/* Manipulation of keymaps Copyright (C) 1985, 86, 87, 88, 93, 94, 95 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #undef NULL #include "lisp.h" #include "commands.h" #include "buffer.h" #include "charset.h" #include "keyboard.h" #include "termhooks.h" #include "blockinput.h" #include "puresize.h" #define min(a, b) ((a) < (b) ? (a) : (b)) /* The number of elements in keymap vectors. */ #define DENSE_TABLE_SIZE (0200) /* Actually allocate storage for these variables */ Lisp_Object current_global_map; /* Current global keymap */ Lisp_Object global_map; /* default global key bindings */ Lisp_Object meta_map; /* The keymap used for globally bound ESC-prefixed default commands */ Lisp_Object control_x_map; /* The keymap used for globally bound C-x-prefixed default commands */ /* was MinibufLocalMap */ Lisp_Object Vminibuffer_local_map; /* The keymap used by the minibuf for local bindings when spaces are allowed in the minibuf */ /* was MinibufLocalNSMap */ Lisp_Object Vminibuffer_local_ns_map; /* The keymap used by the minibuf for local bindings when spaces are not encouraged in the minibuf */ /* keymap used for minibuffers when doing completion */ /* was MinibufLocalCompletionMap */ Lisp_Object Vminibuffer_local_completion_map; /* keymap used for minibuffers when doing completion and require a match */ /* was MinibufLocalMustMatchMap */ Lisp_Object Vminibuffer_local_must_match_map; /* Alist of minor mode variables and keymaps. */ Lisp_Object Vminor_mode_map_alist; /* Keymap mapping ASCII function key sequences onto their preferred forms. Initialized by the terminal-specific lisp files. See DEFVAR for more documentation. */ Lisp_Object Vfunction_key_map; /* Keymap mapping ASCII function key sequences onto their preferred forms. */ Lisp_Object Vkey_translation_map; /* A list of all commands given new bindings since a certain time when nil was stored here. This is used to speed up recomputation of menu key equivalents when Emacs starts up. t means don't record anything here. */ Lisp_Object Vdefine_key_rebound_commands; Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii; /* A char with the CHAR_META bit set in a vector or the 0200 bit set in a string key sequence is equivalent to prefixing with this character. */ extern Lisp_Object meta_prefix_char; extern Lisp_Object Voverriding_local_map; static Lisp_Object define_as_prefix (); static Lisp_Object describe_buffer_bindings (); static void describe_command (), describe_translation (); static void describe_map (); /* Keymap object support - constructors and predicates. */ DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0, "Construct and return a new keymap, of the form (keymap VECTOR . ALIST).\n\ VECTOR is a vector which holds the bindings for the ASCII\n\ characters. ALIST is an assoc-list which holds bindings for function keys,\n\ mouse events, and any other things that appear in the input stream.\n\ All entries in it are initially nil, meaning \"command undefined\".\n\n\ The optional arg STRING supplies a menu name for the keymap\n\ in case you use it as a menu with `x-popup-menu'.") (string) Lisp_Object string; { Lisp_Object tail; if (!NILP (string)) tail = Fcons (string, Qnil); else tail = Qnil; return Fcons (Qkeymap, Fcons (Fmake_vector (make_number (DENSE_TABLE_SIZE), Qnil), tail)); } DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0, "Construct and return a new sparse-keymap list.\n\ Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\ which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\ which binds the function key or mouse event SYMBOL to DEFINITION.\n\ Initially the alist is nil.\n\n\ The optional arg STRING supplies a menu name for the keymap\n\ in case you use it as a menu with `x-popup-menu'.") (string) Lisp_Object string; { if (!NILP (string)) return Fcons (Qkeymap, Fcons (string, Qnil)); return Fcons (Qkeymap, Qnil); } /* This function is used for installing the standard key bindings at initialization time. For example: initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */ void initial_define_key (keymap, key, defname) Lisp_Object keymap; int key; char *defname; { store_in_keymap (keymap, make_number (key), intern (defname)); } void initial_define_lispy_key (keymap, keyname, defname) Lisp_Object keymap; char *keyname; char *defname; { store_in_keymap (keymap, intern (keyname), intern (defname)); } /* Define character fromchar in map frommap as an alias for character tochar in map tomap. Subsequent redefinitions of the latter WILL affect the former. */ #if 0 void synkey (frommap, fromchar, tomap, tochar) struct Lisp_Vector *frommap, *tomap; int fromchar, tochar; { Lisp_Object v, c; XSETVECTOR (v, tomap); XSETFASTINT (c, tochar); frommap->contents[fromchar] = Fcons (v, c); } #endif /* 0 */ DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0, "Return t if OBJECT is a keymap.\n\ \n\ A keymap is a list (keymap . ALIST),\n\ or a symbol whose function definition is itself a keymap.\n\ ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\ a vector of densely packed bindings for small character codes\n\ is also allowed as an element.") (object) Lisp_Object object; { return (NILP (get_keymap_1 (object, 0, 0)) ? Qnil : Qt); } /* Check that OBJECT is a keymap (after dereferencing through any symbols). If it is, return it. If AUTOLOAD is non-zero and OBJECT is a symbol whose function value is an autoload form, do the autoload and try again. If AUTOLOAD is nonzero, callers must assume GC is possible. ERROR controls how we respond if OBJECT isn't a keymap. If ERROR is non-zero, signal an error; otherwise, just return Qnil. Note that most of the time, we don't want to pursue autoloads. Functions like Faccessible_keymaps which scan entire keymap trees shouldn't load every autoloaded keymap. I'm not sure about this, but it seems to me that only read_key_sequence, Flookup_key, and Fdefine_key should cause keymaps to be autoloaded. */ Lisp_Object get_keymap_1 (object, error, autoload) Lisp_Object object; int error, autoload; { Lisp_Object tem; autoload_retry: tem = indirect_function (object); if (CONSP (tem) && EQ (XCONS (tem)->car, Qkeymap)) return tem; /* Should we do an autoload? Autoload forms for keymaps have Qkeymap as their fifth element. */ if (autoload && SYMBOLP (object) && CONSP (tem) && EQ (XCONS (tem)->car, Qautoload)) { Lisp_Object tail; tail = Fnth (make_number (4), tem); if (EQ (tail, Qkeymap)) { struct gcpro gcpro1, gcpro2; GCPRO2 (tem, object); do_autoload (tem, object); UNGCPRO; goto autoload_retry; } } if (error) wrong_type_argument (Qkeymapp, object); else return Qnil; } /* Follow any symbol chaining, and return the keymap denoted by OBJECT. If OBJECT doesn't denote a keymap at all, signal an error. */ Lisp_Object get_keymap (object) Lisp_Object object; { return get_keymap_1 (object, 1, 0); } /* Return the parent map of the keymap MAP, or nil if it has none. We assume that MAP is a valid keymap. */ DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0, "Return the parent keymap of KEYMAP.") (keymap) Lisp_Object keymap; { Lisp_Object list; keymap = get_keymap_1 (keymap, 1, 1); /* Skip past the initial element `keymap'. */ list = XCONS (keymap)->cdr; for (; CONSP (list); list = XCONS (list)->cdr) { /* See if there is another `keymap'. */ if (EQ (Qkeymap, XCONS (list)->car)) return list; } return Qnil; } /* Set the parent keymap of MAP to PARENT. */ DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0, "Modify KEYMAP to set its parent map to PARENT.\n\ PARENT should be nil or another keymap.") (keymap, parent) Lisp_Object keymap, parent; { Lisp_Object list, prev; int i; keymap = get_keymap_1 (keymap, 1, 1); if (!NILP (parent)) parent = get_keymap_1 (parent, 1, 1); /* Skip past the initial element `keymap'. */ prev = keymap; while (1) { list = XCONS (prev)->cdr; /* If there is a parent keymap here, replace it. If we came to the end, add the parent in PREV. */ if (! CONSP (list) || EQ (Qkeymap, XCONS (list)->car)) { /* If we already have the right parent, return now so that we avoid the loops below. */ if (EQ (XCONS (prev)->cdr, parent)) return parent; XCONS (prev)->cdr = parent; break; } prev = list; } /* Scan through for submaps, and set their parents too. */ for (list = XCONS (keymap)->cdr; CONSP (list); list = XCONS (list)->cdr) { /* Stop the scan when we come to the parent. */ if (EQ (XCONS (list)->car, Qkeymap)) break; /* If this element holds a prefix map, deal with it. */ if (CONSP (XCONS (list)->car) && CONSP (XCONS (XCONS (list)->car)->cdr)) fix_submap_inheritance (keymap, XCONS (XCONS (list)->car)->car, XCONS (XCONS (list)->car)->cdr); if (VECTORP (XCONS (list)->car)) for (i = 0; i < XVECTOR (XCONS (list)->car)->size; i++) if (CONSP (XVECTOR (XCONS (list)->car)->contents[i])) fix_submap_inheritance (keymap, make_number (i), XVECTOR (XCONS (list)->car)->contents[i]); } return parent; } /* EVENT is defined in MAP as a prefix, and SUBMAP is its definition. if EVENT is also a prefix in MAP's parent, make sure that SUBMAP inherits that definition as its own parent. */ fix_submap_inheritance (map, event, submap) Lisp_Object