename, 0) == '/' && SREF (filename, 1) == ':') ? 2 : 0); baselen = SBYTES (filename) - prefixlen; memcpy (fn, SDATA (filename) + prefixlen, baselen); /* Loop over suffixes. */ AUTO_LIST1 (empty_string_only, empty_unibyte_string); tail = NILP (suffixes) ? empty_string_only : suffixes; FOR_EACH_TAIL_SAFE (tail) { Lisp_Object suffix = XCAR (tail); ptrdiff_t fnlen, lsuffix = SBYTES (suffix); Lisp_Object handler; /* Make complete filename by appending SUFFIX. */ memcpy (fn + baselen, SDATA (suffix), lsuffix + 1); fnlen = baselen + lsuffix; /* Check that the file exists and is not a directory. */ /* We used to only check for handlers on non-absolute file names: if (absolute) handler = Qnil; else handler = Ffind_file_name_handler (filename, Qfile_exists_p); It's not clear why that was the case and it breaks things like (load "/bar.el") where the file is actually "/bar.el.gz". */ /* make_string has its own ideas on when to return a unibyte string and when a multibyte string, but we know better. We must have a unibyte string when dumping, since file-name encoding is shaky at best at that time, and in particular default-file-name-coding-system is reset several times during loadup. We therefore don't want to encode the file before passing it to file I/O library functions. */ if (!STRING_MULTIBYTE (filename) && !STRING_MULTIBYTE (suffix)) string = make_unibyte_string (fn, fnlen); else string = make_string (fn, fnlen); handler = Ffind_file_name_handler (string, Qfile_exists_p); if ((!NILP (handler) || (!NILP (predicate) && !EQ (predicate, Qt))) && !FIXNATP (predicate)) { bool exists; if (NILP (predicate) || EQ (predicate, Qt)) exists = !NILP (Ffile_readable_p (string)); else { Lisp_Object tmp = call1 (predicate, string); if (NILP (tmp)) exists = false; else if (EQ (tmp, Qdir_ok) || NILP (Ffile_directory_p (string))) exists = true; else { exists = false; last_errno = EISDIR; } } if (exists) { /* We succeeded; return this descriptor and filename. */ if (storeptr) *storeptr = string; SAFE_FREE (); return -2; } } else { int fd; const char *pfn; struct stat st; encoded_fn = ENCODE_FILE (string); pfn = SSDATA (encoded_fn); /* Check that we can access or open it. */ if (FIXNATP (predicate)) { fd = -1; if (INT_MAX < XFIXNAT (predicate)) last_errno = EINVAL; else if (faccessat (AT_FDCWD, pfn, XFIXNAT (predicate), AT_EACCESS) == 0) { if (file_directory_p (encoded_fn)) last_errno = EISDIR; else if (errno == ENOENT || errno == ENOTDIR) fd = 1; else last_errno = errno; } else if (! (errno == ENOENT || errno == ENOTDIR)) last_errno = errno; } else { /* In some systems (like Windows) finding out if a file exists is cheaper to do than actually opening it. Only open the file when we are sure that it exists. */ #ifdef WINDOWSNT if (faccessat (AT_FDCWD, pfn, R_OK, AT_EACCESS)) fd = -1; else #endif fd = emacs_open (pfn, O_RDONLY, 0); if (fd < 0) { if (! (errno == ENOENT || errno == ENOTDIR)) last_errno = errno; } else { int err = (fstat (fd, &st) != 0 ? errno : S_ISDIR (st.st_mode) ? EISDIR : 0); if (err) { last_errno = err; emacs_close (fd); fd = -1; } } } if (fd >= 0) { if (newer && !FIXNATP (predicate)) { struct timespec mtime = get_stat_mtime (&st); if (timespec_cmp (mtime, save_mtime) <= 0) emacs_close (fd); else { if (0 <= save_fd) emacs_close (save_fd); save_fd = fd; save_mtime = mtime; save_string = string; } } else { maybe_swap_for_eln (no_native, &string, &fd, get_stat_mtime (&st)); /* We succeeded; return this descriptor and filename. */ if (storeptr) *storeptr = string; SAFE_FREE (); return fd; } } /* No more suffixes. Return the newest. */ if (0 <= save_fd && ! CONSP (XCDR (tail))) { maybe_swap_for_eln (no_native, &save_string, &save_fd, save_mtime); if (storeptr) *storeptr = save_string; SAFE_FREE (); return save_fd; } } } if (absolute) break; } SAFE_FREE (); errno = last_errno; return -1; } /* Merge the list we've accumulated of globals from the current input source into the load_history variable. The details depend on whether the source has an associated file name or not. FILENAME is the file name that we are loading from. ENTIRE is true if loading that entire file, false if evaluating part of it. */ static void build_load_history (Lisp_Object filename, bool entire) { Lisp_Object tail, prev, newelt; Lisp_Object tem, tem2; bool foundit = 0; tail = Vload_history; prev = Qnil; FOR_EACH_TAIL (tail) { tem = XCAR (tail); /* Find the feature's previous assoc list... */ if (!NILP (Fequal (filename, Fcar (tem)))) { foundit = 1; /* If we're loading the entire file, remove old data. */ if (entire) { if (NILP (prev)) Vload_history = XCDR (tail); else Fsetcdr (prev, XCDR (tail)); } /* Otherwise, cons on new symbols that are not already members. */ else { tem2 = Vcurrent_load_list; FOR_EACH_TAIL (tem2) { newelt = XCAR (tem2); if (NILP (Fmember (newelt, tem))) Fsetcar (tail, Fcons (XCAR (tem), Fcons (newelt, XCDR (tem)))); maybe_quit (); } } } else prev = tail; maybe_quit (); } /* If we're loading an entire file, cons the new assoc onto the front of load-history, the most-recently-loaded position. Also do this if we didn't find an existing member for the file. */ if (entire || !foundit) Vload_history = Fcons (Fnreverse (Vcurrent_load_list), Vload_history); } static void readevalloop_1 (int old) { load_convert_to_unibyte = old; } /* Signal an `end-of-file' error, if possible with file name information. */ static AVOID end_of_file_error (void) { if (STRINGP (Vload_true_file_name)) xsignal1 (Qend_of_file, Vload_true_file_name); xsignal0 (Qend_of_file); } static Lisp_Object readevalloop_eager_expand_eval (Lisp_Object val, Lisp_Object macroexpand) { /* If we macroexpand the toplevel form non-recursively and it ends up being a `progn' (or if it was a progn to start), treat each form in the progn as a top-level form. This way, if one form in the progn defines a macro, that macro is in effect when we expand the remaining forms. See similar code in bytecomp.el. */ val = call2 (macroexpand, val, Qnil); if (EQ (CAR_SAFE (val), Qprogn)) { Lisp_Object subforms = XCDR (val); val = Qnil; FOR_EACH_TAIL (subforms) val = readevalloop_eager_expand_eval (XCAR (subforms), macroexpand); } else val = eval_sub (call2 (macroexpand, val, Qt)); return val; } /* UNIBYTE specifies how to set load_convert_to_unibyte for this invocation. READFUN, if non-nil, is used instead of `read'. START, END specify region to read in current buffer (from eval-region). If the input is not from a buffer, they must be nil. */ static void readevalloop (Lisp_Object readcharfun, struct infile *infile0, Lisp_Object sourcename, bool printflag, Lisp_Object unibyte, Lisp_Object readfun, Lisp_Object start, Lisp_Object end) { int c; Lisp_Object val; specpdl_ref count = SPECPDL_INDEX (); struct buffer *b = 0; bool continue_reading_p; Lisp_Object lex_bound; /* True if reading an entire buffer. */ bool whole_buffer = 0; /* True on the first time around. */ bool first_sexp = 1; Lisp_Object macroexpand = intern ("internal-macroexpand-for-load"); if (!NILP (sourcename)) CHECK_STRING (sourcename); if (NILP (Ffboundp (macroexpand)) || (STRINGP (sourcename) && suffix_p (sourcename, ".elc"))) /* Don't macroexpand before the corresponding function is defined and don't bother macroexpanding in .elc files, since it should have been done already. */ macroexpand = Qnil; if (MARKERP (readcharfun)) { if (NILP (start)) start = readcharfun; } if (BUFFERP (readcharfun)) b = XBUFFER (readcharfun); else if (MARKERP (readcharfun)) b = XMARKER (readcharfun)->buffer; /* We assume START is nil when input is not from a buffer. */ if (! NILP (start) && !b) emacs_abort (); specbind (Qstandard_input, readcharfun); record_unwind_protect_int (readevalloop_1, load_convert_to_unibyte); load_convert_to_unibyte = !NILP (unibyte); /* If lexical binding is active (either because it was specified in the file's header, or via a buffer-local variable), create an empty lexical environment, otherwise, turn off lexical binding. */ lex_bound = find_symbol_value (Qlexical_binding); specbind (Qinternal_interpreter_environment, (NILP (lex_bound) || BASE_EQ (lex_bound, Qunbound) ? Qnil : list1 (Qt))); specbind (Qmacroexp__dynvars, Vmacroexp__dynvars); /* Ensure sourcename is absolute, except whilst preloading. */ if (!will_dump_p () && !NILP (sourcename) && !NILP (Ffile_name_absolute_p (sourcename))) sourcename = Fexpand_file_name (sourcename, Qnil); loadhist_initialize (sourcename); continue_reading_p = 1; while (continue_reading_p) { specpdl_ref count1 = SPECPDL_INDEX (); if (b != 0 && !BUFFER_LIVE_P (b)) error ("Reading from killed buffer"); if (!NILP (start)) { /* Switch to the buffer we are reading from. */ record_unwind_protect_excursion (); set_buffer_internal (b); /* Save point in it. */ record_unwind_protect_excursion (); /* Save ZV in it. */ record_unwind_protect (save_restriction_restore, save_restriction_save ()); /* Those get unbound after we read one expression. */ /* Set point and ZV around stuff to be read. */ Fgoto_char (start); if (!NILP (end)) Fnarrow_to_region (make_fixnum (BEGV), end); /* Just for cleanliness, convert END to a marker if it is an integer. */ if (FIXNUMP (end)) end = Fpoint_max_marker (); } /* On the first cycle, we can easily test here whether we are reading the whole buffer. */ if (b && first_sexp) whole_buffer = (BUF_PT (b) == BUF_BEG (b) && BUF_ZV (b) == BUF_Z (b)); eassert (!infile0 || infile == infile0); read_next: c = READCHAR; if (c == ';') { while ((c = READCHAR) != '\n' && c != -1); goto read_next; } if (c < 0) { unbind_to (count1, Qnil); break; } /* Ignore whitespace here, so we can detect eof. */ if (c == ' ' || c == '\t' || c == '\n' || c == '\f' || c == '\r' || c == NO_BREAK_SPACE) goto read_next; UNREAD (c); if (! HASH_TABLE_P (read_objects_map) || XHASH_TABLE (read_objects_map)->count) read_objects_map = make_hash_table (hashtest_eq, DEFAULT_HASH_SIZE, DEFAULT_REHASH_SIZE, DEFAULT_REHASH_THRESHOLD, Qnil, false); if (! HASH_TABLE_P (read_objects_completed) || XHASH_TABLE (read_objects_completed)->count) read_objects_completed = make_hash_table (hashtest_eq, DEFAULT_HASH_SIZE, DEFAULT_REHASH_SIZE, DEFAULT_REHASH_THRESHOLD, Qnil, false); if (!NILP (Vpurify_flag) && c == '(') val = read0 (readcharfun, false); else { if (!NILP (readfun)) { val = call1 (readfun, readcharfun); /* If READCHARFUN has set point to ZV, we should stop reading, even if the form read sets point to a different value when evaluated. */ if (BUFFERP (readcharfun)) { struct buffer *buf = XBUFFER (readcharfun); if (BUF_PT (buf) == BUF_ZV (buf)) continue_reading_p = 0; } } else if (! NILP (Vload_read_function)) val = call1 (Vload_read_function, readcharfun); else val = read_internal_start (readcharfun, Qnil, Qnil, false); } /* Empty hashes can be reused; otherwise, reset on next call. */ if (HASH_TABLE_P (read_objects_map) && XHASH_TABLE (read_objects_map)->count > 0) read_objects_map = Qnil; if (HASH_TABLE_P (read_objects_completed) && XHASH_TABLE (read_objects_completed)->count > 0) read_objects_completed = Qnil; if (!NILP (start) && continue_reading_p) start = Fpoint_marker (); /* Restore saved point and BEGV. */ unbind_to (count1, Qnil); /* Now eval what we just read. */ if (!NILP (macroexpand)) val = readevalloop_eager_expand_eval (val, macroexpand); else val = eval_sub (val); if (printflag) { Vvalues = Fcons (val, Vvalues); if (EQ (Vstandard_output, Qt)) Fprin1 (val, Qnil, Qnil); else Fprint (val, Qnil); } first_sexp = 0; } build_load_history (sourcename, infile0 || whole_buffer); unbind_to (count, Qnil); } DEFUN ("eval-buffer", Feval_buffer, Seval_buffer, 0, 5, "", doc: /* Execute the accessible portion of current buffer as Lisp code. You can use \\[narrow-to-region] to limit the part of buffer to be evaluated. When called from a Lisp program (i.e., not interactively), this function accepts up to five optional arguments: BUFFER is the buffer to evaluate (nil means use current buffer), or a name of a buffer (a string). PRINTFLAG controls printing of output by any output functions in the evaluated code, such as `print', `princ', and `prin1': a value of nil means discard it; anything else is the stream to print to. See Info node `(elisp)Output Streams' for details on streams. FILENAME specifies the file name to use for `load-history'. UNIBYTE, if non-nil, specifies `load-convert-to-unibyte' for this invocation. DO-ALLOW-PRINT, if non-nil, specifies that output functions in the evaluated code should work normally even if PRINTFLAG is nil, in which case the output is displayed in the echo area. This function ignores the current value of the `lexical-binding' variable. Instead it will heed any -*- lexical-binding: t -*- settings in the buffer, and if