map, event, submap; { Lisp_Object map_parent, parent_entry; /* SUBMAP is a cons that we found as a key binding. Discard the other things found in a menu key binding. */ if (CONSP (submap) && STRINGP (XCONS (submap)->car)) { submap = XCONS (submap)->cdr; /* Also remove a menu help string, if any, following the menu item name. */ if (CONSP (submap) && STRINGP (XCONS (submap)->car)) submap = XCONS (submap)->cdr; /* Also remove the sublist that caches key equivalences, if any. */ if (CONSP (submap) && CONSP (XCONS (submap)->car)) { Lisp_Object carcar; carcar = XCONS (XCONS (submap)->car)->car; if (NILP (carcar) || VECTORP (carcar)) submap = XCONS (submap)->cdr; } } /* If it isn't a keymap now, there's no work to do. */ if (! CONSP (submap) || ! EQ (XCONS (submap)->car, Qkeymap)) return; map_parent = Fkeymap_parent (map); if (! NILP (map_parent)) parent_entry = access_keymap (map_parent, event, 0, 0); else parent_entry = Qnil; /* If MAP's parent has something other than a keymap, our own submap shadows it completely, so use nil as SUBMAP's parent. */ if (! (CONSP (parent_entry) && EQ (XCONS (parent_entry)->car, Qkeymap))) parent_entry = Qnil; if (! EQ (parent_entry, submap)) Fset_keymap_parent (submap, parent_entry); } /* Look up IDX in MAP. IDX may be any sort of event. Note that this does only one level of lookup; IDX must be a single event, not a sequence. If T_OK is non-zero, bindings for Qt are treated as default bindings; any key left unmentioned by other tables and bindings is given the binding of Qt. If T_OK is zero, bindings for Qt are not treated specially. If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */ Lisp_Object access_keymap (map, idx, t_ok, noinherit) Lisp_Object map; Lisp_Object idx; int t_ok; int noinherit; { int noprefix = 0; Lisp_Object val; /* If idx is a list (some sort of mouse click, perhaps?), the index we want to use is the car of the list, which ought to be a symbol. */ idx = EVENT_HEAD (idx); /* If idx is a symbol, it might have modifiers, which need to be put in the canonical order. */ if (SYMBOLP (idx)) idx = reorder_modifiers (idx); else if (INTEGERP (idx)) /* Clobber the high bits that can be present on a machine with more than 24 bits of integer. */ XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1))); { Lisp_Object tail; Lisp_Object t_binding; t_binding = Qnil; for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr) { Lisp_Object binding; binding = XCONS (tail)->car; if (SYMBOLP (binding)) { /* If NOINHERIT, stop finding prefix definitions after we pass a second occurrence of the `keymap' symbol. */ if (noinherit && EQ (binding, Qkeymap) && ! EQ (tail, map)) noprefix = 1; } else if (CONSP (binding)) { if (EQ (XCONS (binding)->car, idx)) { val = XCONS (binding)->cdr; if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap)) return Qnil; if (CONSP (val)) fix_submap_inheritance (map, idx, val); return val; } if (t_ok && EQ (XCONS (binding)->car, Qt)) t_binding = XCONS (binding)->cdr; } else if (VECTORP (binding)) { if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size) { val = XVECTOR (binding)->contents[XFASTINT (idx)]; if (noprefix && CONSP (val) && EQ (XCONS (val)->car, Qkeymap)) return Qnil; if (CONSP (val)) fix_submap_inheritance (map, idx, val); return val; } } QUIT; } return t_binding; } } /* Given OBJECT which was found in a slot in a keymap, trace indirect definitions to get the actual definition of that slot. An indirect definition is a list of the form (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one and INDEX is the object to look up in KEYMAP to yield the definition. Also if OBJECT has a menu string as the first element, remove that. Also remove a menu help string as second element. If AUTOLOAD is nonzero, load autoloadable keymaps that are referred to with indirection. */ Lisp_Object get_keyelt (object, autoload) register Lisp_Object object; int autoload; { while (1) { register Lisp_Object map, tem; /* If the contents are (KEYMAP . ELEMENT), go indirect. */ map = get_keymap_1 (Fcar_safe (object), 0, autoload); tem = Fkeymapp (map); if (!NILP (tem)) object = access_keymap (map, Fcdr (object), 0, 0); /* If the keymap contents looks like (STRING . DEFN), use DEFN. Keymap alist elements like (CHAR MENUSTRING . DEFN) will be used by HierarKey menus. */ else if (CONSP (object) && STRINGP (XCONS (object)->car)) { object = XCONS (object)->cdr; /* Also remove a menu help string, if any, following the menu item name. */ if (CONSP (object) && STRINGP (XCONS (object)->car)) object = XCONS (object)->cdr; /* Also remove the sublist that caches key equivalences, if any. */ if (CONSP (object) && CONSP (XCONS (object)->car)) { Lisp_Object carcar; carcar = XCONS (XCONS (object)->car)->car; if (NILP (carcar) || VECTORP (carcar)) object = XCONS (object)->cdr; } } else /* Anything else is really the value. */ return object; } } Lisp_Object store_in_keymap (keymap, idx, def) Lisp_Object keymap; register Lisp_Object idx; register Lisp_Object def; { /* If we are preparing to dump, and DEF is a menu element with a menu item string, copy it to ensure it is not pure. */ if (CONSP (def) && PURE_P (def) && STRINGP (XCONS (def)->car)) def = Fcons (XCONS (def)->car, XCONS (def)->cdr); if (!CONSP (keymap) || ! EQ (XCONS (keymap)->car, Qkeymap)) error ("attempt to define a key in a non-keymap"); /* If idx is a list (some sort of mouse click, perhaps?), the index we want to use is the car of the list, which ought to be a symbol. */ idx = EVENT_HEAD (idx); /* If idx is a symbol, it might have modifiers, which need to be put in the canonical order. */ if (SYMBOLP (idx)) idx = reorder_modifiers (idx); else if (INTEGERP (idx)) /* Clobber the high bits that can be present on a machine with more than 24 bits of integer. */ XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1))); /* Scan the keymap for a binding of idx. */ { Lisp_Object tail; /* The cons after which we should insert new bindings. If the keymap has a table element, we record its position here, so new bindings will go after it; this way, the table will stay towards the front of the alist and character lookups in dense keymaps will remain fast. Otherwise, this just points at the front of the keymap. */ Lisp_Object insertion_point; insertion_point = keymap; for (tail = XCONS (keymap)->cdr; CONSP (tail); tail = XCONS (tail)->cdr) { Lisp_Object elt; elt = XCONS (tail)->car; if (VECTORP (elt)) { if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (elt)->size) { XVECTOR (elt)->contents[XFASTINT (idx)] = def; return def; } insertion_point = tail; } else if (CONSP (elt)) { if (EQ (idx, XCONS (elt)->car)) { XCONS (elt)->cdr = def; return def; } } else if (SYMBOLP (elt)) { /* If we find a 'keymap' symbol in the spine of KEYMAP, then we must have found the start of a second keymap being used as the tail of KEYMAP, and a binding for IDX should be inserted before it. */ if (EQ (elt, Qkeymap)) goto keymap_end; } QUIT; } keymap_end: /* We have scanned the entire keymap, and not found a binding for IDX. Let's add one. */ XCONS (insertion_point)->cdr = Fcons (Fcons (idx, def), XCONS (insertion_point)->cdr); } return def; } DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0, "Return a copy of the keymap KEYMAP.\n\ The copy starts out with the same definitions of KEYMAP,\n\ but changing either the copy or KEYMAP does not affect the other.\n\ Any key definitions that are subkeymaps are recursively copied.\n\ However, a key definition which is a symbol whose definition is a keymap\n\ is not copied.") (keymap) Lisp_Object keymap; { register Lisp_Object copy, tail; copy = Fcopy_alist (get_keymap (keymap)); for (tail = copy; CONSP (tail); tail = XCONS (tail)->cdr) { Lisp_Object elt; elt = XCONS (tail)->car; if (VECTORP (elt)) { int i; elt = Fcopy_sequence (elt); XCONS (tail)->car = elt; for (i = 0; i < XVECTOR (elt)->size; i++) if (!SYMBOLP (XVECTOR (elt)->contents[i]) && ! NILP (Fkeymapp (XVECTOR (elt)->contents[i]))) XVECTOR (elt)->contents[i] = Fcopy_keymap (XVECTOR (elt)->contents[i]); } else if (CONSP (elt)) { /* Skip the optional menu string. */ if (CONSP (XCONS (elt)->cdr) && STRINGP (XCONS (XCONS (elt)->cdr)->car)) { Lisp_Object tem; /* Copy the cell, since copy-alist didn't go this deep. */ XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car, XCONS (XCONS (elt)->cdr)->cdr); elt = XCONS (elt)->cdr; /* Also skip the optional menu help string. */ if (CONSP (XCONS (elt)->cdr) && STRINGP (XCONS (XCONS (elt)->cdr)->car)) { XCONS (elt)->cdr = Fcons (XCONS (XCONS (elt)->cdr)->car, XCONS (XCONS (elt)->cdr)->cdr); elt = XCONS (elt)->cdr; } /* There may also be a list that caches key equivalences. Just delete it for the new keymap. */ if (CONSP (XCONS (elt)->cdr) && CONSP (XCONS (XCONS (elt)->cdr)->car) && (NILP (tem = XCONS (XCONS (XCONS (elt)->cdr)->car)->car) || VECTORP (tem))) XCONS (elt)->cdr = XCONS (XCONS (elt)->cdr)->cdr; } if (CONSP (elt) && ! SYMBOLP (XCONS (elt)->cdr) && ! NILP (Fkeymapp (XCONS (elt)->cdr))) XCONS (elt)->cdr = Fcopy_keymap (XCONS (elt)->cdr); } } return copy; } /* Simple Keymap mutators and accessors. */ /* GC is possible in this function if it autoloads a keymap. */ DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0, "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\ KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\ meaning a sequence of keystrokes and events.\n\ Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\ can be included if you use a vector.\n\ DEF is anything that can be a key's definition:\n\ nil (means key is undefined in this keymap),\n\ a command (a Lisp function suitable for interactive calling)\n\ a string (treated as a keyboard macro),\n\ a keymap (to define a prefix key),\n\ a symbol. When the key is looked up, the symbol will stand for its\n\ function definition, which should at that time be one of the above,\n\ or another symbol whose function definition is used, etc.\n\ a cons (STRING . DEFN), meaning that DEFN is the definition\n\ (DEFN should be a valid definition in its own right),\n\ or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\ \n\ If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\ the front of KEYMAP.") (keymap, key, def) Lisp_Object keymap; Lisp_Object key; Lisp_Object def; { register int idx; register Lisp_Object c; register Lisp_Object tem; register Lisp_Object cmd; int metized = 0; int meta_bit; int length; struct gcpro gcpro1, gcpro2, gcpro3; keymap = get_keymap_1 (keymap, 1, 1); if (!VECTORP (key) && !STRINGP (key)) key = wrong_type_argument (Qarrayp, key); length = XFASTINT (Flength (key)); if (length == 0) return Qnil; if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt)) Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands); GCPRO3 (keymap, key, def); if (VECTORP (key)) meta_bit = meta_modifier; else meta_bit = 0x80; idx = 0; while (1) { c = Faref (key, make_number (idx)); if (CONSP (c) && lucid_event_type_list_p (c)) c = Fevent_convert_list (c); if (INTEGERP (c) && (XINT (c) & meta_bit) && !metized) { c = meta_prefix_char; metized = 1; } else { if (INTEGERP (c)) XSETINT (c, XINT (c) & ~meta_bit); metized = 0; idx++; } if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c)) error ("Key sequence contains invalid events"); if (idx == length) RETURN_UNGCPRO (store_in_keymap (keymap, c, def)); cmd = get_keyelt (access_keymap (keymap, c, 0, 1), 1); /* If this key is undefined, make it a prefix. */ if (NILP (cmd)) cmd = define_as_prefix (keymap, c); keymap = get_keymap_1 (cmd, 0, 1); if (NILP (keymap)) /* We must use Fkey_description rather than just passing key to error; key might be a vector, not a string. */ error ("Key sequence %s uses invalid prefix characters", XSTRING (Fkey_description (key))->data); } } /* Value is number if KEY is too long; NIL if valid but has no definition. */ /* GC is possible in this function if it autoloads a keymap. */ DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0, "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\ nil means undefined. See doc of `define-key' for kinds of definitions.\n\ \n\ A number as value means KEY is \"too long\";\n\ that is, characters or symbols in it except for the last one\n\ fail to be a valid sequence of prefix characters in KEYMAP.\n\ The number is how many characters at the front of KEY\n\ it takes to reach a non-prefix command.\n\ \n\ Normally, `lookup-key' ignores bindings for t, which act as default\n\ bindings, used when nothing else in the keymap applies; this makes it\n\ usable as a general function for probing keymaps. However, if the\n\ third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\ recognize the default bindings, just as `read-key-sequence' does.") (keymap, key, accept_default) register Lisp_Object keymap; Lisp_Object key; Lisp_Object accept_default; { register int idx; register Lisp_Object tem; register Lisp_Object cmd; register Lisp_Object c; int metized = 0; int length; int t_ok = ! NILP (accept_default); int meta_bit; struct gcpro gcpro1; keymap = get_keymap_1 (keymap, 1, 1); if (!VECTORP (key) && !STRINGP (key)) key = wrong_type_argument (Qarrayp, key); length = XFASTINT (Flength (key)); if (length == 0) return keymap; if (VECTORP (key)) meta_bit = meta_modifier; else meta_bit = 0x80; GCPRO1 (key); idx = 0; while (1) { c = Faref (key, make_number (idx)); if (CONSP (c) && lucid_event_type_list_p (c)) c = Fevent_convert_list (c); if (INTEGERP (c) && (XINT (c) & meta_bit) && !metized) { c = meta_prefix_char; metized = 1; } else { if (INTEGERP (c)) XSETINT (c, XINT (c) & ~meta_bit); metized = 0; idx++; } cmd = get_keyelt (access_keymap (keymap, c, t_ok, 0), 1); if (idx == length) RETURN_UNGCPRO (cmd); keymap = get_keymap_1 (cmd, 0, 1); if (NILP (keymap)) RETURN_UNGCPRO (make_number (idx)); QUIT; } } /* Make KEYMAP define event C as a keymap (i.e., as a prefix). Assume that currently it does not define C at all. Return the keymap. */ static Lisp_Object define_as_prefix (keymap, c) Lisp_Object keymap, c; { Lisp_Object inherit, cmd; cmd = Fmake_sparse_keymap (Qnil); /* If this key is defined as a prefix in an inherited keymap, make it a prefix in this map, and make its definition inherit the other prefix definition. */ inherit = access_keymap (keymap, c, 0, 0); #if 0 /* This code is needed to do the right thing in the following case: keymap A inherits from B, you define KEY as a prefix in A, then later you define KEY as a prefix in B. We want the old prefix definition in A to inherit from that in B. It is hard to do that retroactively, so this code creates the prefix in B right away. But it turns out that this code causes problems immediately when the prefix in A is defined: it causes B to define KEY as a prefix with no subcommands. So I took out this code. */ if (NILP (inherit)) { /* If there's an inherited keymap and it doesn't define this key, make it define this key. */ Lisp_Object tail; for (tail = Fcdr (keymap); CONSP (tail); tail = XCONS (tail)->cdr) if (EQ (XCONS (tail)->car, Qkeymap)) break; if (!NILP (tail)) inherit = define_as_prefix (tail, c); } #endif cmd = nconc2 (cmd, inherit); store_in_keymap (keymap, c, cmd); return cmd; } /* Append a key to the end of a key sequence. We always make a vector. */ Lisp_Object append_key (key_sequence, key) Lisp_Object key_sequence, key; { Lisp_Object args[2]; args[0] = key_sequence; args[1] = Fcons (key, Qnil); return Fvconcat (2, args); } /* Global, local, and minor mode keymap stuff. */ /* We can't put these variables inside current_minor_maps, since under some systems, static gets macro-defined to be the empty string. Ickypoo. */ static Lisp_Object *cmm_modes, *cmm_maps; static int cmm_size; /* Error handler used in current_minor_maps. */ static Lisp_Object current_minor_maps_error () { return Qnil; } /* Store a pointer to an array of the keymaps of the currently active minor modes in *buf, and return the number of maps it contains. This function always returns a pointer to the same buffer, and may free or reallocate it, so if you want to keep it for a long time or hand it out to lisp code, copy it. This procedure will be called for every key sequence read, so the nice lispy approach (return a new assoclist, list, what have you) for each invocation would result in a lot of consing over time. If we used xrealloc/xmalloc and ran out of memory, they would throw back to the command loop, which would try to read a key sequence, which would call this function again, resulting in an infinite loop. Instead, we'll use realloc/malloc and silently truncate the list, let the key sequence be read, and hope some other piece of code signals the error. */ int current_minor_maps (modeptr, mapptr) Lisp_Object **modeptr, **mapptr; { int i = 0; Lisp_Object alist, assoc, var, val; for (alist = Vminor_mode_map_alist; CONSP (alist); alist = XCONS (alist)->cdr) if ((assoc = XCONS (alist)->car, CONSP (assoc)) && (var = XCONS (assoc)->car, SYMBOLP (var)) && (val = find_symbol_value (var), ! EQ (val, Qunbound)) && ! NILP (val)) { Lisp_Object temp; if (i >= cmm_size) { Lisp_Object *newmodes, *newmaps; if (cmm_maps) { BLOCK_INPUT; cmm_size *= 2; newmodes = (Lisp_Object *) realloc (cmm_modes, cmm_size * sizeof (Lisp_Object)); newmaps = (Lisp_Object *) realloc (cmm_maps, cmm_size * sizeof (Lisp_Object)); UNBLOCK_INPUT; } else { BLOCK_INPUT; cmm_size = 30; newmodes = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object)); newmaps = (Lisp_Object *) malloc (cmm_size * sizeof (Lisp_Object)); UNBLOCK_INPUT; } if (newmaps && newmodes) { cmm_modes = newmodes; cmm_maps = newmaps; } else break; } /* Get the keymap definition--or nil if it is not defined. */ temp = internal_condition_case_1 (Findirect_function, XCONS (assoc)->cdr, Qerror, current_minor_maps_error); if (!NILP (temp)) { cmm_modes[i] = var; cmm_maps [i] = temp; i++; } } if (modeptr) *modeptr = cmm_modes; if (mapptr) *mapptr = cmm_maps; return i; } /* GC is possible in this function if it autoloads a keymap. */ DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0, "Return the binding for command KEY in current keymaps.\n\ KEY is a string or vector, a sequence of keystrokes.\n\ The binding is probably a symbol with a function definition.