there is no such setting, the buffer will be evaluated without lexical binding. This function preserves the position of point. */) (Lisp_Object buffer, Lisp_Object printflag, Lisp_Object filename, Lisp_Object unibyte, Lisp_Object do_allow_print) { specpdl_ref count = SPECPDL_INDEX (); Lisp_Object tem, buf; if (NILP (buffer)) buf = Fcurrent_buffer (); else buf = Fget_buffer (buffer); if (NILP (buf)) error ("No such buffer"); if (NILP (printflag) && NILP (do_allow_print)) tem = Qsymbolp; else tem = printflag; if (NILP (filename)) filename = BVAR (XBUFFER (buf), filename); specbind (Qeval_buffer_list, Fcons (buf, Veval_buffer_list)); specbind (Qstandard_output, tem); record_unwind_protect_excursion (); BUF_TEMP_SET_PT (XBUFFER (buf), BUF_BEGV (XBUFFER (buf))); specbind (Qlexical_binding, lisp_file_lexically_bound_p (buf) ? Qt : Qnil); BUF_TEMP_SET_PT (XBUFFER (buf), BUF_BEGV (XBUFFER (buf))); readevalloop (buf, 0, filename, !NILP (printflag), unibyte, Qnil, Qnil, Qnil); return unbind_to (count, Qnil); } DEFUN ("eval-region", Feval_region, Seval_region, 2, 4, "r", doc: /* Execute the region as Lisp code. When called from programs, expects two arguments, giving starting and ending indices in the current buffer of the text to be executed. Programs can pass third argument PRINTFLAG which controls output: a value of nil means discard it; anything else is stream for printing it. See Info node `(elisp)Output Streams' for details on streams. Also the fourth argument READ-FUNCTION, if non-nil, is used instead of `read' to read each expression. It gets one argument which is the input stream for reading characters. This function does not move point. */) (Lisp_Object start, Lisp_Object end, Lisp_Object printflag, Lisp_Object read_function) { /* FIXME: Do the eval-sexp-add-defvars dance! */ specpdl_ref count = SPECPDL_INDEX (); Lisp_Object tem, cbuf; cbuf = Fcurrent_buffer (); if (NILP (printflag)) tem = Qsymbolp; else tem = printflag; specbind (Qstandard_output, tem); specbind (Qeval_buffer_list, Fcons (cbuf, Veval_buffer_list)); /* `readevalloop' calls functions which check the type of start and end. */ readevalloop (cbuf, 0, BVAR (XBUFFER (cbuf), filename), !NILP (printflag), Qnil, read_function, start, end); return unbind_to (count, Qnil); } DEFUN ("read", Fread, Sread, 0, 1, 0, doc: /* Read one Lisp expression as text from STREAM, return as Lisp object. If STREAM is nil, use the value of `standard-input' (which see). STREAM or the value of `standard-input' may be: a buffer (read from point and advance it) a marker (read from where it points and advance it) a function (call it with no arguments for each character, call it with a char as argument to push a char back) a string (takes text from string, starting at the beginning) t (read text line using minibuffer and use it, or read from standard input in batch mode). */) (Lisp_Object stream) { if (NILP (stream)) stream = Vstandard_input; if (EQ (stream, Qt)) stream = Qread_char; if (EQ (stream, Qread_char)) /* FIXME: ?! This is used when the reader is called from the minibuffer without a stream, as in (read). But is this feature ever used, and if so, why? IOW, will anything break if this feature is removed !? */ return call1 (intern ("read-minibuffer"), build_string ("Lisp expression: ")); return read_internal_start (stream, Qnil, Qnil, false); } DEFUN ("read-positioning-symbols", Fread_positioning_symbols, Sread_positioning_symbols, 0, 1, 0, doc: /* Read one Lisp expression as text from STREAM, return as Lisp object. Convert each occurrence of a symbol into a "symbol with pos" object. If STREAM is nil, use the value of `standard-input' (which see). STREAM or the value of `standard-input' may be: a buffer (read from point and advance it) a marker (read from where it points and advance it) a function (call it with no arguments for each character, call it with a char as argument to push a char back) a string (takes text from string, starting at the beginning) t (read text line using minibuffer and use it, or read from standard input in batch mode). */) (Lisp_Object stream) { if (NILP (stream)) stream = Vstandard_input; if (EQ (stream, Qt)) stream = Qread_char; if (EQ (stream, Qread_char)) /* FIXME: ?! When is this used !? */ return call1 (intern ("read-minibuffer"), build_string ("Lisp expression: ")); return read_internal_start (stream, Qnil, Qnil, true); } DEFUN ("read-from-string", Fread_from_string, Sread_from_string, 1, 3, 0, doc: /* Read one Lisp expression which is represented as text by STRING. Returns a cons: (OBJECT-READ . FINAL-STRING-INDEX). FINAL-STRING-INDEX is an integer giving the position of the next remaining character in STRING. START and END optionally delimit a substring of STRING from which to read; they default to 0 and \(length STRING) respectively. Negative values are counted from the end of STRING. */) (Lisp_Object string, Lisp_Object start, Lisp_Object end) { Lisp_Object ret; CHECK_STRING (string); /* `read_internal_start' sets `read_from_string_index'. */ ret = read_internal_start (string, start, end, false); return Fcons (ret, make_fixnum (read_from_string_index)); } /* Function to set up the global context we need in toplevel read calls. START and END only used when STREAM is a string. LOCATE_SYMS true means read symbol occurrences as symbols with position. */ static Lisp_Object read_internal_start (Lisp_Object stream, Lisp_Object start, Lisp_Object end, bool locate_syms) { Lisp_Object retval; readchar_offset = BUFFERP (stream) ? XBUFFER (stream)->pt : 0; /* We can get called from readevalloop which may have set these already. */ if (! HASH_TABLE_P (read_objects_map) || XHASH_TABLE (read_objects_map)->count) read_objects_map = make_hash_table (hashtest_eq, DEFAULT_HASH_SIZE, DEFAULT_REHASH_SIZE, DEFAULT_REHASH_THRESHOLD, Qnil, false); if (! HASH_TABLE_P (read_objects_completed) || XHASH_TABLE (read_objects_completed)->count) read_objects_completed = make_hash_table (hashtest_eq, DEFAULT_HASH_SIZE, DEFAULT_REHASH_SIZE, DEFAULT_REHASH_THRESHOLD, Qnil, false); if (STRINGP (stream) || ((CONSP (stream) && STRINGP (XCAR (stream))))) { ptrdiff_t startval, endval; Lisp_Object string; if (STRINGP (stream)) string = stream; else string = XCAR (stream); validate_subarray (string, start, end, SCHARS (string), &startval, &endval); read_from_string_index = startval; read_from_string_index_byte = string_char_to_byte (string, startval); read_from_string_limit = endval; } retval = read0 (stream, locate_syms); if (HASH_TABLE_P (read_objects_map) && XHASH_TABLE (read_objects_map)->count > 0) read_objects_map = Qnil; if (HASH_TABLE_P (read_objects_completed) && XHASH_TABLE (read_objects_completed)->count > 0) read_objects_completed = Qnil; return retval; } /* Grow a read buffer BUF that contains OFFSET useful bytes of data, by at least MAX_MULTIBYTE_LENGTH bytes. Update *BUF_ADDR and *BUF_SIZE accordingly; 0 <= OFFSET <= *BUF_SIZE. If *BUF_ADDR is initially null, BUF is on the stack: copy its data to the new heap buffer. Otherwise, BUF must equal *BUF_ADDR and can simply be reallocated. Either way, remember the heap allocation (which is at pdl slot COUNT) so that it can be freed when unwinding the stack.*/ static char * grow_read_buffer (char *buf, ptrdiff_t offset, char **buf_addr, ptrdiff_t *buf_size, specpdl_ref count) { char *p = xpalloc (*buf_addr, buf_size, MAX_MULTIBYTE_LENGTH, -1, 1); if (!*buf_addr) { memcpy (p, buf, offset); record_unwind_protect_ptr (xfree, p); } else set_unwind_protect_ptr (count, xfree, p); *buf_addr = p; return p; } /* Return the scalar value that has the Unicode character name NAME. Raise 'invalid-read-syntax' if there is no such character. */ static int character_name_to_code (char const *name, ptrdiff_t name_len, Lisp_Object readcharfun) { /* For "U+XXXX", pass the leading '+' to string_to_number to reject monstrosities like "U+-0000". */ ptrdiff_t len = name_len - 1; Lisp_Object code = (name[0] == 'U' && name[1] == '+' ? string_to_number (name + 1, 16, &len) : call2 (Qchar_from_name, make_unibyte_string (name, name_len), Qt)); if (! RANGED_FIXNUMP (0, code, MAX_UNICODE_CHAR) || len != name_len - 1 || char_surrogate_p (XFIXNUM (code))) { AUTO_STRING (format, "\\N{%s}"); AUTO_STRING_WITH_LEN (namestr, name, name_len); invalid_syntax_lisp (CALLN (Fformat, format, namestr), readcharfun); } return XFIXNUM (code); } /* Bound on the length of a Unicode character name. As of Unicode 9.0.0 the maximum is 83, so this should be safe. */ enum { UNICODE_CHARACTER_NAME_LENGTH_BOUND = 200 }; /* Read a \-escape sequence, assuming we already read the `\'. If the escape sequence forces unibyte, return eight-bit char. */ static int read_escape (Lisp_Object readcharfun) { int c = READCHAR; /* \u allows up to four hex digits, \U up to eight. Default to the behavior for \u, and change this value in the case that \U is seen. */ int unicode_hex_count = 4; switch (c) { case -1: end_of_file_error (); case 'a': return '\007'; case 'b': return '\b'; case 'd': return 0177; case 'e': return 033; case 'f': return '\f'; case 'n': return '\n'; case 'r': return '\r'; case 't': return '\t'; case 'v': return '\v'; case '\n': /* ?\LF is an error; it's probably a user mistake. */ error ("Invalid escape character syntax"); case 'M': c = READCHAR; if (c != '-') error ("Invalid escape character syntax"); c = READCHAR; if (c == '\\') c = read_escape (readcharfun); return c | meta_modifier; case 'S': c = READCHAR; if (c != '-') error ("Invalid escape character syntax"); c = READCHAR; if (c == '\\') c = read_escape (readcharfun); return c | shift_modifier; case 'H': c = READCHAR; if (c != '-') error ("Invalid escape character syntax"); c = READCHAR; if (c == '\\') c = read_escape (readcharfun); return c | hyper_modifier; case 'A': c = READCHAR; if (c != '-') error ("Invalid escape character syntax"); c = READCHAR; if (c == '\\') c = read_escape (readcharfun); return c | alt_modifier; case 's': c = READCHAR; if (c != '-') { UNREAD (c); return ' '; } c = READCHAR; if (c == '\\') c = read_escape (readcharfun); return c | super_modifier; case 'C': c = READCHAR; if (c != '-') error ("Invalid escape character syntax"); FALLTHROUGH; case '^': c = READCHAR; if (c == '\\') c = read_escape (readcharfun); if ((c & ~CHAR_MODIFIER_MASK) == '?') return 0177 | (c & CHAR_MODIFIER_MASK); else if (! ASCII_CHAR_P ((c & ~CHAR_MODIFIER_MASK))) return c | ctrl_modifier; /* ASCII control chars are made from letters (both cases), as well as the non-letters within 0100...0137. */ else if ((c & 0137) >= 0101 && (c & 0137) <= 0132) return (c & (037 | ~0177)); else if ((c & 0177) >= 0100 && (c & 0177) <= 0137) return (c & (037 | ~0177)); else return c | ctrl_modifier; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': /* An octal escape, as in ANSI C. */ { register int i = c - '0'; register int count = 0; while (++count < 3) { if ((c = READCHAR) >= '0' && c <= '7') { i *= 8; i += c - '0'; } else { UNREAD (c); break; } } if (i >= 0x80 && i < 0x100) i = BYTE8_TO_CHAR (i); return i; } case 'x': /* A hex escape, as in ANSI C. */ { unsigned int i = 0; int count = 0; while (1) { c = READCHAR; int digit = char_hexdigit (c); if (digit < 0) { UNREAD (c); break; } i = (i << 4) + digit; /* Allow hex escapes as large as ?