\n\ \n\ Normally, `key-binding' ignores bindings for t, which act as default\n\ bindings, used when nothing else in the keymap applies; this makes it\n\ usable as a general function for probing keymaps. However, if the\n\ optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\ recognize the default bindings, just as `read-key-sequence' does.") (key, accept_default) Lisp_Object key, accept_default; { Lisp_Object *maps, value; int nmaps, i; struct gcpro gcpro1; GCPRO1 (key); if (!NILP (current_kboard->Voverriding_terminal_local_map)) { value = Flookup_key (current_kboard->Voverriding_terminal_local_map, key, accept_default); if (! NILP (value) && !INTEGERP (value)) RETURN_UNGCPRO (value); } else if (!NILP (Voverriding_local_map)) { value = Flookup_key (Voverriding_local_map, key, accept_default); if (! NILP (value) && !INTEGERP (value)) RETURN_UNGCPRO (value); } else { Lisp_Object local; nmaps = current_minor_maps (0, &maps); /* Note that all these maps are GCPRO'd in the places where we found them. */ for (i = 0; i < nmaps; i++) if (! NILP (maps[i])) { value = Flookup_key (maps[i], key, accept_default); if (! NILP (value) && !INTEGERP (value)) RETURN_UNGCPRO (value); } local = get_local_map (PT, current_buffer); if (! NILP (local)) { value = Flookup_key (local, key, accept_default); if (! NILP (value) && !INTEGERP (value)) RETURN_UNGCPRO (value); } } value = Flookup_key (current_global_map, key, accept_default); UNGCPRO; if (! NILP (value) && !INTEGERP (value)) return value; return Qnil; } /* GC is possible in this function if it autoloads a keymap. */ DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0, "Return the binding for command KEYS in current local keymap only.\n\ KEYS is a string, a sequence of keystrokes.\n\ The binding is probably a symbol with a function definition.\n\ \n\ If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\ bindings; see the description of `lookup-key' for more details about this.") (keys, accept_default) Lisp_Object keys, accept_default; { register Lisp_Object map; map = current_buffer->keymap; if (NILP (map)) return Qnil; return Flookup_key (map, keys, accept_default); } /* GC is possible in this function if it autoloads a keymap. */ DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0, "Return the binding for command KEYS in current global keymap only.\n\ KEYS is a string, a sequence of keystrokes.\n\ The binding is probably a symbol with a function definition.\n\ This function's return values are the same as those of lookup-key\n\ \(which see).\n\ \n\ If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\ bindings; see the description of `lookup-key' for more details about this.") (keys, accept_default) Lisp_Object keys, accept_default; { return Flookup_key (current_global_map, keys, accept_default); } /* GC is possible in this function if it autoloads a keymap. */ DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0, "Find the visible minor mode bindings of KEY.\n\ Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\ the symbol which names the minor mode binding KEY, and BINDING is\n\ KEY's definition in that mode. In particular, if KEY has no\n\ minor-mode bindings, return nil. If the first binding is a\n\ non-prefix, all subsequent bindings will be omitted, since they would\n\ be ignored. Similarly, the list doesn't include non-prefix bindings\n\ that come after prefix bindings.\n\ \n\ If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\ bindings; see the description of `lookup-key' for more details about this.") (key, accept_default) Lisp_Object key, accept_default; { Lisp_Object *modes, *maps; int nmaps; Lisp_Object binding; int i, j; struct gcpro gcpro1, gcpro2; nmaps = current_minor_maps (&modes, &maps); /* Note that all these maps are GCPRO'd in the places where we found them. */ binding = Qnil; GCPRO2 (key, binding); for (i = j = 0; i < nmaps; i++) if (! NILP (maps[i]) && ! NILP (binding = Flookup_key (maps[i], key, accept_default)) && !INTEGERP (binding)) { if (! NILP (get_keymap (binding))) maps[j++] = Fcons (modes[i], binding); else if (j == 0) RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil)); } UNGCPRO; return Flist (j, maps); } DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 2, 0, "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\ A new sparse keymap is stored as COMMAND's function definition and its value.\n\ If a second optional argument MAPVAR is given, the map is stored as\n\ its value instead of as COMMAND's value; but COMMAND is still defined\n\ as a function.") (command, mapvar) Lisp_Object command, mapvar; { Lisp_Object map; map = Fmake_sparse_keymap (Qnil); Ffset (command, map); if (!NILP (mapvar)) Fset (mapvar, map); else Fset (command, map); return command; } DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0, "Select KEYMAP as the global keymap.") (keymap) Lisp_Object keymap; { keymap = get_keymap (keymap); current_global_map = keymap; return Qnil; } DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0, "Select KEYMAP as the local keymap.\n\ If KEYMAP is nil, that means no local keymap.") (keymap) Lisp_Object keymap; { if (!NILP (keymap)) keymap = get_keymap (keymap); current_buffer->keymap = keymap; return Qnil; } DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0, "Return current buffer's local keymap, or nil if it has none.") () { return current_buffer->keymap; } DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0, "Return the current global keymap.") () { return current_global_map; } DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0, "Return a list of keymaps for the minor modes of the current buffer.") () { Lisp_Object *maps; int nmaps = current_minor_maps (0, &maps); return Flist (nmaps, maps); } /* Help functions for describing and documenting keymaps. */ /* This function cannot GC. */ DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps, 1, 2, 0, "Find all keymaps accessible via prefix characters from KEYMAP.\n\ Returns a list of elements of the form (KEYS . MAP), where the sequence\n\ KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\ so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\ An optional argument PREFIX, if non-nil, should be a key sequence;\n\ then the value includes only maps for prefixes that start with PREFIX.") (keymap, prefix) Lisp_Object keymap, prefix; { Lisp_Object maps, good_maps, tail; int prefixlen = 0; /* no need for gcpro because we don't autoload any keymaps. */ if (!NILP (prefix)) prefixlen = XINT (Flength (prefix)); if (!NILP (prefix)) { /* If a prefix was specified, start with the keymap (if any) for that prefix, so we don't waste time considering other prefixes. */ Lisp_Object tem; tem = Flookup_key (keymap, prefix, Qt); /* Flookup_key may give us nil, or a number, if the prefix is not defined in this particular map. It might even give us a list that isn't a keymap. */ tem = get_keymap_1 (tem, 0, 0); if (!NILP (tem)) maps = Fcons (Fcons (prefix, tem), Qnil); else return Qnil; } else maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil), get_keymap (keymap)), Qnil); /* For each map in the list maps, look at any other maps it points to, and stick them at the end if they are not already in the list. This is a breadth-first traversal, where tail is the queue of nodes, and maps accumulates a list of all nodes visited. */ for (tail = maps; CONSP (tail); tail = XCONS (tail)->cdr) { register Lisp_Object thisseq, thismap; Lisp_Object last; /* Does the current sequence end in the meta-prefix-char? */ int is_metized; thisseq = Fcar (Fcar (tail)); thismap = Fcdr (Fcar (tail)); last = make_number (XINT (Flength (thisseq)) - 1); is_metized = (XINT (last) >= 0 && EQ (Faref (thisseq, last), meta_prefix_char)); for (; CONSP (thismap); thismap = XCONS (thismap)->cdr) { Lisp_Object elt; elt = XCONS (thismap)->car; QUIT; if (VECTORP (elt)) { register int i; /* Vector keymap. Scan all the elements. */ for (i = 0; i < XVECTOR (elt)->size; i++) { register Lisp_Object tem; register Lisp_Object cmd; cmd = get_keyelt (XVECTOR (elt)->contents[i], 0); if (NILP (cmd)) continue; tem = Fkeymapp (cmd); if (!NILP (tem)) { cmd = get_keymap (cmd); /* Ignore keymaps that are already added to maps. */ tem = Frassq (cmd, maps); if (NILP (tem)) { /* If the last key in thisseq is meta-prefix-char, turn it into a meta-ized keystroke. We know that the event we're about to append is an ascii keystroke since we're processing a keymap table. */ if (is_metized) { int meta_bit = meta_modifier; tem = Fcopy_sequence (thisseq); Faset (tem, last, make_number (i | meta_bit)); /* This new sequence is the same length as thisseq, so stick it in the list right after this one. */ XCONS (tail)->cdr = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr); } else { tem = append_key (thisseq, make_number (i)); nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil)); } } } } } else if (CONSP (elt)) { register Lisp_Object cmd, tem, filter; cmd = get_keyelt (XCONS (elt)->cdr, 0); /* Ignore definitions that aren't keymaps themselves. */ tem = Fkeymapp (cmd); if (!NILP (tem)) { /* Ignore keymaps that have been seen already. */ cmd = get_keymap (cmd); tem = Frassq (cmd, maps); if (NILP (tem)) { /* Let elt be the event defined by this map entry. */ elt = XCONS (elt)->car; /* If the last key in thisseq is meta-prefix-char, and this entry is a binding for an ascii keystroke, turn it into a meta-ized keystroke. */ if (is_metized && INTEGERP (elt)) { tem = Fcopy_sequence (thisseq); Faset (tem, last, make_number (XINT (elt) | meta_modifier)); /* This new sequence is the same length as thisseq, so stick it in the list right after this one. */ XCONS (tail)->cdr = Fcons (Fcons (tem, cmd), XCONS (tail)->cdr); } else nconc2 (tail, Fcons (Fcons (append_key (thisseq, elt), cmd), Qnil)); } } } } } if (NILP (prefix)) return maps; /* Now find just the maps whose access prefixes start with PREFIX. */ good_maps = Qnil; for (; CONSP (maps); maps = XCONS (maps)->cdr) { Lisp_Object elt, thisseq; elt = XCONS (maps)->car; thisseq = XCONS (elt)->car; /* The access prefix must be at least as long as PREFIX, and the first elements must match those of PREFIX. */ if (XINT (Flength (thisseq)) >= prefixlen) { int i; for (i = 0; i < prefixlen; i++) { Lisp_Object i1; XSETFASTINT (i1, i); if (!EQ (Faref (thisseq, i1), Faref (prefix, i1))) break; } if (i == prefixlen) good_maps = Fcons (elt, good_maps); } } return Fnreverse (good_maps); } Lisp_Object Qsingle_key_description, Qkey_description; /* This function cannot GC. */ DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0, "Return a pretty description of key-sequence KEYS.\n\ Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\ spaces are put between sequence elements, etc.") (keys) Lisp_Object keys; { int len; int i; Lisp_Object sep; Lisp_Object *args; if (STRINGP (keys)) { Lisp_Object vector; vector = Fmake_vector (Flength (keys), Qnil); for (i = 0; i < XSTRING (keys)->size; i++) { if (XSTRING (keys)->data[i] & 0x80) XSETFASTINT (XVECTOR (vector)->contents[i], meta_modifier | (XSTRING (keys)->data[i] & ~0x80)); else XSETFASTINT (XVECTOR (vector)->contents[i], XSTRING (keys)->data[i]); } keys = vector; } else if (!VECTORP (keys)) keys = wrong_type_argument (Qarrayp, keys); /* In effect, this computes (mapconcat 'single-key-description keys " ") but we shouldn't use mapconcat because it can do GC. */ len = XVECTOR (keys)->size; sep = build_string (" "); /* This has one extra element at the end that we don't pass to Fconcat. */ args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object)); for (i = 0; i < len; i++) { args[i * 2] = Fsingle_key_description (XVECTOR (keys)->contents[i]); args[i * 2 + 1] = sep; } return Fconcat (len * 2 - 1, args); } char * push_key_description (c, p) register unsigned int c; register char *p; { /* Clear all the meaningless bits above the meta bit. */ c &= meta_modifier | ~ - meta_modifier; if (c & alt_modifier) { *p++ = 'A'; *p++ = '-'; c -= alt_modifier; } if (c & ctrl_modifier) { *p++ = 'C'; *p++ = '-'; c -= ctrl_modifier; } if (c & hyper_modifier) { *p++ = 'H'; *p++ = '-'; c -= hyper_modifier; } if (c & meta_modifier) { *p++ = 'M'; *p++ = '-'; c -= meta_modifier; } if (c & shift_modifier) { *p++ = 'S'; *p++ = '-'; c -= shift_modifier; } if (c & super_modifier) { *p++ = 's'; *p++ = '-'; c -= super_modifier; } if (c < 040) { if (c == 033) { *p++ = 'E'; *p++ = 'S'; *p++ = 'C'; } else if (c == '\t') { *p++ = 'T'; *p++ = 'A'; *p++ = 'B'; } else if (c == Ctl ('M')) { *p++ = 'R'; *p++ = 'E'; *p++ = 'T'; } else { *p++ = 'C'; *p++ = '-'; if (c > 0 && c <= Ctl ('Z')) *p++ = c + 0140; else *p++ = c + 0100; } } else if (c == 0177) { *p++ = 'D'; *p++ = 'E'; *p++ = 'L'; } else if (c == ' ') { *p++ = 'S'; *p++ = 'P'; *p++ = 'C'; } else if (c < 128) *p++ = c; else if (c < 256) *p++ = c; else if (c < 512) { *p++ = '\\'; *p++ = (7 & (c >> 6)) + '0'; *p++ = (7 & (c >> 3)) + '0'; *p++ = (7 & (c >> 0)) + '0'; } else { *p++ = '\\'; *p++ = (7 & (c >> 15)) + '0'; *p++ = (7 & (c >> 12)) + '0'; *p++ = (7 & (c >> 9)) + '0'; *p++ = (7 & (c >> 6)) + '0'; *p++ = (7 & (c >> 3)) + '0'; *p++ = (7 & (c >> 0)) + '0'; } return p; } /* This function cannot GC. */ DEFUN ("single-key-description", Fsingle_key_description, Ssingle_key_description, 1, 1, 0, "Return a pretty description of command character KEY.\n\ Control characters turn into C-whatever, etc.") (key) Lisp_Object key; { char tem[20]; key = EVENT_HEAD (key); if (INTEGERP (key)) /* Normal character */ { *push_key_description (XUINT (key), tem) = 0; return build_string (tem); } else if (SYMBOLP (key)) /* Function key or event-symbol */ return Fsymbol_name (key); else if (STRINGP (key)) /* Buffer names in the menubar. */ return Fcopy_sequence (key); else error ("KEY must be an integer, cons, symbol, or string"); } char * push_text_char_description (c, p) register unsigned int c; register char *p; { if (c >= 0200) { *p++ = 'M'; *p++ = '-'; c -= 0200; } if (c < 040) { *p++ = '^'; *p++ = c + 64; /* 'A' - 1 */ } else if (c == 0177) { *p++ = '^'; *p++ = '?'; } else *p++ = c; return p; } /* This function cannot GC. */ DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0, "Return a pretty description of file-character CHARACTER.\n\ Control characters turn into \"^char\", etc.") (character) Lisp_Object character; { char tem[6]; CHECK_NUMBER (character, 0); if (!SINGLE_BYTE_CHAR_P (XFASTINT (character))) { char *str; int len = non_ascii_char_to_string (XFASTINT (character), tem, &str); return make_string (str, len); } *push_text_char_description (XINT (character) & 0377, tem) = 0; return build_string (tem); } /* Return non-zero if SEQ contains only ASCII characters, perhaps with a meta bit. */ static int ascii_sequence_p (seq) Lisp_Object seq; { int i; int len = XINT (Flength (seq)); for (i = 0; i < len; i++) { Lisp_Object ii, elt; XSETFASTINT (ii, i); elt = Faref (seq, ii); if (!INTEGERP (elt) || (XUINT (elt) & ~CHAR_META) >= 0x80) return 0; } return 1; } /* where-is - finding a command in a set of keymaps. */ /* This function can GC if Flookup_key autoloads any keymaps. */ DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0, "Return list of keys that invoke DEFINITION.\n\ If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\ If KEYMAP is nil, search all the currently active keymaps.\n\ \n\ If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\ rather than a list of all possible key sequences.\n\ If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\ no matter what it is.\n\ If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\ and entirely reject menu bindings.\n\ \n\ If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\ to other keymaps or slots. This makes it possible to search for an\n\ indirect definition itself.") (definition, keymap, firstonly, noindirect) Lisp_Object definition, keymap; Lisp_Object firstonly, noindirect; { Lisp_Object maps; Lisp_Object found, sequence; int keymap_specified = !NILP (keymap); struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5; /* 1 means ignore all menu bindings entirely. */ int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii); if (! keymap_specified) { #ifdef USE_TEXT_PROPERTIES keymap = get_local_map (PT, current_buffer); #else keymap = current_buffer->keymap; #endif } if (!NILP (keymap)) maps = nconc2 (Faccessible_keymaps (get_keymap (keymap), Qnil), Faccessible_keymaps (get_keymap (current_global_map), Qnil)); else maps = Faccessible_keymaps (get_keymap (current_global_map), Qnil); /* Put the minor mode keymaps on the front. */ if (! keymap_specified) { Lisp_Object minors; minors = Fnreverse (Fcurrent_minor_mode_maps ()); while (!NILP (minors)) { maps = nconc2 (Faccessible_keymaps (get_keymap (XCONS (minors)->car), Qnil), maps); minors = XCONS (minors)->cdr; } } GCPRO5 (definition, keymap, maps, found, sequence); found = Qnil; sequence = Qnil; for (; !NILP (maps); maps = Fcdr (maps)) { /* Key sequence to reach map, and the map that it reaches */ register Lisp_Object this, map; /* If Fcar (map) is a VECTOR, the current element within that vector. */ int i = 0; /* In order to fold [META-PREFIX-CHAR CHAR] sequences into [M-CHAR] sequences, check if last character of the sequence is the meta-prefix char. */ Lisp_Object last; int last_is_meta; this = Fcar (Fcar (maps)); map = Fcdr (Fcar (maps)); last = make_number (XINT (Flength (this)) - 1); last_is_meta = (XINT (last) >= 0 && EQ (Faref (this, last), meta_prefix_char)); QUIT; while (CONSP (map)) { /* Because the code we want to run on each binding is rather large, we don't want to have two separate loop bodies for sparse keymap bindings and tables; we want to iterate one loop body over both keymap and vector bindings. For this reason, if Fcar (map) is a vector, we don't advance map to the next element until i indicates that we have finished off the vector. */ Lisp_Object elt, key, binding; elt = XCONS (map)->car; QUIT; /* Set key and binding to the current key and binding, and advance map and i to the next binding. */ if (VECTORP (elt)) { /* In a vector, look at each element. */ binding = XVECTOR (elt)->contents[i]; XSETFASTINT (key, i); i++; /* If we've just finished scanning a vector, advance map to the next element, and reset i in anticipation of the next vector we may find. */ if (i >= XVECTOR (elt)->size) { map = XCONS (map)->cdr; i = 0; } } else if (CONSP (elt)) { key = Fcar (Fcar (map)); binding = Fcdr (Fcar (map)); map = XCONS (map)->cdr; } else /* We want to ignore keymap elements that are neither vectors nor conses. */ { map = XCONS (map)->cdr; continue; } /* Search through indirections unless that's not wanted. */ if (NILP (noindirect)) { if (nomenus) { while (1) { Lisp_Object map, tem; /* If the contents are (KEYMAP . ELEMENT), go indirect. */ map = get_keymap_1 (Fcar_safe (definition), 0, 0); tem = Fkeymapp (map); if (!NILP (tem)) definition = access_keymap (map, Fcdr (definition), 0, 0); else break; } /* If the contents are (STRING ...), reject. */ if (CONSP (definition) && STRINGP (XCONS (definition)->car)) continue; } else binding = get_keyelt (binding, 0); } /* End this iteration if this element does not match the target. */ if (CONSP (definition)) { Lisp_Object tem; tem = Fequal (binding, definition); if (NILP (tem)) continue; } else if (!EQ (binding, definition)) continue; /* We have found a match. Construct the key sequence where we found it. */ if (INTEGERP (key) && last_is_meta) { sequence = Fcopy_sequence (this); Faset (sequence, last, make_number (XINT (key) | meta_modifier)); } else sequence = append_key (this, key); /* Verify that this key binding is not shadowed by another binding for the same key, before we say it exists. Mechanism: look for local definition of this key and if it is defined and does not match what we found then ignore this key. Either nil or number as value from Flookup_key means undefined. */ if (keymap_specified) { binding = Flookup_key (keymap, sequence, Qnil); if (!NILP (binding) && !INTEGERP (binding)) { if (CONSP (definition)) { Lisp_Object tem; tem = Fequal (binding, definition); if (NILP (tem)) continue; } else if (!EQ (binding, definition)) continue; } } else { binding = Fkey_binding (sequence, Qnil); if (!EQ (binding, definition)) continue; } /* It is a true unshadowed match. Record it, unless it's already been seen (as could happen when inheriting keymaps). */ if (NILP (Fmember (sequence, found))) found = Fcons (sequence, found); /* If firstonly is Qnon_ascii, then we can return the first binding we find. If firstonly is not Qnon_ascii but not nil, then we should return the first ascii-only binding we find. */ if (EQ (firstonly, Qnon_ascii)) RETURN_UNGCPRO (sequence); else if (! NILP (firstonly) && ascii_sequence_p (sequence)) RETURN_UNGCPRO (sequence); } } UNGCPRO; found = Fnreverse (found); /* firstonly may have been t, but we may have gone all the way through the keymaps without finding an all-ASCII key sequence. So just return the best we could find. */ if (! NILP (firstonly)) return Fcar (found); return found; } /* describe-bindings - summarizing all the bindings in a set of keymaps. */ DEFUN ("describe-bindings", Fdescribe_bindings, Sdescribe_bindings, 0, 1, "", "Show a list of all defined keys, and their definitions.\n\ The list is put in a buffer, which is displayed.\n\ An optional argument PREFIX, if non-nil, should be a key sequence;\n\ then we display only bindings that start with that prefix.") (prefix) Lisp_Object prefix; { register Lisp_Object thisbuf; XSETBUFFER (thisbuf, current_buffer); internal_with_output_to_temp_buffer ("*Help*", describe_buffer_bindings, Fcons (thisbuf, prefix)); return Qnil; } /* ARG is (BUFFER . PREFIX). */ static Lisp_Object describe_buffer_bindings (arg) Lisp_Object arg; { Lisp_Object descbuf, prefix, shadow; register Lisp_Object start1; struct gcpro gcpro1; char *alternate_heading = "\ Alternate Characters (use anywhere the nominal character is listed):\n\ nominal alternate\n\ ------- ---------\n"; descbuf = XCONS (arg)->car; prefix = XCONS (arg)->cdr; shadow = Qnil; GCPRO1 (shadow); Fset_buffer (Vstandard_output); /* Report on alternates for keys. */ if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix)) { int c; unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data; int translate_len = XSTRING (Vkeyboard_translate_table)->size; for (c = 0; c < translate_len; c++) if (translate[c] != c) { char buf[20]; char *bufend; if (alternate_heading) { insert_string (alternate_heading); alternate_heading = 0; } bufend = push_key_description (translate[c], buf); insert (buf, bufend - buf); Findent_to (make_number (16), make_number (1)); bufend = push_key_description (c, buf); insert (buf, bufend - buf); insert ("\n", 1); } insert ("\n", 1); } if (!NILP (Vkey_translation_map)) describe_map_tree (Vkey_translation_map, 0, Qnil, prefix, "Key translations", 0, 1, 0); { int i, nmaps; Lisp_Object *modes, *maps; /* Temporarily switch to descbuf, so that we can get that buffer's minor modes correctly. */ Fset_buffer (descbuf); if (!NILP (current_kboard->Voverriding_terminal_local_map) || !NILP (Voverriding_local_map)) nmaps = 0; else nmaps = current_minor_maps (&modes, &maps); Fset_buffer (Vstandard_output); /* Print the minor mode maps. */ for (i = 0; i < nmaps; i++) { /* The title for a minor mode keymap is constructed at run time. We let describe_map_tree do the actual insertion because it takes care of other features when doing so. */ char *title, *p; if (!SYMBOLP (modes[i])) abort(); p = title = (char *) alloca (40 + XSYMBOL (modes[i])->name->size); *p++ = '`'; bcopy (XSYMBOL (modes[i])->name->data, p, XSYMBOL (modes[i])->name->size); p += XSYMBOL (modes[i])->name->size; *p++ = '\''; bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1); p += sizeof (" Minor Mode Bindings") - 1; *p = 0; describe_map_tree (maps[i], 1, shadow, prefix, title, 0, 0, 0); shadow = Fcons (maps[i], shadow); } } /* Print the (major mode) local map. */ if (!NILP (current_kboard->Voverriding_terminal_local_map)) start1 = current_kboard->Voverriding_terminal_local_map; else if (!NILP (Voverriding_local_map)) start1 = Voverriding_local_map; else start1 = XBUFFER (descbuf)->keymap; if (!NILP (start1)) { describe_map_tree (start1, 1, shadow, prefix, "Major Mode Bindings", 0, 0, 0); shadow = Fcons (start1, shadow); } describe_map_tree (current_global_map, 1, shadow, prefix, "Global Bindings", 0, 0, 1); /* Print the function-key-map translations under this prefix. */ if (!NILP (Vfunction_key_map)) describe_map_tree (Vfunction_key_map, 0, Qnil, prefix, "Function key map translations", 0, 1, 0); call0 (intern ("help-mode")); Fset_buffer (descbuf); UNGCPRO; return Qnil; } /* Insert a description of the key bindings in STARTMAP, followed by those of all maps reachable through STARTMAP. If PARTIAL is nonzero, omit certain "uninteresting" commands (such as `undefined'). If SHADOW is non-nil, it is a list of maps; don't mention keys which would be shadowed by any of them. PREFIX, if non-nil, says mention only keys that start with PREFIX. TITLE, if not 0, is a string to insert at the beginning. TITLE should not end with a colon or a newline; we supply that. If NOMENU is not 0, then omit menu-bar commands. If TRANSL is nonzero, the definitions are actually key translations so print strings and vectors differently. If ALWAYS_TITLE is nonzero, print the title even if there are no maps to look through. */ void describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl, always_title) Lisp_Object startmap, shadow, prefix; int partial; char *title; int nomenu; int transl; int always_title; { Lisp_Object maps, seen, sub_shadows; struct gcpro gcpro1, gcpro2, gcpro3; int something = 0; char *key_heading = "\ key binding\n\ --- -------\n"; maps = Faccessible_keymaps (startmap, prefix); seen = Qnil; sub_shadows = Qnil; GCPRO3 (maps, seen, sub_shadows); if (nomenu) { Lisp_Object list; /* Delete from MAPS each element that is for the menu bar. */ for (list = maps; !NILP (list); list = XCONS (list)->cdr) { Lisp_Object elt, prefix, tem; elt = Fcar (list); prefix = Fcar (elt); if (XVECTOR (prefix)->size >= 1) { tem = Faref (prefix, make_number (0)); if (EQ (tem, Qmenu_bar)) maps = Fdelq (elt, maps); } } } if (!NILP (maps) || always_title) { if (title) { insert_string (title); if (!NILP (prefix)) { insert_string (" Starting With "); insert1 (Fkey_description (prefix)); } insert_string (":\n"); } insert_string (key_heading); something = 1; } for (; !NILP (maps); maps = Fcdr (maps)) { register Lisp_Object elt, prefix, tail; elt = Fcar (maps); prefix = Fcar (elt); sub_shadows = Qnil; for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr) { Lisp_Object shmap; shmap = XCONS (tail)->car; /* If the sequence by which we reach this keymap is zero-length, then the shadow map for this keymap is just SHADOW. */ if ((STRINGP (prefix) && XSTRING (prefix)->size == 0) || (VECTORP (prefix) && XVECTOR (prefix)->size == 0)) ; /* If the sequence by which we reach this keymap actually has some elements, then the sequence's definition in SHADOW is what we should use. */ else { shmap = Flookup_key (shmap, Fcar (elt), Qt); if (INTEGERP (shmap)) shmap = Qnil; } /* If shmap is not nil and not a keymap, it completely shadows this map, so don't describe this map at all. */ if (!NILP (shmap) && NILP (Fkeymapp (shmap))) goto skip; if (!NILP (shmap)) sub_shadows = Fcons (shmap, sub_shadows); } describe_map (Fcdr (elt), Fcar (elt), transl ? describe_translation : describe_command, partial, sub_shadows, &seen, nomenu); skip: ; } if (something) insert_string ("\n"); UNGCPRO; } static int previous_description_column; static void describe_command (definition) Lisp_Object definition; { register Lisp_Object tem1; int column = current_column (); int description_column; /* If column 16 is no good, go to col 32; but don't push beyond that--go to next line instead. */ if (column > 30) { insert_char ('\n'); description_column = 32; } else if (column > 14 || (column > 10 && previous_description_column == 32)) description_column = 32; else description_column = 16; Findent_to (make_number (description_column), make_number (1)); previous_description_column = description_column; if (SYMBOLP (definition)) { XSETSTRING (tem1, XSYMBOL (definition)->name); insert1 (tem1); insert_string ("\n"); } else if (STRINGP (definition) || VECTORP (definition)) insert_string ("Keyboard Macro\n"); else { tem1 = Fkeymapp (definition); if (!NILP (tem1)) insert_string ("Prefix Command\n"); else insert_string ("??