\xfffffff, because some packages use them to denote characters with modifiers. */ if ((CHAR_META | (CHAR_META - 1)) < i) error ("Hex character out of range: \\x%x...", i); count += count < 3; } if (count < 3 && i >= 0x80) return BYTE8_TO_CHAR (i); return i; } case 'U': /* Post-Unicode-2.0: Up to eight hex chars. */ unicode_hex_count = 8; FALLTHROUGH; case 'u': /* A Unicode escape. We only permit them in strings and characters, not arbitrarily in the source code, as in some other languages. */ { unsigned int i = 0; int count = 0; while (++count <= unicode_hex_count) { c = READCHAR; if (c < 0) { if (unicode_hex_count > 4) error ("Malformed Unicode escape: \\U%x", i); else error ("Malformed Unicode escape: \\u%x", i); } /* `isdigit' and `isalpha' may be locale-specific, which we don't want. */ int digit = char_hexdigit (c); if (digit < 0) error ("Non-hex character used for Unicode escape: %c (%d)", c, c); i = (i << 4) + digit; } if (i > 0x10FFFF) error ("Non-Unicode character: 0x%x", i); return i; } case 'N': /* Named character. */ { c = READCHAR; if (c != '{') invalid_syntax ("Expected opening brace after \\N", readcharfun); char name[UNICODE_CHARACTER_NAME_LENGTH_BOUND + 1]; bool whitespace = false; ptrdiff_t length = 0; while (true) { c = READCHAR; if (c < 0) end_of_file_error (); if (c == '}') break; if (! (0 < c && c < 0x80)) { AUTO_STRING (format, "Invalid character U+%04X in character name"); invalid_syntax_lisp (CALLN (Fformat, format, make_fixed_natnum (c)), readcharfun); } /* Treat multiple adjacent whitespace characters as a single space character. This makes it easier to use character names in e.g. multi-line strings. */ if (c_isspace (c)) { if (whitespace) continue; c = ' '; whitespace = true; } else whitespace = false; name[length++] = c; if (length >= sizeof name) invalid_syntax ("Character name too long", readcharfun); } if (length == 0) invalid_syntax ("Empty character name", readcharfun); name[length] = '\0'; /* character_name_to_code can invoke read0, recursively. This is why read0's buffer is not static. */ return character_name_to_code (name, length, readcharfun); } default: return c; } } /* Return the digit that CHARACTER stands for in the given BASE. Return -1 if CHARACTER is out of range for BASE, and -2 if CHARACTER is not valid for any supported BASE. */ static int digit_to_number (int character, int base) { int digit; if ('0' <= character && character <= '9') digit = character - '0'; else if ('a' <= character && character <= 'z') digit = character - 'a' + 10; else if ('A' <= character && character <= 'Z') digit = character - 'A' + 10; else return -2; return digit < base ? digit : -1; } /* Size of the fixed-size buffer used during reading. It should be at least big enough for `invalid_radix_integer' but can usefully be much bigger than that. */ enum { stackbufsize = 1024 }; static void invalid_radix_integer (EMACS_INT radix, char stackbuf[VLA_ELEMS (stackbufsize)], Lisp_Object readcharfun) { int n = snprintf (stackbuf, stackbufsize, "integer, radix %"pI"d", radix); eassert (n < stackbufsize); invalid_syntax (stackbuf, readcharfun); } /* Read an integer in radix RADIX using READCHARFUN to read characters. RADIX must be in the interval [2..36]. Use STACKBUF for temporary storage as needed. Value is the integer read. Signal an error if encountering invalid read syntax. */ static Lisp_Object read_integer (Lisp_Object readcharfun, int radix, char stackbuf[VLA_ELEMS (stackbufsize)]) { char *read_buffer = stackbuf; ptrdiff_t read_buffer_size = stackbufsize; char *p = read_buffer; char *heapbuf = NULL; int valid = -1; /* 1 if valid, 0 if not, -1 if incomplete. */ specpdl_ref count = SPECPDL_INDEX (); int c = READCHAR; if (c == '-' || c == '+') { *p++ = c; c = READCHAR; } if (c == '0') { *p++ = c; valid = 1; /* Ignore redundant leading zeros, so the buffer doesn't fill up with them. */ do c = READCHAR; while (c == '0'); } for (int digit; (digit = digit_to_number (c, radix)) >= -1; ) { if (digit == -1) valid = 0; if (valid < 0) valid = 1; /* Allow 1 extra byte for the \0. */ if (p + 1 == read_buffer + read_buffer_size) { ptrdiff_t offset = p - read_buffer; read_buffer = grow_read_buffer (read_buffer, offset, &heapbuf, &read_buffer_size, count); p = read_buffer + offset; } *p++ = c; c = READCHAR; } UNREAD (c); if (valid != 1) invalid_radix_integer (radix, stackbuf, readcharfun); *p = '\0'; return unbind_to (count, string_to_number (read_buffer, radix, NULL)); } /* Read a character literal (preceded by `?'). */ static Lisp_Object read_char_literal (Lisp_Object readcharfun) { int ch = READCHAR; if (ch < 0) end_of_file_error (); /* Accept `single space' syntax like (list ? x) where the whitespace character is SPC or TAB. Other literal whitespace like NL, CR, and FF are not accepted, as there are well-established escape sequences for these. */ if (ch == ' ' || ch == '\t') return make_fixnum (ch); if ( ch == '(' || ch == ')' || ch == '[' || ch == ']' || ch == '"' || ch == ';') { CHECK_LIST (Vlread_unescaped_character_literals); Lisp_Object char_obj = make_fixed_natnum (ch); if (NILP (Fmemq (char_obj, Vlread_unescaped_character_literals))) Vlread_unescaped_character_literals = Fcons (char_obj, Vlread_unescaped_character_literals); } if (ch == '\\') ch = read_escape (readcharfun); int modifiers = ch & CHAR_MODIFIER_MASK; ch &= ~CHAR_MODIFIER_MASK; if (CHAR_BYTE8_P (ch)) ch = CHAR_TO_BYTE8 (ch); ch |= modifiers; int nch = READCHAR; UNREAD (nch); if (nch <= 32 || nch == '"' || nch == '\'' || nch == ';' || nch == '(' || nch == ')' || nch == '[' || nch == ']' || nch == '#' || nch == '?' || nch == '`' || nch == ',' || nch == '.') return make_fixnum (ch); invalid_syntax ("?", readcharfun); } /* Read a string literal (preceded by '"'). */ static Lisp_Object read_string_literal (char stackbuf[VLA_ELEMS (stackbufsize)], Lisp_Object readcharfun) { char *read_buffer = stackbuf; ptrdiff_t read_buffer_size = stackbufsize; specpdl_ref count = SPECPDL_INDEX (); char *heapbuf = NULL; char *p = read_buffer; char *end = read_buffer + read_buffer_size; /* True if we saw an escape sequence specifying a multibyte character. */ bool force_multibyte = false; /* True if we saw an escape sequence specifying a single-byte character. */ bool force_singlebyte = false; ptrdiff_t nchars = 0; int ch; while ((ch = READCHAR) >= 0 && ch != '\"') { if (end - p < MAX_MULTIBYTE_LENGTH) { ptrdiff_t offset = p - read_buffer; read_buffer = grow_read_buffer (read_buffer, offset, &heapbuf, &read_buffer_size, count); p = read_buffer + offset; end = read_buffer + read_buffer_size; } if (ch == '\\') { /* First apply string-specific escape rules: */ ch = READCHAR; switch (ch) { case 's': /* `\s' is always a space in strings. */ ch = ' '; break; case ' ': case '\n': /* `\SPC' and `\LF' generate no characters at all. */ continue; default: UNREAD (ch); ch = read_escape (readcharfun); break; } int modifiers = ch & CHAR_MODIFIER_MASK; ch &= ~CHAR_MODIFIER_MASK; if (CHAR_BYTE8_P (ch)) force_singlebyte = true; else if (! ASCII_CHAR_P (ch)) force_multibyte = true; else /* I.e. ASCII_CHAR_P (ch). */ { /* Allow `\C-SPC' and `\^SPC'. This is done here because the literals ?\C-SPC and ?\^SPC (rather inconsistently) yield (' ' | CHAR_CTL); see bug#55738. */ if (modifiers == CHAR_CTL && ch == ' ') { ch = 0; modifiers = 0; } if (modifiers & CHAR_SHIFT) { /* Shift modifier is valid only with [A-Za-z]. */ if (ch >= 'A' && ch <= 'Z') modifiers &= ~CHAR_SHIFT; else if (ch >= 'a' && ch <= 'z') { ch -= ('a' - 'A'); modifiers &= ~CHAR_SHIFT; } } if (modifiers & CHAR_META) { /* Move the meta bit to the right place for a string. */ modifiers &= ~CHAR_META; ch = BYTE8_TO_CHAR (ch | 0x80); force_singlebyte = true; } } /* Any modifiers remaining are invalid. */ if (modifiers) invalid_syntax ("Invalid modifier in string", readcharfun); p += CHAR_STRING (ch, (unsigned char *) p); } else { p += CHAR_STRING (ch, (unsigned char *) p); if (CHAR_BYTE8_P (ch)) force_singlebyte = true; else if (! ASCII_CHAR_P (ch)) force_multibyte = true; } nchars++; } if (ch < 0) end_of_file_error (); if (!force_multibyte && force_singlebyte) { /* READ_BUFFER contains raw 8-bit bytes and no multibyte forms. Convert it to unibyte. */ nchars = str_as_unibyte ((unsigned char *) read_buffer, p - read_buffer); p = read_buffer + nchars; } Lisp_Object obj = make_specified_string (read_buffer, nchars, p - read_buffer, (force_multibyte || (p - read_buffer != nchars))); return unbind_to (count, obj); } /* Make a hash table from the constructor plist. */ static Lisp_Object hash_table_from_plist (Lisp_Object plist) { Lisp_Object params[12]; Lisp_Object *par = params; /* This is repetitive but fast and simple. */ #define ADDPARAM(name) \ do { \ Lisp_Object val = plist_get (plist, Q ## name); \ if (!NILP (val)) \ { \ *par++ = QC ## name; \ *par++ = val; \ } \ } while (0) ADDPARAM (size); ADDPARAM (test); ADDPARAM (weakness); ADDPARAM (rehash_size); ADDPARAM (rehash_threshold); ADDPARAM (purecopy); Lisp_Object data = plist_get (plist, Qdata); /* Now use params to make a new hash table and fill it. */ Lisp_Object ht = Fmake_hash_table (par - params, params); Lisp_Object last = data; FOR_EACH_TAIL_SAFE (data) { Lisp_Object key = XCAR (data); data = XCDR (data); if (!CONSP (data)) break; Lisp_Object val = XCAR (data); last = XCDR (data); Fputhash (key, val, ht); } if (!NILP (last)) error ("Hash table data is not a list of even length"); return ht; } static Lisp_Object record_from_list (Lisp_Object elems) { ptrdiff_t size = list_length (elems); Lisp_Object obj = Fmake_record (XCAR (elems), make_fixnum (size - 1), Qnil); Lisp_Object tl = XCDR (elems); for (int i = 1; i < size; i++) { ASET (obj, i, XCAR (tl)); tl = XCDR (tl); } return obj; } /* Turn a reversed list into a vector. */ static Lisp_Object vector_from_rev_list (Lisp_Object elems) { ptrdiff_t size = list_length (elems); Lisp_Object obj = make_nil_vector (size); Lisp_Object *vec = XVECTOR (obj)->contents; for (ptrdiff_t i = size - 1; i >= 0; i--) { vec[i] = XCAR (elems); Lisp_Object next = XCDR (elems); free_cons (XCONS (elems)); elems = next; } return obj; } static Lisp_Object bytecode_from_rev_list (Lisp_Object elems, Lisp_Object readcharfun) { Lisp_Object obj = vector_from_rev_list (elems); Lisp_Object *vec = XVECTOR (obj)->contents; ptrdiff_t size = ASIZE (obj); if (!(size >= COMPILED_STACK_DEPTH + 1 && size <= COMPILED_INTERACTIVE + 1 && (FIXNUMP (vec[COMPILED_ARGLIST]) || CONSP (vec[COMPILED_ARGLIST]) || NILP (vec[COMPILED_ARGLIST])) && FIXNATP (vec[COMPILED_STACK_DEPTH]))) invalid_syntax ("Invalid byte-code object", readcharfun); if (load_force_doc_strings && NILP (vec[COMPILED_CONSTANTS]) && STRINGP (vec[COMPILED_BYTECODE])) { /* Lazily-loaded bytecode is represented by the constant slot being nil and the bytecode slot a (lazily loaded) string containing the print representation of (BYTECODE . CONSTANTS). Unpack the pieces by coerceing the string to unibyte and reading the result. */ Lisp_Object enc = vec[COMPILED_BYTECODE]; Lisp_Object pair = Fread (Fcons (enc, readcharfun)); if (!CONSP (pair)) invalid_syntax ("Invalid byte-code object", readcharfun); vec[COMPILED_BYTECODE] = XCAR (pair); vec[COMPILED_CONSTANTS] = XCDR (pair); } if (!((STRINGP (vec[COMPILED_BYTECODE]) && VECTORP (vec[COMPILED_CONSTANTS])) || CONSP (vec[COMPILED_BYTECODE]))) invalid_syntax ("Invalid byte-code object", readcharfun); if (STRINGP (vec[COMPILED_BYTECODE])) { if (STRING_MULTIBYTE (vec[COMPILED_BYTECODE])) { /* BYTESTR must have been produced by Emacs 20.2 or earlier because it produced a raw 8-bit string for byte-code and now such a byte-code string is loaded as multibyte with raw 8-bit characters converted to multibyte form. Convert them back to the original unibyte form. */ vec[COMPILED_BYTECODE] = Fstring_as_unibyte (vec[COMPILED_BYTECODE]); } // Bytecode must be immovable. pin_string (vec[COMPILED_BYTECODE]); } XSETPVECTYPE (XVECTOR (obj), PVEC_COMPILED); return obj; } static Lisp_Object char_table_from_rev_list (Lisp_Object elems, Lisp_Object readcharfun) { Lisp_Object obj = vector_from_rev_list (elems); if (ASIZE (obj) < CHAR_TABLE_STANDARD_SLOTS) invalid_syntax ("Invalid size char-table", readcharfun); XSETPVECTYPE (XVECTOR (obj), PVEC_CHAR_TABLE); return obj; } static Lisp_Object sub_char_table_from_rev_list (Lisp_Object elems, Lisp_Object readcharfun) { /* A sub-char-table can't be read as a regular vector because of two C integer fields. */ elems = Fnreverse (elems); ptrdiff_t size = list_length (elems); if (size < 2) error ("Invalid size of sub-char-table"); if (!RANGED_FIXNUMP (1, XCAR (elems), 3)) error ("Invalid depth in sub-char-table"); int depth = XFIXNUM (XCAR (elems)); if (chartab_size[depth] != size - 2) error ("Invalid size in sub-char-table"); elems = XCDR (elems); if (!RANGED_FIXNUMP (0, XCAR (elems), MAX_CHAR)) error ("Invalid minimum character in sub-char-table"); int min_char = XFIXNUM (XCAR (elems)); elems = XCDR (elems); Lisp_Object tbl = make_uninit_sub_char_table (depth, min_char); for (int i = 0; i < size - 2; i++) { XSUB_CHAR_TABLE (tbl)->contents[i] = XCAR (elems); elems = XCDR (elems); } return tbl; } static Lisp_Object string_props_from_rev_list (Lisp_Object elems, Lisp_Object readcharfun) { elems = Fnreverse (elems); if (NILP (elems) || !STRINGP (XCAR (elems))) invalid_syntax ("#", readcharfun); Lisp_Object obj = XCAR (elems); for (Lisp_Object tl = XCDR (elems); !NILP (tl);) { Lisp_Object beg = XCAR (tl); tl = XCDR (tl); if (NILP (tl)) invalid_syntax ("Invalid string property list", readcharfun); Lisp_Object end = XCAR (tl); tl = XCDR (tl); if (NILP (tl)) invalid_syntax ("Invalid string property list", readcharfun); Lisp_Object plist = XCAR (tl); tl = XCDR (tl); Fset_text_properties (beg, end, plist, obj); } return obj; } /* Read a bool vector (preceded by "#&"). */ static Lisp_Object read_bool_vector (char stackbuf[VLA_ELEMS (stackbufsize)], Lisp_Object readcharfun) { ptrdiff_t length = 0; for (;;) { int c = READCHAR; if (c < '0' || c > '9') { if (c != '"') invalid_syntax ("#&", readcharfun); break; } if (INT_MULTIPLY_WRAPV (length, 10, &length) | INT_ADD_WRAPV (length, c - '0', &length)) invalid_syntax ("#&", readcharfun); } ptrdiff_t size_in_chars = bool_vector_bytes (length); Lisp_Object str = read_string_literal (stackbuf, readcharfun); if (STRING_MULTIBYTE (str) || !(size_in_chars == SCHARS (str) /* We used to print 1 char too many when the number of bits was a multiple of 8. Accept such input in case it came from an old version. */ || length == (SCHARS (str) - 1) * BOOL_VECTOR_BITS_PER_CHAR)) invalid_syntax ("#&...", readcharfun); Lisp_Object obj = make_uninit_bool_vector (length); unsigned char *data = bool_vector_uchar_data (obj); memcpy (data, SDATA (str), size_in_chars); /* Clear the extraneous bits in the last byte. */ if (length != size_in_chars * BOOL_VECTOR_BITS_PER_CHAR) data[size_in_chars - 1] &= (1 << (length % BOOL_VECTOR_BITS_PER_CHAR)) - 1; return obj; } /* Skip (and optionally remember) a lazily-loaded string preceded by "#@". */ static void skip_lazy_string (Lisp_Object readcharfun) { ptrdiff_t nskip = 0; ptrdiff_t digits = 0; for (;;) { int c = READCHAR; if (c < '0' || c > '9') { if (nskip > 0) /* We can't use UNREAD here, because in the code below we side-step READCHAR. Instead, assume the first char after #@NNN occupies a single byte, which is the case normally since it's just a space. */ nskip--; else UNREAD (c); break; } if (INT_MULTIPLY_WRAPV (nskip, 10, &nskip) | INT_ADD_WRAPV (nskip, c - '0', &nskip)) invalid_syntax ("#@", readcharfun); digits++; if (digits == 2 && nskip == 0) { /* #@00 means "skip to end" */ skip_dyn_eof (readcharfun); return; } } if (load_force_doc_strings && FROM_FILE_P (readcharfun)) { /* If we are supposed to force doc strings into core right now, record the last string that we skipped, and record where in the file it comes from. */ /* First exchange the two saved_strings. */ verify (ARRAYELTS (saved_strings) == 2); struct saved_string t = saved_strings[0]; saved_strings[0] = saved_strings[1]; saved_strings[1] = t; enum { extra = 100 }; struct saved_string *ss = &saved_strings[0]; if (ss->size == 0) { ss->size = nskip + extra; ss->string = xmalloc (ss->size); } else if (nskip > ss->size) { ss->size = nskip + extra; ss->string = xrealloc (ss->string, ss->size); } FILE *instream = infile->stream; ss->position = (file_tell (instream) - infile->lookahead); /* Copy that many bytes into the saved string. */ ptrdiff_t i = 0; int c = 0; for (int n = min (nskip, infile->lookahead); n > 0; n--) ss->string[i++] = c = infile->buf[--infile->lookahead]; block_input (); for (; i < nskip && c >= 0; i++) ss->string[i] = c = getc (instream); unblock_input (); ss->length = i; } else /* Skip that many bytes. */ skip_dyn_bytes (readcharfun, nskip); } /* Given a lazy-loaded string designator VAL, return the actual string. VAL is (FILENAME . POS). */ static Lisp_Object get_lazy_string (Lisp_Object val) { /* Get a doc string from the file we are loading. If it's in a saved string, get it from there. Here, we don't know if the string is a bytecode string or a doc string. As a bytecode string must be unibyte, we always return a unibyte string. If it is actually a doc string, caller must make it multibyte. */ /* We used to emit negative positions for 'user variables' (whose doc strings started with an asterisk); take the absolute value for compatibility. */ EMACS_INT pos = eabs (XFIXNUM (XCDR (val))); struct saved_string *ss = &saved_strings[0]; struct saved_string *ssend = ss + ARRAYELTS (saved_strings); while (ss < ssend && !(pos >= ss->position && pos < ss->position + ss->length)) ss++; if (ss >= ssend) return get_doc_string (val, 1, 0); ptrdiff_t start = pos - ss->position; char *str = ss->string; ptrdiff_t from = start; ptrdiff_t to = start; /* Process quoting with ^A, and find the end of the string, which is marked with ^_ (037). */ while (str[from] != 037) { int c = str[from++]; if (c == 1) { c = str[from++]; str[to++] = (c == 1 ? c : c == '0' ? 0 : c == '_' ? 037 : c); } else str[to++] = c; } return make_unibyte_string (str + start, to - start); } /* Length of prefix only consisting of symbol constituent characters. */ static ptrdiff_t symbol_char_span (const char *s) { const char *p = s; while ( *p == '^' || *p == '*' || *p == '+' || *p == '-' || *p == '/' || *p == '<' || *p == '=' || *p == '>' || *p == '_' || *p == '|') p++; return p - s; } static void skip_space_and_comments (Lisp_Object readcharfun) { int c; do { c = READCHAR; if (c == ';') do c = READCHAR; while (c >= 0 && c != '\n'); if (c < 0) end_of_file_error (); } while (c <= 32 || c == NO_BREAK_SPACE); UNREAD (c); } /* When an object is read, the type of the top read stack entry indicates the syntactic context. */ enum read_entry_type { /* preceding syntactic context */ RE_list_start, /* "(" */ RE_list, /* "(" (+ OBJECT) */ RE_list_dot, /* "(" (+ OBJECT) "." */ RE_vector, /* "[" (* OBJECT) */ RE_record, /* "#s(" (* OBJECT) */ RE_char_table, /* "#^[" (* OBJECT) */ RE_sub_char_table, /* "#^^[" (* OBJECT) */ RE_byte_code, /* "#[" (* OBJECT) */ RE_string_props, /* "#(" (* OBJECT) */ RE_special, /* "'" | "#'" | "`" | "," | ",@" */ RE_numbered, /* "#" (+ DIGIT) "=" */ }; struct read_stack_entry { enum read_entry_type type; union { /* RE_list, RE_list_dot */ struct { Lisp_Object head; /* first cons of list */ Lisp_Object tail; /* last cons of list */ } list; /* RE_vector, RE_record, RE_char_table, RE_sub_char_table, RE_byte_code, RE_string_props */ struct { Lisp_Object elems; /* list of elements in reverse order */ bool old_locate_syms; /* old value of locate_syms */ } vector; /* RE_special */ struct { Lisp_Object symbol; /* symbol from special syntax */ } special; /* RE_numbered */ struct { Lisp_Object number; /* number as a fixnum */ Lisp_Object placeholder; /* placeholder object */ } numbered; } u; }; struct read_stack { struct read_stack_entry *stack; /* base of stack */ ptrdiff_t size; /* allocated size in entries */ ptrdiff_t sp; /* current number of entries */ }; static struct read_stack rdstack = {NULL, 0, 0}; void mark_lread (void) { /* Mark the read stack, which may contain data not otherwise traced */ for (ptrdiff_t i = 0; i < rdstack.sp; i++) { struct read_stack_entry *e = &rdstack.stack[i]; switch (e->type) { case RE_list_start: break; case RE_list: case RE_list_dot: mark_object (e->u.list.head); mark_object (e->u.list.tail); break; case RE_vector: case RE_record: case RE_char_table: case RE_sub_char_table: case RE_byte_code: case RE_string_props: mark_object (e->u.vector.elems); break; case RE_special: mark_object (e->u.special.symbol); break; case RE_numbered: mark_object (e->u.numbered.number); mark_object (e->u.numbered.placeholder); break; } } } static inline struct read_stack_entry * read_stack_top (void) { eassume (rdstack.sp > 0); return &rdstack.stack[rdstack.sp - 1]; } static inline struct read_stack_entry * read_stack_pop (void) { eassume (rdstack.sp > 0); return &rdstack.stack[--rdstack.sp]; } static inline bool read_stack_empty_p (ptrdiff_t base_sp) { return rdstack.sp <= base_sp; } NO_INLINE static void grow_read_stack (void) { struct read_stack *rs = &rdstack; eassert (rs->sp == rs->size); rs->stack = xpalloc (rs->stack, &rs->size, 1, -1, sizeof *rs->stack); eassert (rs->sp < rs->size); } static inline void read_stack_push (struct read_stack_entry e) { if (rdstack.sp >= rdstack.size) grow_read_stack (); rdstack.stack[rdstack.sp++] = e; } /* Read a Lisp object. If LOCATE_SYMS is true, symbols are read with position. */ static Lisp_Object read0 (Lisp_Object readcharfun, bool locate_syms) { char stackbuf[stackbufsize]; char *read_buffer = stackbuf; ptrdiff_t read_buffer_size = sizeof stackbuf; char *heapbuf = NULL; specpdl_ref count = SPECPDL_INDEX (); ptrdiff_t base_sp = rdstack.sp; bool uninterned_symbol; bool skip_shorthand; /* Read an object into `obj'. */ read_obj: ; Lisp_Object obj; bool multibyte; int c = READCHAR_REPORT_MULTIBYTE (&multibyte); if (c < 0) end_of_file_error (); switch (c) { case '(': read_stack_push ((struct read_stack_entry) {.type = RE_list_start}); goto read_obj; case ')': if (read_stack_empty_p (base_sp)) invalid_syntax (")", readcharfun); switch (read_stack_top ()->type) { case RE_list_start: read_stack_pop (); obj = Qnil; break; case RE_list: obj = read_stack_pop ()->u.list.head; break; case RE_record: { locate_syms = read_stack_top ()->u.vector.old_locate_syms; Lisp_Object elems = Fnreverse (read_stack_pop ()->u.vector.elems); if (NILP (elems)) invalid_syntax ("#s", readcharfun); if (BASE_EQ (XCAR (elems), Qhash_table)) obj = hash_table_from_plist (XCDR (elems)); else obj = record_from_list (elems); break; } case RE_string_props: locate_syms = read_stack_top ()->u.vector.old_locate_syms; obj = string_props_from_rev_list (read_stack_pop () ->u.vector.elems, readcharfun); break; default: invalid_syntax (")", readcharfun); } break; case '[': read_stack_push ((struct read_stack_entry) { .type = RE_vector, .u.vector.elems = Qnil, .u.vector.old_locate_syms = locate_syms, }); /* FIXME: should vectors be read with locate_syms=false? */ goto read_obj; case ']': if (read_stack_empty_p (base_sp)) invalid_syntax ("]", readcharfun); switch (read_stack_top ()->type) { case RE_vector: locate_syms = read_stack_top ()->u.vector.old_locate_syms; obj = vector_from_rev_list (read_stack_pop ()->u.vector.elems); break; case RE_byte_code: locate_syms = read_stack_top ()->u.vector.old_locate_syms; obj = bytecode_from_rev_list (read_stack_pop ()->u.vector.elems, readcharfun); break; case RE_char_table: locate_syms = read_stack_top ()->u.vector.old_locate_syms; obj = char_table_from_rev_list (read_stack_pop ()->u.vector.elems, readcharfun); break; case RE_sub_char_table: locate_syms = read_stack_top ()->u.vector.old_locate_syms; obj = sub_char_table_from_rev_list (read_stack_pop ()->u.vector.elems, readcharfun); break; default: invalid_syntax ("]", readcharfun); break; } break; case '#': { int ch = READCHAR; switch (ch) { case '\'': /* #'X -- special syntax for (function X) */ read_stack_push ((struct read_stack_entry) { .type = RE_special, .u.special.symbol = Qfunction, }); goto read_obj; case '#': /* ## -- the empty symbol */ obj = Fintern (empty_unibyte_string, Qnil); break; case 's': /* #s(...) -- a record or hash-table */ ch = READCHAR; if (ch != '(') { UNREAD (ch); invalid_syntax ("#s", readcharfun); } read_stack_push ((struct read_stack_entry) { .type = RE_record, .u.vector.elems = Qnil, .u.vector.old_locate_syms = locate_syms, }); locate_syms = false; goto read_obj; case '^': /* #^[...] -- char-table #^^[...] -- sub-char-table */ ch = READCHAR; if (ch == '^') { ch = READCHAR; if (ch == '[') { read_stack_push ((struct read_stack_entry) { .type = RE_sub_char_table, .u.vector.elems = Qnil, .u.vector.old_locate_syms = locate_syms, }); locate_syms = false; goto read_obj; } else { UNREAD (ch); invalid_syntax ("#^^", readcharfun); } } else if (ch == '[') { read_stack_push ((struct read_stack_entry) { .type = RE_char_table, .u.vector.elems = Qnil, .u.vector.old_locate_syms = locate_syms, }); locate_syms = false; goto read_obj; } else { UNREAD (ch); invalid_syntax ("#^", readcharfun); } case '(': /* #(...) -- string with properties */ read_stack_push ((struct read_stack_entry) { .type = RE_string_props, .u.vector.elems = Qnil, .u.vector.old_locate_syms = locate_syms, }); locate_syms = false; goto read_obj; case '[': /* #[...] -- byte-code */ read_stack_push ((struct read_stack_entry) { .type = RE_byte_code, .u.vector.elems = Qnil, .u.vector.old_locate_syms = locate_syms, }); locate_syms = false; goto read_obj; case '&': /* #&N"..." -- bool-vector */ obj = read_bool_vector (stackbuf, readcharfun); break; case '!': /* #! appears at the beginning of an executable file. Skip the rest of the line. */ { int c; do c = READCHAR; while (c >= 0 && c != '\n'); goto read_obj; } case 'x': case 'X': obj = read_integer (readcharfun, 16, stackbuf); break; case 'o': case 'O': obj = read_integer (readcharfun, 8, stackbuf); break; case 'b': case 'B': obj = read_integer (readcharfun, 2, stackbuf); break; case '@': /* #@NUMBER is used to skip NUMBER following bytes. That's used in .elc files to skip over doc strings and function definitions that can be loaded lazily. */ skip_lazy_string (readcharfun); goto read_obj; case '$': /* #$ -- reference to lazy-loaded string */ obj = Vload_file_name; break; case ':': /* #:X -- uninterned symbol */ c = READCHAR; if (c <= 32 || c == NO_BREAK_SPACE || c == '"' || c == '\'' || c == ';' || c == '#' || c == '(' || c == ')' || c == '[' || c == ']' || c == '`' || c == ',') { /* No symbol character follows: this is the empty symbol. */ UNREAD (c); obj = Fmake_symbol (empty_unibyte_string); break; } uninterned_symbol = true; skip_shorthand = false; goto read_symbol; case '_': /* #_X -- symbol without shorthand */ c = READCHAR; if (c <= 32 || c == NO_BREAK_SPACE || c == '"' || c == '\'' || c == ';' || c == '#' || c == '(' || c == ')' || c == '[' || c == ']' || c == '`' || c == ',') { /* No symbol character follows: this is the empty symbol. */ UNREAD (c); obj = Fintern (empty_unibyte_string, Qnil); break; } uninterned_symbol = false; skip_shorthand = true; goto read_symbol; default: if (ch >= '0' && ch <= '9') { /* #N=OBJ or #N# -- first read the number N */ EMACS_INT n = ch - '0'; int c; for (;;) { c = READCHAR; if (c < '0' || c > '9') break; if (INT_MULTIPLY_WRAPV (n, 10, &n) || INT_ADD_WRAPV (n, c - '0', &n)) invalid_syntax ("#", readcharfun); } if (c == 'r' || c == 'R') { /* #NrDIGITS -- radix-N number */ if (n < 0 || n > 36) invalid_radix_integer (n, stackbuf, readcharfun); obj = read_integer (readcharfun, n, stackbuf); break; } else if (n <= MOST_POSITIVE_FIXNUM && !NILP (Vread_circle)) { if (c == '=') { /* #N=OBJ -- assign number N to OBJ */ Lisp_Object placeholder = Fcons (Qnil, Qnil); struct Lisp_Hash_Table *h = XHASH_TABLE (read_objects_map); Lisp_Object number = make_fixnum (n); Lisp_Object hash; ptrdiff_t i = hash_lookup (h, number, &hash); if (i >= 0) /* Not normal, but input could be malformed. */ set_hash_value_slot (h, i, placeholder); else hash_put (h, number, placeholder, hash); read_stack_push ((struct read_stack_entry) { .type = RE_numbered, .u.numbered.number = number, .u.numbered.placeholder = placeholder, }); goto read_obj; } else if (c == '#') { /* #N# -- reference to numbered object */ struct Lisp_Hash_Table *h = XHASH_TABLE (read_objects_map); ptrdiff_t i = hash_lookup (h, make_fixnum (n), NULL); if (i < 0) invalid_syntax ("#", readcharfun); obj = HASH_VALUE (h, i); break; } else invalid_syntax ("#", readcharfun); } else invalid_syntax ("#", readcharfun); } else invalid_syntax ("#", readcharfun); } break; } case '?': obj = read_char_literal (readcharfun); break; case '"': obj = read_string_literal (stackbuf, readcharfun); break; case '\'': read_stack_push ((struct read_stack_entry) { .type = RE_special, .u.special.symbol = Qquote, }); goto read_obj; case '`': read_stack_push ((struct read_stack_entry) { .type = RE_special, .u.special.symbol = Qbackquote, }); goto read_obj; case ',': { int ch = READCHAR; Lisp_Object sym; if (ch == '@') sym = Qcomma_at; else { if (ch >= 0) UNREAD (ch); sym = Qcomma; } read_stack_push ((struct read_stack_entry) { .type = RE_special, .u.special.symbol = sym, }); goto read_obj; } case ';': { int c; do c = READCHAR; while (c >= 0 && c != '\n'); goto read_obj; } case '.': { int nch = READCHAR; UNREAD (nch); if (nch <= 32 || nch == NO_BREAK_SPACE || nch == '"' || nch == '\'' || nch == ';' || nch == '(' || nch == '[' || nch == '#' || nch == '?' || nch == '`' || nch == ',') { if (!read_stack_empty_p (base_sp) && read_stack_top ()->type == RE_list) { read_stack_top ()->type = RE_list_dot; goto read_obj; } invalid_syntax (".", readcharfun); } } /* may be a number or symbol starting with a dot */ FALLTHROUGH; default: if (c <= 32 || c == NO_BREAK_SPACE) goto read_obj; uninterned_symbol = false; skip_shorthand = false; /* symbol or number */ read_symbol: { char *p = read_buffer; char *end = read_buffer + read_buffer_size; bool quoted = false; EMACS_INT start_position = readchar_offset - 1; do { if (end - p < MAX_MULTIBYTE_LENGTH + 1) { ptrdiff_t offset = p - read_buffer; read_buffer = grow_read_buffer (read_buffer, offset, &heapbuf, &read_buffer_size, count); p = read_buffer + offset; end = read_buffer + read_buffer_size; } if (c == '\\') { c = READCHAR; if (c < 0) end_of_file_error (); quoted = true; } if (multibyte) p += CHAR_STRING (c, (unsigned char *) p); else *p++ = c; c = READCHAR; } while (c > 32 && c != NO_BREAK_SPACE && (c >= 128 || !( c == '"' || c == '\'' || c == ';' || c == '#' || c == '(' || c == ')' || c == '[' || c == ']' || c == '`' || c == ','))); *p = 0; ptrdiff_t nbytes = p - read_buffer; UNREAD (c); /* Only attempt to parse the token as a number if it starts as one. */ char c0 = read_buffer[0]; if (((c0 >= '0' && c0 <= '9') || c0 == '.' || c0 == '-' || c0 == '+') && !quoted && !uninterned_symbol && !skip_shorthand) { ptrdiff_t len; Lisp_Object result = string_to_number (read_buffer, 10, &len); if (!NILP (result) && len == nbytes) { obj = result; break; } } /* symbol, possibly uninterned */ ptrdiff_t nchars = (multibyte ? multibyte_chars_in_text ((unsigned char *)read_buffer, nbytes) : nbytes); Lisp_Object result; if (uninterned_symbol) { Lisp_Object name = (!NILP (Vpurify_flag) ? make_pure_string (read_buffer, nchars, nbytes, multibyte) : make_specified_string (read_buffer, nchars, nbytes, multibyte)); result = Fmake_symbol (name); } else { /* Don't create the string object for the name unless we're going to retain it in a new symbol. Like intern_1 but supports multibyte names. */ Lisp_Object obarray = check_obarray (Vobarray); char *longhand = NULL; ptrdiff_t longhand_chars = 0; ptrdiff_t longhand_bytes = 0; Lisp_Object found; if (skip_shorthand /* We exempt characters used in the "core" Emacs Lisp symbols that are comprised entirely of characters that have the 'symbol constituent' syntax from transforming according to shorthands. */ || symbol_char_span (read_buffer) >= nbytes) found = oblookup (obarray, read_buffer, nchars, nbytes); else found = oblookup_considering_shorthand (obarray, read_buffer, nchars, nbytes, &longhand, &longhand_chars, &longhand_bytes); if (SYMBOLP (found)) result = found; else if (longhand) { Lisp_Object name = make_specified_string (longhand, longhand_chars, longhand_bytes, multibyte); xfree (longhand); result = intern_driver (name, obarray, found); } else { Lisp_Object name = make_specified_string (read_buffer, nchars, nbytes, multibyte); result = intern_driver (name, obarray, found); } } if (locate_syms && !NILP (result)) result = build_symbol_with_pos (result, make_fixnum (start_position)); obj = result; break; } } /* We have read an object in `obj'. Use the stack to decide what to do with it. */ while (rdstack.sp > base_sp) { struct read_stack_entry *e = read_stack_top (); switch (e->type) { case RE_list_start: e->type = RE_list; e->u.list.head = e->u.list.tail = Fcons (obj, Qnil); goto read_obj; case RE_list: { Lisp_Object tl = Fcons (obj, Qnil); XSETCDR (e->u.list.tail, tl); e->u.list.tail = tl; goto read_obj; } case RE_list_dot: { skip_space_and_comments (readcharfun); int ch = READCHAR; if (ch != ')') invalid_syntax ("expected )", readcharfun); XSETCDR (e->u.list.tail, obj); read_stack_pop (); obj = e->u.list.head; /* Hack: immediately convert (#$ . FIXNUM) to the corresponding string if load-force-doc-strings is set. */ if (load_force_doc_strings && BASE_EQ (XCAR (obj), Vload_file_name) && !NILP (XCAR (obj)) && FIXNUMP (XCDR (obj))) obj = get_lazy_string (obj); break; } case RE_vector: case RE_record: case RE_char_table: case RE_sub_char_table: case RE_byte_code: case RE_string_props: e->u.vector.elems = Fcons (obj, e->u.vector.elems); goto read_obj; case RE_special: read_stack_pop (); obj = list2 (e->u.special.symbol, obj); break; case RE_numbered: { read_stack_pop (); Lisp_Object placeholder = e->u.numbered.placeholder; if (CONSP (obj)) { if (BASE_EQ (obj, placeholder)) /* Catch silly games like #1=#1# */ invalid_syntax ("nonsensical self-reference", readcharfun); /* Optimization: since the placeholder is already a cons, repurpose it as the actual value. This allows us to skip the substitution below, since the placeholder is already referenced inside OBJ at the appropriate places. */ Fsetcar (placeholder, XCAR (obj)); Fsetcdr (placeholder, XCDR (obj)); struct Lisp_Hash_Table *h2 = XHASH_TABLE (read_objects_completed); Lisp_Object hash; ptrdiff_t i = hash_lookup (h2, placeholder, &hash); eassert (i < 0); hash_put (h2, placeholder, Qnil, hash); obj = placeholder; } else { /* If it can be recursive, remember it for future substitutions. */ if (!SYMBOLP (obj) && !NUMBERP (obj) && !(STRINGP (obj) && !string_intervals (obj))) { struct Lisp_Hash_Table *h2 = XHASH_TABLE (read_objects_completed); Lisp_Object hash; ptrdiff_t i = hash_lookup (h2, obj, &hash); eassert (i < 0); hash_put (h2, obj, Qnil, hash); } /* Now put it everywhere the placeholder was... */ Flread__substitute_object_in_subtree (obj, placeholder, read_objects_completed); /* ...and #n# will use the real value from now on. */ struct Lisp_Hash_Table *h = XHASH_TABLE (read_objects_map); Lisp_Object hash; ptrdiff_t i = hash_lookup (h, e->u.numbered.number, &hash); eassert (i >= 0); set_hash_value_slot (h, i, obj); } break; } } } return unbind_to (count, obj); } DEFUN ("lread--substitute-object-in-subtree", Flread__substitute_object_in_subtree, Slread__substitute_object_in_subtree, 3, 3, 0, doc: /* In OBJECT, replace every occurrence of PLACEHOLDER with OBJECT. COMPLETED is a hash table of objects that might be circular, or is t if any object might be circular. */) (Lisp_Object object, Lisp_Object placeholder, Lisp_Object completed) { struct subst subst = { object, placeholder, completed, Qnil }; Lisp_Object check_object = substitute_object_recurse (&subst, object); /* The returned object here is expected to always eq the original. */ if (!EQ (check_object, object)) error ("Unexpected mutation error in reader"); return Qnil; } static Lisp_Object substitute_object_recurse (struct subst *subst, Lisp_Object subtree) { /* If we find the placeholder, return the target object. */ if (EQ (subst->placeholder, subtree)) return subst->object; /* For common object types that can't contain other objects, don't bother looking them up; we're done. */ if (SYMBOLP (subtree) || (STRINGP (subtree) && !string_intervals (subtree)) || NUMBERP (subtree)) return subtree; /* If we've been to this node before, don't explore it again. */ if (!NILP (Fmemq (subtree, subst->seen))) return subtree; /* If this node can be the entry point to a cycle, remember that we've seen it. It can only be such an entry point if it was made by #n=, which means that we can find it as a value in COMPLETED. */ if (EQ (subst->completed, Qt) || hash_lookup (XHASH_TABLE (subst->completed), subtree, NULL) >= 0) subst->seen = Fcons (subtree, subst->seen); /* Recurse according to subtree's type. Every branch must return a Lisp_Object. */ switch (XTYPE (subtree)) { case Lisp_Vectorlike: { ptrdiff_t i = 0, length = 0; if (BOOL_VECTOR_P (subtree)) return subtree; /* No sub-objects anyway. */ else if (CHAR_TABLE_P (subtree) || SUB_CHAR_TABLE_P (subtree) || COMPILEDP (subtree) || HASH_TABLE_P (subtree) || RECORDP (subtree)) length = PVSIZE (subtree); else if (VECTORP (subtree)) length = ASIZE (subtree); else /* An unknown pseudovector may contain non-Lisp fields, so we can't just blindly traverse all its fields. We used to call `Flength' which signaled `sequencep', so I just preserved this behavior. */ wrong_type_argument (Qsequencep, subtree); if (SUB_CHAR_TABLE_P (subtree)) i = 2; for ( ; i < length; i++) ASET (subtree, i, substitute_object_recurse (subst, AREF (subtree, i))); return subtree; } case Lisp_Cons: XSETCAR (subtree, substitute_object_recurse (subst, XCAR (subtree))); XSETCDR (subtree, substitute_object_recurse (subst, XCDR (subtree))); return subtree; case Lisp_String: { /* Check for text properties in each interval. substitute_in_interval contains part of the logic. */ INTERVAL root_interval = string_intervals (subtree); traverse_intervals_noorder (root_interval, substitute_in_interval, subst); return subtree; } /* Other types don't recurse any further. */ default: return subtree; } } /* Helper function for substitute_object_recurse. */ static void substitute_in_interval (INTERVAL interval, void *arg) { set_interval_plist (interval, substitute_object_recurse (arg, interval->plist)); } /* Convert the initial prefix of STRING to a number, assuming base BASE. If the prefix has floating point syntax and BASE is 10, return a nearest float; otherwise, if the prefix has integer syntax, return the integer; otherwise, return nil. If PLEN, set *PLEN to the length of the numeric prefix if there is one, otherwise *PLEN is unspecified. */ Lisp_Object string_to_number (char const *string, int base, ptrdiff_t *plen) { char const *cp = string; bool float_syntax = false; double value = 0; /* Negate the value ourselves. This treats 0, NaNs, and infinity properly on IEEE floating point hosts, and works around a formerly-common bug where atof ("-0.0") drops the sign. */ bool negative = *cp == '-'; bool positive = *cp == '+'; bool signedp = negative | positive; cp += signedp; enum { INTOVERFLOW = 1, LEAD_INT = 2, TRAIL_INT = 4, E_EXP = 16 }; int state = 0; int leading_digit = digit_to_number (*cp, base); uintmax_t