\n"); } } static void describe_translation (definition) Lisp_Object definition; { register Lisp_Object tem1; Findent_to (make_number (16), make_number (1)); if (SYMBOLP (definition)) { XSETSTRING (tem1, XSYMBOL (definition)->name); insert1 (tem1); insert_string ("\n"); } else if (STRINGP (definition) || VECTORP (definition)) { insert1 (Fkey_description (definition)); insert_string ("\n"); } else { tem1 = Fkeymapp (definition); if (!NILP (tem1)) insert_string ("Prefix Command\n"); else insert_string ("??\n"); } } /* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map. Returns the first non-nil binding found in any of those maps. */ static Lisp_Object shadow_lookup (shadow, key, flag) Lisp_Object shadow, key, flag; { Lisp_Object tail, value; for (tail = shadow; CONSP (tail); tail = XCONS (tail)->cdr) { value = Flookup_key (XCONS (tail)->car, key, flag); if (!NILP (value)) return value; } return Qnil; } /* Describe the contents of map MAP, assuming that this map itself is reached by the sequence of prefix keys KEYS (a string or vector). PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */ static void describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu) register Lisp_Object map; Lisp_Object keys; int (*elt_describer) (); int partial; Lisp_Object shadow; Lisp_Object *seen; int nomenu; { Lisp_Object elt_prefix; Lisp_Object tail, definition, event; Lisp_Object tem; Lisp_Object suppress; Lisp_Object kludge; int first = 1; struct gcpro gcpro1, gcpro2, gcpro3; if (!NILP (keys) && XFASTINT (Flength (keys)) > 0) { /* Call Fkey_description first, to avoid GC bug for the other string. */ tem = Fkey_description (keys); elt_prefix = concat2 (tem, build_string (" ")); } else elt_prefix = Qnil; if (partial) suppress = intern ("suppress-keymap"); /* This vector gets used to present single keys to Flookup_key. Since that is done once per keymap element, we don't want to cons up a fresh vector every time. */ kludge = Fmake_vector (make_number (1), Qnil); definition = Qnil; GCPRO3 (elt_prefix, definition, kludge); for (tail = map; CONSP (tail); tail = XCONS (tail)->cdr) { QUIT; if (VECTORP (XCONS (tail)->car)) describe_vector (XCONS (tail)->car, elt_prefix, elt_describer, partial, shadow, map); else if (CONSP (XCONS (tail)->car)) { event = XCONS (XCONS (tail)->car)->car; /* Ignore bindings whose "keys" are not really valid events. (We get these in the frames and buffers menu.) */ if (! (SYMBOLP (event) || INTEGERP (event))) continue; if (nomenu && EQ (event, Qmenu_bar)) continue; definition = get_keyelt (XCONS (XCONS (tail)->car)->cdr, 0); /* Don't show undefined commands or suppressed commands. */ if (NILP (definition)) continue; if (SYMBOLP (definition) && partial) { tem = Fget (definition, suppress); if (!NILP (tem)) continue; } /* Don't show a command that isn't really visible because a local definition of the same key shadows it. */ XVECTOR (kludge)->contents[0] = event; if (!NILP (shadow)) { tem = shadow_lookup (shadow, kludge, Qt); if (!NILP (tem)) continue; } tem = Flookup_key (map, kludge, Qt); if (! EQ (tem, definition)) continue; if (first) { previous_description_column = 0; insert ("\n", 1); first = 0; } if (!NILP (elt_prefix)) insert1 (elt_prefix); /* THIS gets the string to describe the character EVENT. */ insert1 (Fsingle_key_description (event)); /* Print a description of the definition of this character. elt_describer will take care of spacing out far enough for alignment purposes. */ (*elt_describer) (definition); } else if (EQ (XCONS (tail)->car, Qkeymap)) { /* The same keymap might be in the structure twice, if we're using an inherited keymap. So skip anything we've already encountered. */ tem = Fassq (tail, *seen); if (CONSP (tem) && !NILP (Fequal (XCONS (tem)->car, keys))) break; *seen = Fcons (Fcons (tail, keys), *seen); } } UNGCPRO; } static int describe_vector_princ (elt) Lisp_Object elt; { Findent_to (make_number (16), make_number (1)); Fprinc (elt, Qnil); Fterpri (Qnil); } DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0, "Insert a description of contents of VECTOR.\n\ This is text showing the elements of vector matched against indices.") (vector) Lisp_Object vector; { int count = specpdl_ptr - specpdl; specbind (Qstandard_output, Fcurrent_buffer ()); CHECK_VECTOR_OR_CHAR_TABLE (vector, 0); describe_vector (vector, Qnil, describe_vector_princ, 0, Qnil, Qnil); return unbind_to (count, Qnil); } /* Insert in the current buffer a description of the contents of VECTOR. We call ELT_DESCRIBER to insert the description of one value found in VECTOR. ELT_PREFIX describes what "comes before" the keys or indices defined by this vector. If the vector is in a keymap, ELT_PREFIX is a prefix key which leads to this keymap. If the vector is a chartable, ELT_PREFIX is the vector of bytes that lead to the character set or portion of a character set described by this chartable. If PARTIAL is nonzero, it means do not mention suppressed commands (that assumes the vector is in a keymap). SHADOW is a list of keymaps that shadow this map. If it is non-nil, then we look up the key in those maps and we don't mention it now if it is defined by any of them. ENTIRE_MAP is the keymap in which this vector appears. If the definition in effect in the whole map does not match the one in this vector, we ignore this one. */ describe_vector (vector, elt_prefix, elt_describer, partial, shadow, entire_map) register Lisp_Object vector; Lisp_Object elt_prefix; int (*elt_describer) (); int partial; Lisp_Object shadow; Lisp_Object entire_map; { Lisp_Object dummy; Lisp_Object definition; Lisp_Object tem2; register int i; Lisp_Object suppress; Lisp_Object kludge; Lisp_Object chartable_kludge; int first = 1; struct gcpro gcpro1, gcpro2, gcpro3, gcpro4; /* Range of elements to be handled. */ int from, to; /* The current depth of VECTOR if it is char-table. */ int this_level; /* Flag to tell if we should handle multibyte characters. */ int multibyte = !NILP (current_buffer->enable_multibyte_characters); /* Array of indices to access each level of char-table. The elements are charset, code1, and code2. */ int idx[3]; /* A flag to tell if a leaf in this level of char-table is not a generic character (i.e. a complete multibyte character). */ int complete_char; definition = Qnil; /* This vector gets used to present single keys to Flookup_key. Since that is done once per vector element, we don't want to cons up a fresh vector every time. */ kludge = Fmake_vector (make_number (1), Qnil); GCPRO4 (elt_prefix, definition, kludge, chartable_kludge); if (partial) suppress = intern ("suppress-keymap"); if (CHAR_TABLE_P (vector)) { /* Prepare for handling a nested char-table. */ if (NILP (elt_prefix)) { /* VECTOR is the top level of char-table. */ this_level = 0; complete_char = 0; from = 0; to = CHAR_TABLE_ORDINARY_SLOTS; } else { /* VECTOR is the deeper level of char-table. */ this_level = XVECTOR (elt_prefix)->size; if (this_level >= 3) /* A char-table is not that deep. */ wrong_type_argument (Qchar_table_p, vector); /* For multibyte characters, the top level index for charsets starts from 256. */ idx[0] = XINT (XVECTOR (elt_prefix)->contents[0]) - 128; for (i = 1; i < this_level; i++) idx[i] = XINT (XVECTOR (elt_prefix)->contents[i]); complete_char = (CHARSET_VALID_P (idx[0]) && ((CHARSET_DIMENSION (idx[0]) == 1 && this_level == 1) || this_level == 2)); /* Meaningful elements are from 32th to 127th. */ from = 32; to = 128; } chartable_kludge = Fmake_vector (make_number (this_level + 1), Qnil); if (this_level != 0) bcopy (XVECTOR (elt_prefix)->contents, XVECTOR (chartable_kludge)->contents, this_level * sizeof (Lisp_Object)); } else { this_level = 0; from = 0; /* This does the right thing for ordinary vectors. */ to = XFASTINT (Flength (vector)); /* Now, can this be just `XVECTOR (vector)->size'? -- K.Handa */ } for (i = from; i < to; i++) { QUIT; if (this_level == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS && !CHARSET_DEFINED_P (i - 128)) continue; definition = get_keyelt (XVECTOR (vector)->contents[i], 0); if (NILP (definition)) continue; /* Don't mention suppressed commands. */ if (SYMBOLP (definition) && partial) { Lisp_Object tem; tem = Fget (definition, suppress); if (!NILP (tem)) continue; } /* If this binding is shadowed by some other map, ignore it. */ if (!NILP (shadow)) { Lisp_Object tem; XVECTOR (kludge)->contents[0] = make_number (i); tem = shadow_lookup (shadow, kludge, Qt); if (!NILP (tem)) continue; } /* Ignore this definition if it is shadowed by an earlier one in the same keymap. */ if (!NILP (entire_map)) { Lisp_Object tem; XVECTOR (kludge)->contents[0] = make_number (i); tem = Flookup_key (entire_map, kludge, Qt); if (! EQ (tem, definition)) continue; } if (first) { if (this_level == 0) insert ("\n", 1); first = 0; } /* If VECTOR is a deeper char-table, show the depth by indentation. THIS_LEVEL can be greater than 0 only for char-table. */ if (this_level > 0) insert (" ", this_level * 2); /* THIS_LEVEL is 1 or 2. */ /* Get a Lisp object for the character I. */ XSETFASTINT (dummy, i); if (CHAR_TABLE_P (vector)) { if (complete_char) { /* Combine ELT_PREFIX with I to produce a character code, then insert that character's description. */ idx[this_level] = i; insert_char (MAKE_NON_ASCII_CHAR (idx[0], idx[1], idx[2])); } else if (this_level > 0) { /* We need an octal representation. */ char work[5]; sprintf (work, "\\%03o", i & 255); insert (work, 4); } else insert1 (Fsingle_key_description (dummy)); } else { /* Output the prefix that applies to every entry in this map. */ if (!NILP (elt_prefix)) insert1 (elt_prefix); /* Get the string to describe the character DUMMY, and print it. */ insert1 (Fsingle_key_description (dummy)); } /* If we find a char-table within a char-table, scan it recursively; it defines the details for a character set or a portion of a character set. */ if (multibyte && CHAR_TABLE_P (vector) && CHAR_TABLE_P (definition)) { if (this_level == 0 && CHARSET_VALID_P (i - 128)) { /* Before scanning the deeper table, print the information for this character set. */ insert_string ("\t\tsize, 0); insert (">", 1); } insert ("\n", 1); XVECTOR (chartable_kludge)->contents[this_level] = make_number (i); describe_vector (definition, chartable_kludge, elt_describer, partial, shadow, entire_map); continue; } /* Find all consecutive characters that have the same definition. */ while (i + 1 < to && (tem2 = get_keyelt (XVECTOR (vector)->contents[i+1], 0), !NILP (tem2)) && !NILP (Fequal (tem2, definition))) i++; /* If we have a range of more than one character, print where the range reaches to. */ if (i != XINT (dummy)) { insert (" .. ", 4); if (CHAR_TABLE_P (vector)) { if (complete_char) { idx[this_level] = i; insert_char (MAKE_NON_ASCII_CHAR (idx[0], idx[1], idx[2])); } else if (this_level > 0) { char work[5]; sprintf (work, "\\%03o", i & 255); insert (work, 4); } else { XSETFASTINT (dummy, i); insert1 (Fsingle_key_description (dummy)); } } else { if (!NILP (elt_prefix) && !CHAR_TABLE_P (vector)) insert1 (elt_prefix); XSETFASTINT (dummy, i); insert1 (Fsingle_key_description (dummy)); } } /* Print a description of the definition of this character. elt_describer will take care of spacing out far enough for alignment purposes. */ (*elt_describer) (definition); } /* For char-table, print `defalt' slot at last. */ if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt)) { insert (" ", this_level * 2); insert_string ("<>"); (*elt_describer) (XCHAR_TABLE (vector)->defalt); } UNGCPRO; } /* Apropos - finding all symbols whose names match a regexp. */ Lisp_Object apropos_predicate; Lisp_Object apropos_accumulate; static void apropos_accum (symbol, string) Lisp_Object symbol, string; { register Lisp_Object tem; tem = Fstring_match (string, Fsymbol_name (symbol), Qnil); if (!NILP (tem) && !NILP (apropos_predicate)) tem = call1 (apropos_predicate, symbol); if (!NILP (tem)) apropos_accumulate = Fcons (symbol, apropos_accumulate); } DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0, "Show all symbols whose names contain match for REGEXP.\n\ If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\ for each symbol and a symbol is mentioned only if that returns non-nil.\n\ Return list of symbols found.") (regexp, predicate) Lisp_Object regexp, predicate; { struct gcpro gcpro1, gcpro2; CHECK_STRING (regexp, 0); apropos_predicate = predicate; GCPRO2 (apropos_predicate, apropos_accumulate); apropos_accumulate = Qnil; map_obarray (Vobarray, apropos_accum, regexp); apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp); UNGCPRO; return apropos_accumulate; } syms_of_keymap () { Lisp_Object tem; Qkeymap = intern ("keymap"); staticpro (&Qkeymap); /* Initialize the keymaps standardly used. Each one is the value of a Lisp variable, and is also pointed to by a C variable */ global_map = Fcons (Qkeymap, Fcons (Fmake_vector (make_number (0400), Qnil), Qnil)); Fset (intern ("global-map"), global_map); current_global_map = global_map; staticpro (&global_map); staticpro (¤t_global_map); meta_map = Fmake_keymap (Qnil); Fset (intern ("esc-map"), meta_map); Ffset (intern ("ESC-prefix"), meta_map); control_x_map = Fmake_keymap (Qnil); Fset (intern ("ctl-x-map"), control_x_map); Ffset (intern ("Control-X-prefix"), control_x_map); DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands, "List of commands given new key bindings recently.\n\ This is used for internal purposes during Emacs startup;\n\ don't alter it yourself."); Vdefine_key_rebound_commands = Qt; DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map, "Default keymap to use when reading from the minibuffer."); Vminibuffer_local_map = Fmake_sparse_keymap (Qnil); DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map, "Local keymap for the minibuffer when spaces are not allowed."); Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil); DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map, "Local keymap for minibuffer input with completion."); Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil); DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map, "Local keymap for minibuffer input with completion, for exact match."); Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil); DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist, "Alist of keymaps to use for minor modes.\n\ Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\ key sequences and look up bindings iff VARIABLE's value is non-nil.\n\ If two active keymaps bind the same key, the keymap appearing earlier\n\ in the list takes precedence."); Vminor_mode_map_alist = Qnil; DEFVAR_LISP ("function-key-map", &Vfunction_key_map, "Keymap mapping ASCII function key sequences onto their preferred forms.\n\ This allows Emacs to recognize function keys sent from ASCII\n\ terminals at any point in a key sequence.\n\ \n\ The `read-key-sequence' function replaces any subsequence bound by\n\ `function-key-map' with its binding. More precisely, when the active\n\ keymaps have no binding for the current key sequence but\n\ `function-key-map' binds a suffix of the sequence to a vector or string,\n\ `read-key-sequence' replaces the matching suffix with its binding, and\n\ continues with the new sequence.\n\ \n\ The events that come from bindings in `function-key-map' are not\n\ themselves looked up in `function-key-map'.\n\ \n\ For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\ Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\ `C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\ key, typing `ESC O P x' would return [f1 x]."); Vfunction_key_map = Fmake_sparse_keymap (Qnil); DEFVAR_LISP ("key-translation-map", &Vkey_translation_map, "Keymap of key translations that can override keymaps.\n\ This keymap works like `function-key-map', but comes after that,\n\ and applies even for keys that have ordinary bindings."); Vkey_translation_map = Qnil; Qsingle_key_description = intern ("single-key-description"); staticpro (&Qsingle_key_description); Qkey_description = intern ("key-description"); staticpro (&Qkey_description); Qkeymapp = intern ("keymapp"); staticpro (&Qkeymapp); Qnon_ascii = intern ("non-ascii"); staticpro (&Qnon_ascii); defsubr (&Skeymapp); defsubr (&Skeymap_parent); defsubr (&Sset_keymap_parent); defsubr (&Smake_keymap); defsubr (&Smake_sparse_keymap); defsubr (&Scopy_keymap); defsubr (&Skey_binding); defsubr (&Slocal_key_binding); defsubr (&Sglobal_key_binding); defsubr (&Sminor_mode_key_binding); defsubr (&Sdefine_key); defsubr (&Slookup_key); defsubr (&Sdefine_prefix_command); defsubr (&Suse_global_map); defsubr (&Suse_local_map); defsubr (&Scurrent_local_map); defsubr (&Scurrent_global_map); defsubr (&Scurrent_minor_mode_maps); defsubr (&Saccessible_keymaps); defsubr (&Skey_description); defsubr (&Sdescribe_vector); defsubr (&Ssingle_key_description); defsubr (&Stext_char_description); defsubr (&Swhere_is_internal); defsubr (&Sdescribe_bindings); defsubr (&Sapropos_internal); } keys_of_keymap () { Lisp_Object tem; initial_define_key (global_map, 033, "ESC-prefix"); initial_define_key (global_map, Ctl('X'), "Control-X-prefix"); }