n = leading_digit; if (leading_digit >= 0) { state |= LEAD_INT; for (int digit; 0 <= (digit = digit_to_number (*++cp, base)); ) { if (INT_MULTIPLY_OVERFLOW (n, base)) state |= INTOVERFLOW; n *= base; if (INT_ADD_OVERFLOW (n, digit)) state |= INTOVERFLOW; n += digit; } } char const *after_digits = cp; if (*cp == '.') { cp++; } if (base == 10) { if ('0' <= *cp && *cp <= '9') { state |= TRAIL_INT; do cp++; while ('0' <= *cp && *cp <= '9'); } if (*cp == 'e' || *cp == 'E') { char const *ecp = cp; cp++; if (*cp == '+' || *cp == '-') cp++; if ('0' <= *cp && *cp <= '9') { state |= E_EXP; do cp++; while ('0' <= *cp && *cp <= '9'); } #if IEEE_FLOATING_POINT else if (cp[-1] == '+' && cp[0] == 'I' && cp[1] == 'N' && cp[2] == 'F') { state |= E_EXP; cp += 3; value = INFINITY; } else if (cp[-1] == '+' && cp[0] == 'N' && cp[1] == 'a' && cp[2] == 'N') { state |= E_EXP; cp += 3; union ieee754_double u = { .ieee_nan = { .exponent = 0x7ff, .quiet_nan = 1, .mantissa0 = n >> 31 >> 1, .mantissa1 = n }}; value = u.d; } #endif else cp = ecp; } /* A float has digits after the dot or an exponent. This excludes numbers like "1." which are lexed as integers. */ float_syntax = ((state & TRAIL_INT) || ((state & LEAD_INT) && (state & E_EXP))); } if (plen) *plen = cp - string; /* Return a float if the number uses float syntax. */ if (float_syntax) { /* Convert to floating point, unless the value is already known because it is infinite or a NaN. */ if (! value) value = atof (string + signedp); return make_float (negative ? -value : value); } /* Return nil if the number uses invalid syntax. */ if (! (state & LEAD_INT)) return Qnil; /* Fast path if the integer (san sign) fits in uintmax_t. */ if (! (state & INTOVERFLOW)) { if (!negative) return make_uint (n); if (-MOST_NEGATIVE_FIXNUM < n) return make_neg_biguint (n); EMACS_INT signed_n = n; return make_fixnum (-signed_n); } /* Trim any leading "+" and trailing nondigits, then return a bignum. */ string += positive; if (!*after_digits) return make_bignum_str (string, base); ptrdiff_t trimmed_len = after_digits - string; USE_SAFE_ALLOCA; char *trimmed = SAFE_ALLOCA (trimmed_len + 1); memcpy (trimmed, string, trimmed_len); trimmed[trimmed_len] = '\0'; Lisp_Object result = make_bignum_str (trimmed, base); SAFE_FREE (); return result; } static Lisp_Object initial_obarray; /* `oblookup' stores the bucket number here, for the sake of Funintern. */ static size_t oblookup_last_bucket_number; /* Get an error if OBARRAY is not an obarray. If it is one, return it. */ Lisp_Object check_obarray (Lisp_Object obarray) { /* We don't want to signal a wrong-type-argument error when we are shutting down due to a fatal error, and we don't want to hit assertions in VECTORP and ASIZE if the fatal error was during GC. */ if (!fatal_error_in_progress && (!VECTORP (obarray) || ASIZE (obarray) == 0)) { /* If Vobarray is now invalid, force it to be valid. */ if (EQ (Vobarray, obarray)) Vobarray = initial_obarray; wrong_type_argument (Qvectorp, obarray); } return obarray; } /* Intern symbol SYM in OBARRAY using bucket INDEX. */ static Lisp_Object intern_sym (Lisp_Object sym, Lisp_Object obarray, Lisp_Object index) { Lisp_Object *ptr; XSYMBOL (sym)->u.s.interned = (EQ (obarray, initial_obarray) ? SYMBOL_INTERNED_IN_INITIAL_OBARRAY : SYMBOL_INTERNED); if (SREF (SYMBOL_NAME (sym), 0) == ':' && EQ (obarray, initial_obarray)) { make_symbol_constant (sym); XSYMBOL (sym)->u.s.redirect = SYMBOL_PLAINVAL; /* Mark keywords as special. This makes (let ((:key 'foo)) ...) in lexically bound elisp signal an error, as documented. */ XSYMBOL (sym)->u.s.declared_special = true; SET_SYMBOL_VAL (XSYMBOL (sym), sym); } ptr = aref_addr (obarray, XFIXNUM (index)); set_symbol_next (sym, SYMBOLP (*ptr) ? XSYMBOL (*ptr) : NULL); *ptr = sym; return sym; } /* Intern a symbol with name STRING in OBARRAY using bucket INDEX. */ Lisp_Object intern_driver (Lisp_Object string, Lisp_Object obarray, Lisp_Object index) { SET_SYMBOL_VAL (XSYMBOL (Qobarray_cache), Qnil); return intern_sym (Fmake_symbol (string), obarray, index); } /* Intern the C string STR: return a symbol with that name, interned in the current obarray. */ Lisp_Object intern_1 (const char *str, ptrdiff_t len) { Lisp_Object obarray = check_obarray (Vobarray); Lisp_Object tem = oblookup (obarray, str, len, len); return (SYMBOLP (tem) ? tem /* The above `oblookup' was done on the basis of nchars==nbytes, so the string has to be unibyte. */ : intern_driver (make_unibyte_string (str, len), obarray, tem)); } Lisp_Object intern_c_string_1 (const char *str, ptrdiff_t len) { Lisp_Object obarray = check_obarray (Vobarray); Lisp_Object tem = oblookup (obarray, str, len, len); if (!SYMBOLP (tem)) { Lisp_Object string; if (NILP (Vpurify_flag)) string = make_string (str, len); else string = make_pure_c_string (str, len); tem = intern_driver (string, obarray, tem); } return tem; } static void define_symbol (Lisp_Object sym, char const *str) { ptrdiff_t len = strlen (str); Lisp_Object string = make_pure_c_string (str, len); init_symbol (sym, string); /* Qunbound is uninterned, so that it's not confused with any symbol 'unbound' created by a Lisp program. */ if (! BASE_EQ (sym, Qunbound)) { Lisp_Object bucket = oblookup (initial_obarray, str, len, len); eassert (FIXNUMP (bucket)); intern_sym (sym, initial_obarray, bucket); } } DEFUN ("intern", Fintern, Sintern, 1, 2, 0, doc: /* Return the canonical symbol whose name is STRING. If there is none, one is created by this function and returned. A second optional argument specifies the obarray to use; it defaults to the value of `obarray'. */) (Lisp_Object string, Lisp_Object obarray) { Lisp_Object tem; obarray = check_obarray (NILP (obarray) ? Vobarray : obarray); CHECK_STRING (string); char* longhand = NULL; ptrdiff_t longhand_chars = 0; ptrdiff_t longhand_bytes = 0; tem = oblookup_considering_shorthand (obarray, SSDATA (string), SCHARS (string), SBYTES (string), &longhand, &longhand_chars, &longhand_bytes); if (!SYMBOLP (tem)) { if (longhand) { tem = intern_driver (make_specified_string (longhand, longhand_chars, longhand_bytes, true), obarray, tem); xfree (longhand); } else tem = intern_driver (NILP (Vpurify_flag) ? string : Fpurecopy (string), obarray, tem); } return tem; } DEFUN ("intern-soft", Fintern_soft, Sintern_soft, 1, 2, 0, doc: /* Return the canonical symbol named NAME, or nil if none exists. NAME may be a string or a symbol. If it is a symbol, that exact symbol is searched for. A second optional argument specifies the obarray to use; it defaults to the value of `obarray'. */) (Lisp_Object name, Lisp_Object obarray) { register Lisp_Object tem, string; if (NILP (obarray)) obarray = Vobarray; obarray = check_obarray (obarray); if (!SYMBOLP (name)) { char *longhand = NULL; ptrdiff_t longhand_chars = 0; ptrdiff_t longhand_bytes = 0; CHECK_STRING (name); string = name; tem = oblookup_considering_shorthand (obarray, SSDATA (string), SCHARS (string), SBYTES (string), &longhand, &longhand_chars, &longhand_bytes); if (longhand) xfree (longhand); return FIXNUMP (tem) ? Qnil : tem; } else { /* If already a symbol, we don't do shorthand-longhand translation, as promised in the docstring. */ string = SYMBOL_NAME (name); tem = oblookup (obarray, SSDATA (string), SCHARS (string), SBYTES (string)); return EQ (name, tem) ? name : Qnil; } } DEFUN ("unintern", Funintern, Sunintern, 1, 2, 0, doc: /* Delete the symbol named NAME, if any, from OBARRAY. The value is t if a symbol was found and deleted, nil otherwise. NAME may be a string or a symbol. If it is a symbol, that symbol is deleted, if it belongs to OBARRAY--no other symbol is deleted. OBARRAY, if nil, defaults to the value of the variable `obarray'. usage: (unintern NAME OBARRAY) */) (Lisp_Object name, Lisp_Object obarray) { register Lisp_Object tem; Lisp_Object string; size_t hash; if (NILP (obarray)) obarray = Vobarray; obarray = check_obarray (obarray); if (SYMBOLP (name)) string = SYMBOL_NAME (name); else { CHECK_STRING (name); string = name; } char *longhand = NULL; ptrdiff_t longhand_chars = 0; ptrdiff_t longhand_bytes = 0; tem = oblookup_considering_shorthand (obarray, SSDATA (string), SCHARS (string), SBYTES (string), &longhand, &longhand_chars, &longhand_bytes); if (longhand) xfree(longhand); if (FIXNUMP (tem)) return Qnil; /* If arg was a symbol, don't delete anything but that symbol itself. */ if (SYMBOLP (name) && !EQ (name, tem)) return Qnil; /* There are plenty of other symbols which will screw up the Emacs session if we unintern them, as well as even more ways to use `setq' or `fset' or whatnot to make the Emacs session unusable. Let's not go down this silly road. --Stef */ /* if (NILP (tem) || EQ (tem, Qt)) error ("Attempt to unintern t or nil"); */ XSYMBOL (tem)->u.s.interned = SYMBOL_UNINTERNED; hash = oblookup_last_bucket_number; if (EQ (AREF (obarray, hash), tem)) { if (XSYMBOL (tem)->u.s.next) { Lisp_Object sym; XSETSYMBOL (sym, XSYMBOL (tem)->u.s.next); ASET (obarray, hash, sym); } else ASET (obarray, hash, make_fixnum (0)); } else { Lisp_Object tail, following; for (tail = AREF (obarray, hash); XSYMBOL (tail)->u.s.next; tail = following) { XSETSYMBOL (following, XSYMBOL (tail)->u.s.next); if (EQ (following, tem)) { set_symbol_next (tail, XSYMBOL (following)->u.s.next); break; } } } return Qt; } /* Return the symbol in OBARRAY whose names matches the string of SIZE characters (SIZE_BYTE bytes) at PTR. If there is no such symbol, return the integer bucket number of where the symbol would be if it were present. Also store the bucket number in oblookup_last_bucket_number. */ Lisp_Object oblookup (Lisp_Object obarray, register const char *ptr, ptrdiff_t size, ptrdiff_t size_byte) { size_t hash; size_t obsize; register Lisp_Object tail; Lisp_Object bucket, tem; obarray = check_obarray (obarray); /* This is sometimes needed in the middle of GC. */ obsize = gc_asize (obarray); hash = hash_string (ptr, size_byte) % obsize; bucket = AREF (obarray, hash); oblookup_last_bucket_number = hash; if (BASE_EQ (bucket, make_fixnum (0))) ; else if (!SYMBOLP (bucket)) /* Like CADR error message. */ xsignal2 (Qwrong_type_argument, Qobarrayp, build_string ("Bad data in guts of obarray")); else for (tail = bucket; ; XSETSYMBOL (tail, XSYMBOL (tail)->u.s.next)) { if (SBYTES (SYMBOL_NAME (tail)) == size_byte && SCHARS (SYMBOL_NAME (tail)) == size && !memcmp (SDATA (SYMBOL_NAME (tail)), ptr, size_byte)) return tail; else if (XSYMBOL (tail)->u.s.next == 0) break; } XSETINT (tem, hash); return tem; } /* Like 'oblookup', but considers 'Vread_symbol_shorthands', potentially recognizing that IN is shorthand for some other longhand name, which is then placed in OUT. In that case, memory is malloc'ed for OUT (which the caller must free) while SIZE_OUT and SIZE_BYTE_OUT respectively hold the character and byte sizes of the transformed symbol name. If IN is not recognized shorthand for any other symbol, OUT is set to point to NULL and 'oblookup' is called. */ Lisp_Object oblookup_considering_shorthand (Lisp_Object obarray, const char *in, ptrdiff_t size, ptrdiff_t size_byte, char **out, ptrdiff_t *size_out, ptrdiff_t *size_byte_out) { Lisp_Object tail = Vread_symbol_shorthands; /* First, assume no transformation will take place. */ *out = NULL; /* Then, iterate each pair in Vread_symbol_shorthands. */ FOR_EACH_TAIL_SAFE (tail) { Lisp_Object pair = XCAR (tail); /* Be lenient to 'read-symbol-shorthands': if some element isn't a cons, or some member of that cons isn't a string, just skip to the next element. */ if (!CONSP (pair)) continue; Lisp_Object sh_prefix = XCAR (pair); Lisp_Object lh_prefix = XCDR (pair); if (!STRINGP (sh_prefix) || !STRINGP (lh_prefix)) continue; ptrdiff_t sh_prefix_size = SBYTES (sh_prefix); /* Compare the prefix of the transformation pair to the symbol name. If a match occurs, do the renaming and exit the loop. In other words, only one such transformation may take place. Calculate the amount of memory to allocate for the longhand version of the symbol name with xrealloc. This isn't strictly needed, but it could later be used as a way for multiple transformations on a single symbol name. */ if (sh_prefix_size <= size_byte && memcmp (SSDATA (sh_prefix), in, sh_prefix_size) == 0) { ptrdiff_t lh_prefix_size = SBYTES (lh_prefix); ptrdiff_t suffix_size = size_byte - sh_prefix_size; *out = xrealloc (*out, lh_prefix_size + suffix_size); memcpy (*out, SSDATA(lh_prefix), lh_prefix_size); memcpy (*out + lh_prefix_size, in + sh_prefix_size, suffix_size); *size_out = SCHARS (lh_prefix) - SCHARS (sh_prefix) + size; *size_byte_out = lh_prefix_size + suffix_size; break; } } /* Now, as promised, call oblookup with the "final" symbol name to lookup. That function remains oblivious to whether a transformation happened here or not, but the caller of this function can tell by inspecting the OUT parameter. */ if (*out) return oblookup (obarray, *out, *size_out, *size_byte_out); else return oblookup (obarray, in, size, size_byte); } void map_obarray (Lisp_Object obarray, void (*fn) (Lisp_Object, Lisp_Object), Lisp_Object arg) { ptrdiff_t i; register Lisp_Object tail; CHECK_VECTOR (obarray); for (i = ASIZE (obarray) - 1; i >= 0; i--) { tail = AREF (obarray, i); if (SYMBOLP (tail)) while (1) { (*fn) (tail, arg); if (XSYMBOL (tail)->u.s.next == 0) break; XSETSYMBOL (tail, XSYMBOL (tail)->u.s.next); } } } static void mapatoms_1 (Lisp_Object sym, Lisp_Object function) { call1 (function, sym); } DEFUN ("mapatoms", Fmapatoms, Smapatoms, 1, 2, 0, doc: /* Call FUNCTION on every symbol in OBARRAY. OBARRAY defaults to the value of `obarray'. */) (Lisp_Object function, Lisp_Object obarray) { if (NILP (obarray)) obarray = Vobarray; obarray = check_obarray (obarray); map_obarray (obarray, mapatoms_1, function); return Qnil; } #define OBARRAY_SIZE 15121 void init_obarray_once (void) { Vobarray = make_vector (OBARRAY_SIZE, make_fixnum (0)); initial_obarray = Vobarray; staticpro (&initial_obarray); for (int i = 0; i < ARRAYELTS (lispsym); i++) define_symbol (builtin_lisp_symbol (i), defsym_name[i]); DEFSYM (Qunbound, "unbound"); DEFSYM (Qnil, "nil"); SET_SYMBOL_VAL (XSYMBOL (Qnil), Qnil); make_symbol_constant (Qnil); XSYMBOL (Qnil)->u.s.declared_special = true; DEFSYM (Qt, "t"); SET_SYMBOL_VAL (XSYMBOL (Qt), Qt); make_symbol_constant (Qt); XSYMBOL (Qt)->u.s.declared_special = true; /* Qt is correct even if not dumping. loadup.el will set to nil at end. */ Vpurify_flag = Qt; DEFSYM (Qvariable_documentation, "variable-documentation"); } void defsubr (union Aligned_Lisp_Subr *aname) { struct Lisp_Subr *sname = &aname->s; Lisp_Object sym, tem; sym = intern_c_string (sname->symbol_name); XSETPVECTYPE (sname, PVEC_SUBR); XSETSUBR (tem, sname); set_symbol_function (sym, tem); #ifdef HAVE_NATIVE_COMP eassert (NILP (Vcomp_abi_hash)); Vcomp_subr_list = Fpurecopy (Fcons (tem, Vcomp_subr_list)); #endif } #ifdef NOTDEF /* Use fset in subr.el now! */ void defalias (struct Lisp_Subr *sname, char *string) { Lisp_Object sym; sym = intern (string); XSETSUBR (XSYMBOL (sym)->u.s.function, sname); } #endif /* NOTDEF */ /* Define an "integer variable"; a symbol whose value is forwarded to a C variable of type intmax_t. Sample call (with "xx" to fool make-docfile): DEFxxVAR_INT ("emacs-priority", &emacs_priority, "Documentation"); */ void defvar_int (struct Lisp_Intfwd const *i_fwd, char const *namestring) { Lisp_Object sym = intern_c_string (namestring); XSYMBOL (sym)->u.s.declared_special = true; XSYMBOL (sym)->u.s.redirect = SYMBOL_FORWARDED; SET_SYMBOL_FWD (XSYMBOL (sym), i_fwd); } /* Similar but define a variable whose value is t if 1, nil if 0. */ void defvar_bool (struct Lisp_Boolfwd const *b_fwd, char const *namestring) { Lisp_Object sym = intern_c_string (namestring); XSYMBOL (sym)->u.s.declared_special = true; XSYMBOL (sym)->u.s.redirect = SYMBOL_FORWARDED; SET_SYMBOL_FWD (XSYMBOL (sym), b_fwd); Vbyte_boolean_vars = Fcons (sym, Vbyte_boolean_vars); } /* Similar but define a variable whose value is the Lisp Object stored at address. Two versions: with and without gc-marking of the C variable. The nopro version is used when that variable will be gc-marked for some other reason, since marking the same slot twice can cause trouble with strings. */ void defvar_lisp_nopro (struct Lisp_Objfwd const *o_fwd, char const *namestring) { Lisp_Object sym = intern_c_string (namestring); XSYMBOL (sym)->u.s.declared_special = true; XSYMBOL (sym)->u.s.redirect = SYMBOL_FORWARDED; SET_SYMBOL_FWD (XSYMBOL (sym), o_fwd); } void defvar_lisp (struct Lisp_Objfwd const *o_fwd, char const *namestring) { defvar_lisp_nopro (o_fwd, namestring); staticpro (o_fwd->objvar); } /* Similar but define a variable whose value is the Lisp Object stored at a particular offset in the current kboard object. */ void defvar_kboard (struct Lisp_Kboard_Objfwd const *ko_fwd, char const *namestring) { Lisp_Object sym = intern_c_string (namestring); XSYMBOL (sym)->u.s.declared_special = true; XSYMBOL (sym)->u.s.redirect = SYMBOL_FORWARDED; SET_SYMBOL_FWD (XSYMBOL (sym), ko_fwd); } /* Check that the elements of lpath exist. */ static void load_path_check (Lisp_Object lpath) { Lisp_Object path_tail; /* The only elements that might not exist are those from PATH_LOADSEARCH, EMACSLOADPATH. Anything else is only added if it exists. */ for (path_tail = lpath; !NILP (path_tail); path_tail = XCDR (path_tail)) { Lisp_Object dirfile; dirfile = Fcar (path_tail); if (STRINGP (dirfile)) { dirfile = Fdirectory_file_name (dirfile); if (! file_accessible_directory_p (dirfile)) dir_warning ("Lisp directory", XCAR (path_tail)); } } } /* Return the default load-path, to be used if EMACSLOADPATH is unset. This does not include the standard site-lisp directories under the installation prefix (i.e., PATH_SITELOADSEARCH), but it does (unless no_site_lisp is set) include site-lisp directories in the source/build directories if those exist and we are running uninstalled. Uses the following logic: If !will_dump: Use PATH_LOADSEARCH. The remainder is what happens when dumping is about to happen: If dumping, just use PATH_DUMPLOADSEARCH. Otherwise use PATH_LOADSEARCH. If !initialized, then just return PATH_DUMPLOADSEARCH. If initialized: If Vinstallation_directory is not nil (ie, running uninstalled): If installation-dir/lisp exists and not already a member, we must be running uninstalled. Reset the load-path to just installation-dir/lisp. (The default PATH_LOADSEARCH refers to the eventual installation directories. Since we are not yet installed, we should not use them, even if they exist.) If installation-dir/lisp does not exist, just add PATH_DUMPLOADSEARCH at the end instead. Add installation-dir/site-lisp (if !no_site_lisp, and exists and not already a member) at the front. If installation-dir != source-dir (ie running an uninstalled, out-of-tree build) AND install-dir/src/Makefile exists BUT install-dir/src/Makefile.in does NOT exist (this is a sanity check), then repeat the above steps for source-dir/lisp, site-lisp. */ static Lisp_Object load_path_default (void) { if (will_dump_p ()) /* PATH_DUMPLOADSEARCH is the lisp dir in the source directory. We used to add ../lisp (ie the lisp dir in the build directory) at the front here, but that should not be necessary, since in out of tree builds lisp/ is empty, save for Makefile. */ return decode_env_path (0, PATH_DUMPLOADSEARCH, 0); Lisp_Object lpath = Qnil; lpath = decode_env_path (0, PATH_LOADSEARCH, 0); if (!NILP (Vinstallation_directory)) { Lisp_Object tem, tem1; /* Add to the path the lisp subdir of the installation dir, if it is accessible. Note: in out-of-tree builds, this directory is empty save for Makefile. */ tem = Fexpand_file_name (build_string ("lisp"), Vinstallation_directory); tem1 = Ffile_accessible_directory_p (tem); if (!NILP (tem1)) { if (NILP (Fmember (tem, lpath))) { /* We are running uninstalled. The default load-path points to the eventual installed lisp directories. We should not use those now, even if they exist, so start over from a clean slate. */ lpath = list1 (tem); } } else /* That dir doesn't exist, so add the build-time Lisp dirs instead. */ { Lisp_Object dump_path = decode_env_path (0, PATH_DUMPLOADSEARCH, 0); lpath = nconc2 (lpath, dump_path); } /* Add site-lisp under the installation dir, if it exists. */ if (!no_site_lisp) { tem = Fexpand_file_name (build_string ("site-lisp"), Vinstallation_directory); tem1 = Ffile_accessible_directory_p (tem); if (!NILP (tem1)) { if (NILP (Fmember (tem, lpath))) lpath = Fcons (tem, lpath); } } /* If Emacs was not built in the source directory, and it is run from where it was built, add to load-path the lisp and site-lisp dirs under that directory. */ if (NILP (Fequal (Vinstallation_directory, Vsource_directory))) { Lisp_Object tem2; tem = Fexpand_file_name (build_string ("src/Makefile"), Vinstallation_directory); tem1 = Ffile_exists_p (tem); /* Don't be fooled if they moved the entire source tree AFTER dumping Emacs. If the build directory is indeed different from the source dir, src/Makefile.in and src/Makefile will not be found together. */ tem = Fexpand_file_name (build_string ("src/Makefile.in"), Vinstallation_directory); tem2 = Ffile_exists_p (tem); if (!NILP (tem1) && NILP (tem2)) { tem = Fexpand_file_name (build_string ("lisp"), Vsource_directory); if (NILP (Fmember (tem, lpath))) lpath = Fcons (tem, lpath); if (!no_site_lisp) { tem = Fexpand_file_name (build_string ("site-lisp"), Vsource_directory); tem1 = Ffile_accessible_directory_p (tem); if (!NILP (tem1)) { if (NILP (Fmember (tem, lpath))) lpath = Fcons (tem, lpath); } } } } /* Vinstallation_directory != Vsource_directory */ } /* if Vinstallation_directory */ return lpath; } void init_lread (void) { /* First, set Vload_path. */ /* Ignore EMACSLOADPATH when dumping. */ bool use_loadpath = !will_dump_p (); if (use_loadpath && egetenv ("EMACSLOADPATH")) { Vload_path = decode_env_path ("EMACSLOADPATH", 0, 1); /* Check (non-nil) user-supplied elements. */ load_path_check (Vload_path); /* If no nils in the environment variable, use as-is. Otherwise, replace any nils with the default. */ if (! NILP (Fmemq (Qnil, Vload_path))) { Lisp_Object elem, elpath = Vload_path; Lisp_Object default_lpath = load_path_default (); /* Check defaults, before adding site-lisp. */ load_path_check (default_lpath); /* Add the site-lisp directories to the front of the default. */ if (!no_site_lisp && PATH_SITELOADSEARCH[0] != '\0') { Lisp_Object sitelisp; sitelisp = decode_env_path (0, PATH_SITELOADSEARCH, 0); if (! NILP (sitelisp)) default_lpath = nconc2 (sitelisp, default_lpath); } Vload_path = Qnil; /* Replace nils from EMACSLOADPATH by default. */ while (CONSP (elpath)) { elem = XCAR (elpath); elpath = XCDR (elpath); Vload_path = CALLN (Fappend, Vload_path, NILP (elem) ? default_lpath : list1 (elem)); } } /* Fmemq (Qnil, Vload_path) */ } else { Vload_path = load_path_default (); /* Check before adding site-lisp directories. The install should have created them, but they are not required, so no need to warn if they are absent. Or we might be running before installation. */ load_path_check (Vload_path); /* Add the site-lisp directories at the front. */ if (!will_dump_p () && !no_site_lisp && PATH_SITELOADSEARCH[0] != '\0') { Lisp_Object sitelisp; sitelisp = decode_env_path (0, PATH_SITELOADSEARCH, 0); if (! NILP (sitelisp)) Vload_path = nconc2 (sitelisp, Vload_path); } } Vvalues = Qnil; load_in_progress = 0; Vload_file_name = Qnil; Vload_true_file_name = Qnil; Vstandard_input = Qt; Vloads_in_progress = Qnil; } /* Print a warning that directory intended for use USE and with name DIRNAME cannot be accessed. On entry, errno should correspond to the access failure. Print the warning on stderr and put it in *Messages*. */ void dir_warning (char const *use, Lisp_Object dirname) { static char const format[] = "Warning: %s '%s': %s\n"; char *diagnostic = emacs_strerror (errno); fprintf (stderr, format, use, SSDATA (ENCODE_SYSTEM (dirname)), diagnostic); /* Don't log the warning before we've initialized!! */ if (initialized) { ptrdiff_t diaglen = strlen (diagnostic); AUTO_STRING_WITH_LEN (diag, diagnostic, diaglen); if (! NILP (Vlocale_coding_system)) { Lisp_Object s = code_convert_string_norecord (diag, Vlocale_coding_system, false); diagnostic = SSDATA (s); diaglen = SBYTES (s); } USE_SAFE_ALLOCA; char *buffer = SAFE_ALLOCA (sizeof format - 3 * (sizeof "%s" - 1) + strlen (use) + SBYTES (dirname) + diaglen); ptrdiff_t message_len = esprintf (buffer, format, use, SSDATA (dirname), diagnostic); message_dolog (buffer, message_len, 0, STRING_MULTIBYTE (dirname)); SAFE_FREE (); } } void syms_of_lread (void) { defsubr (&Sread); defsubr (&Sread_positioning_symbols); defsubr (&Sread_from_string); defsubr (&Slread__substitute_object_in_subtree); defsubr (&Sintern); defsubr (&Sintern_soft); defsubr (&Sunintern); defsubr (&Sget_load_suffixes); defsubr (&Sload); defsubr (&Seval_buffer); defsubr (&Seval_region); defsubr (&Sread_char); defsubr (&Sread_char_exclusive); defsubr (&Sread_event); defsubr (&Sget_file_char); defsubr (&Smapatoms); defsubr (&Slocate_file_internal); DEFVAR_LISP ("obarray", Vobarray, doc: /* Symbol table for use by `intern' and `read'. It is a vector whose length ought to be prime for best results. The vector's contents don't make sense if examined from Lisp programs; to find all the symbols in an obarray, use `mapatoms'. */); DEFVAR_LISP ("values", Vvalues, doc: /* List of values of all expressions which were read, evaluated and printed. Order is reverse chronological. This variable is obsolete as of Emacs 28.1 and should not be used. */); XSYMBOL (intern ("values"))->u.s.declared_special = false; DEFVAR_LISP ("standard-input", Vstandard_input, doc: /* Stream for read to get input from. See documentation of `read' for possible values. */); Vstandard_input = Qt; DEFVAR_LISP ("read-circle", Vread_circle, doc: /* Non-nil means read recursive structures using #N= and #N# syntax. */); Vread_circle = Qt; DEFVAR_LISP ("load-path", Vload_path, doc: /* List of directories to search for files to load. Each element is a string (directory file name) or nil (meaning `default-directory'). This list is consulted by the `require' function. Initialized during startup as described in Info node `(elisp)Library Search'. Use `directory-file-name' when adding items to this path. However, Lisp programs that process this list should tolerate directories both with and without trailing slashes. */); DEFVAR_LISP ("load-suffixes", Vload_suffixes, doc: /* List of suffixes for Emacs Lisp files and dynamic modules. This list includes suffixes for both compiled and source Emacs Lisp files. This list should not include the empty string. `load' and related functions try to append these suffixes, in order, to the specified file name if a suffix is allowed or required. */); Vload_suffixes = list2 (build_pure_c_string (".elc"), build_pure_c_string (".el")); #ifdef HAVE_MODULES Vload_suffixes = Fcons (build_pure_c_string (MODULES_SUFFIX), Vload_suffixes); #ifdef MODULES_SECONDARY_SUFFIX Vload_suffixes = Fcons (build_pure_c_string (MODULES_SECONDARY_SUFFIX), Vload_suffixes); #endif #endif DEFVAR_LISP ("module-file-suffix", Vmodule_file_suffix, doc: /* Suffix of loadable module file, or nil if modules are not supported. */); #ifdef HAVE_MODULES Vmodule_file_suffix = build_pure_c_string (MODULES_SUFFIX); #else Vmodule_file_suffix = Qnil; #endif DEFVAR_LISP ("load-file-rep-suffixes", Vload_file_rep_suffixes, doc: /* List of suffixes that indicate representations of \ the same file. This list should normally start with the empty string. Enabling Auto Compression mode appends the suffixes in `jka-compr-load-suffixes' to this list and disabling Auto Compression mode removes them again. `load' and related functions use this list to determine whether they should look for compressed versions of a file and, if so, which suffixes they should try to append to the file name in order to do so. However, if you want to customize which suffixes the loading functions recognize as compression suffixes, you should customize `jka-compr-load-suffixes' rather than the present variable. */); Vload_file_rep_suffixes = list1 (empty_unibyte_string); DEFVAR_BOOL ("load-in-progress", load_in_progress, doc: /* Non-nil if inside of `load'. */); DEFSYM (Qload_in_progress, "load-in-progress"); DEFVAR_LISP ("after-load-alist", Vafter_load_alist, doc: /* An alist of functions to be evalled when particular files are loaded. Each element looks like (REGEXP-OR-FEATURE FUNCS...). REGEXP-OR-FEATURE is either a regular expression to match file names, or a symbol (a feature name). When `load' is run and the file-name argument matches an element's REGEXP-OR-FEATURE, or when `provide' is run and provides the symbol REGEXP-OR-FEATURE, the FUNCS in the element are called. An error in FUNCS does not undo the load, but does prevent calling the rest of the FUNCS. */); Vafter_load_alist = Qnil; DEFVAR_LISP ("load-history", Vload_history, doc: /* Alist mapping loaded file names to symbols and features. Each alist element should be a list (FILE-NAME ENTRIES...), where FILE-NAME is the name of a file that has been loaded into Emacs. The file name is absolute and true (i.e. it doesn't contain symlinks). As an exception, one of the alist elements may have FILE-NAME nil, for symbols and features not associated with any file. The remaining ENTRIES in the alist element describe the functions and variables defined in that file, the features provided, and the features required. Each entry has the form `(provide . FEATURE)', `(require . FEATURE)', `(defun . FUNCTION)', `(defface . SYMBOL)', `(define-type . SYMBOL)', or `(cl-defmethod METHOD SPECIALIZERS)'. In addition, entries may also be single symbols, which means that symbol was defined by `defvar' or `defconst'. During preloading, the file name recorded is relative to the main Lisp directory. These file names are converted to absolute at startup. */); Vload_history = Qnil; DEFVAR_LISP ("load-file-name", Vload_file_name, doc: /* Full name of file being loaded by `load'. In case of native code being loaded this is indicating the corresponding bytecode filename. Use `load-true-file-name' to obtain the .eln filename. */); Vload_file_name = Qnil; DEFVAR_LISP ("load-true-file-name", Vload_true_file_name, doc: /* Full name of file being loaded by `load'. */); Vload_true_file_name = Qnil; DEFVAR_LISP ("user-init-file", Vuser_init_file, doc: /* File name, including directory, of user's initialization file. If the file loaded had extension `.elc', and the corresponding source file exists, this variable contains the name of source file, suitable for use by functions like `custom-save-all' which edit the init file. While Emacs loads and evaluates any init file, value is the real name of the file, regardless of whether or not it has the `.elc' extension. */); Vuser_init_file = Qnil; DEFVAR_LISP ("current-load-list", Vcurrent_load_list, doc: /* Used for internal purposes by `load'. */); Vcurrent_load_list = Qnil; DEFVAR_LISP ("load-read-function", Vload_read_function, doc: /* Function used for reading expressions. It is used by `load' and `eval-region'. Called with a single argument (the stream from which to read). The default is to use the function `read'. */); DEFSYM (Qread, "read"); Vload_read_function = Qread; DEFVAR_LISP ("load-source-file-function", Vload_source_file_function, doc: /* Function called in `load' to load an Emacs Lisp source file. The value should be a function for doing code conversion before reading a source file. It can also be nil, in which case loading is done without any code conversion. If the value is a function, it is called with four arguments, FULLNAME, FILE, NOERROR, NOMESSAGE. FULLNAME is the absolute name of the file to load, FILE is the non-absolute name (for messages etc.), and NOERROR and NOMESSAGE are the corresponding arguments passed to `load'. The function should return t if the file was loaded. */); Vload_source_file_function = Qnil; DEFVAR_BOOL ("load-force-doc-strings", load_force_doc_strings, doc: /* Non-nil means `load' should force-load all dynamic doc strings. This is useful when the file being loaded is a temporary copy. */); load_force_doc_strings = 0; DEFVAR_BOOL ("load-convert-to-unibyte", load_convert_to_unibyte, doc: /* Non-nil means `read' converts strings to unibyte whenever possible. This is normally bound by `load' and `eval-buffer' to control `read', and is not meant for users to change. */); load_convert_to_unibyte = 0; DEFVAR_LISP ("source-directory", Vsource_directory, doc: /* Directory in which Emacs sources were found when Emacs was built. You cannot count on them to still be there! */); Vsource_directory = Fexpand_file_name (build_string ("../"), Fcar (decode_env_path (0, PATH_DUMPLOADSEARCH, 0))); DEFVAR_LISP ("preloaded-file-list", Vpreloaded_file_list, doc: /* List of files that were preloaded (when dumping Emacs). */); Vpreloaded_file_list = Qnil; DEFVAR_LISP ("byte-boolean-vars", Vbyte_boolean_vars, doc: /* List of all DEFVAR_BOOL variables, used by the byte code optimizer. */); Vbyte_boolean_vars = Qnil; DEFVAR_BOOL ("load-dangerous-libraries", load_dangerous_libraries, doc: /* Non-nil means load dangerous compiled Lisp files. Some versions of XEmacs use different byte codes than Emacs. These incompatible byte codes can make Emacs crash when it tries to execute them. */); load_dangerous_libraries = 0; DEFVAR_BOOL ("force-load-messages", force_load_messages, doc: /* Non-nil means force printing messages when loading Lisp files. This overrides the value of the NOMESSAGE argument to `load'. */); force_load_messages = 0; DEFVAR_LISP ("bytecomp-version-regexp", Vbytecomp_version_regexp, doc: /* Regular expression matching safe to load compiled Lisp files. When Emacs loads a compiled Lisp file, it reads the first 512 bytes from the file, and matches them against this regular expression. When the regular expression matches, the file is considered to be safe to load. */); Vbytecomp_version_regexp = build_pure_c_string ("^;;;.\\(in Emacs version\\|bytecomp version FSF\\)"); DEFSYM (Qlexical_binding, "lexical-binding"); DEFVAR_LISP ("lexical-binding", Vlexical_binding, doc: /* Whether to use lexical binding when evaluating code. Non-nil means that the code in the current buffer should be evaluated with lexical binding. This variable is automatically set from the file variables of an interpreted Lisp file read using `load'. Unlike other file local variables, this must be set in the first line of a file. */); Vlexical_binding = Qnil; Fmake_variable_buffer_local (Qlexical_binding); DEFVAR_LISP ("eval-buffer-list", Veval_buffer_list, doc: /* List of buffers being read from by calls to `eval-buffer' and `eval-region'. */); Veval_buffer_list = Qnil; DEFVAR_LISP ("lread--unescaped-character-literals", Vlread_unescaped_character_literals, doc: /* List of deprecated unescaped character literals encountered by `read'. For internal use only. */); Vlread_unescaped_character_literals = Qnil; DEFSYM (Qlread_unescaped_character_literals, "lread--unescaped-character-literals"); /* Defined in lisp/emacs-lisp/byte-run.el. */ DEFSYM (Qbyte_run_unescaped_character_literals_warning, "byte-run--unescaped-character-literals-warning"); DEFVAR_BOOL ("load-prefer-newer", load_prefer_newer, doc: /* Non-nil means `load' prefers the newest version of a file. This applies when a filename suffix is not explicitly specified and `load' is trying various possible suffixes (see `load-suffixes' and `load-file-rep-suffixes'). Normally, it stops at the first file that exists unless you explicitly specify one or the other. If this option is non-nil, it checks all suffixes and uses whichever file is newest. Note that if you customize this, obviously it will not affect files that are loaded before your customizations are read! */); load_prefer_newer = 0; DEFVAR_BOOL ("load-no-native", load_no_native, doc: /* Non-nil means not to load a .eln file when a .elc was requested. */); load_no_native = false; /* Vsource_directory was initialized in init_lread. */ DEFSYM (Qcurrent_load_list, "current-load-list"); DEFSYM (Qstandard_input, "standard-input"); DEFSYM (Qread_char, "read-char"); DEFSYM (Qget_file_char, "get-file-char"); /* Used instead of Qget_file_char while loading *.elc files compiled by Emacs 21 or older. */ DEFSYM (Qget_emacs_mule_file_char, "get-emacs-mule-file-char"); DEFSYM (Qload_force_doc_strings, "load-force-doc-strings"); DEFSYM (Qbackquote, "`"); DEFSYM (Qcomma, ","); DEFSYM (Qcomma_at, ",@"); DEFSYM (Qinhibit_file_name_operation, "inhibit-file-name-operation"); DEFSYM (Qascii_character, "ascii-character"); DEFSYM (Qfunction, "function"); DEFSYM (Qload, "load"); DEFSYM (Qload_file_name, "load-file-name"); DEFSYM (Qload_true_file_name, "load-true-file-name"); DEFSYM (Qeval_buffer_list, "eval-buffer-list"); DEFSYM (Qdir_ok, "dir-ok"); DEFSYM (Qdo_after_load_evaluation, "do-after-load-evaluation"); staticpro (&read_objects_map); read_objects_map = Qnil; staticpro (&read_objects_completed); read_objects_completed = Qnil; Vloads_in_progress = Qnil; staticpro (&Vloads_in_progress); DEFSYM (Qhash_table, "hash-table"); DEFSYM (Qdata, "data"); DEFSYM (Qtest, "test"); DEFSYM (Qsize, "size"); DEFSYM (Qpurecopy, "purecopy"); DEFSYM (Qweakness, "weakness"); DEFSYM (Qrehash_size, "rehash-size"); DEFSYM (Qrehash_threshold, "rehash-threshold"); DEFSYM (Qchar_from_name, "char-from-name"); DEFVAR_LISP ("read-symbol-shorthands", Vread_symbol_shorthands, doc: /* Alist of known symbol-name shorthands. This variable's value can only be set via file-local variables. See Info node `(elisp)Shorthands' for more details. */); Vread_symbol_shorthands = Qnil; DEFSYM (Qobarray_cache, "obarray-cache"); DEFSYM (Qobarrayp, "obarrayp"); DEFSYM (Qmacroexp__dynvars, "macroexp--dynvars"); DEFVAR_LISP ("macroexp--dynvars", Vmacroexp__dynvars, doc: /* List of variables declared dynamic in the current scope. Only valid during macro-expansion. Internal use only. */); Vmacroexp__dynvars = Qnil; }