/* Updating of data structures for redisplay.
Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995,
1997, 1998, 1999, 2000, 2001, 2002, 2003,
2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
#include
#include
#include
#include
#ifdef HAVE_UNISTD_H
#include
#endif
#include "lisp.h"
#include "termchar.h"
#include "termopts.h"
/* cm.h must come after dispextern.h on Windows. */
#include "dispextern.h"
#include "cm.h"
#include "buffer.h"
#include "character.h"
#include "keyboard.h"
#include "frame.h"
#include "termhooks.h"
#include "window.h"
#include "commands.h"
#include "disptab.h"
#include "indent.h"
#include "intervals.h"
#include "blockinput.h"
#include "process.h"
/* I don't know why DEC Alpha OSF1 fail to compile this file if we
include the following file. */
/* #include "systty.h" */
#include "syssignal.h"
#ifdef HAVE_X_WINDOWS
#include "xterm.h"
#endif /* HAVE_X_WINDOWS */
#ifdef HAVE_NTGUI
#include "w32term.h"
#endif /* HAVE_NTGUI */
#ifdef HAVE_NS
#include "nsterm.h"
#endif
/* Include systime.h after xterm.h to avoid double inclusion of time.h. */
#include "systime.h"
#include
/* To get the prototype for `sleep'. */
#ifdef HAVE_UNISTD_H
#include
#endif
/* Get number of chars of output now in the buffer of a stdio stream.
This ought to be built in in stdio, but it isn't. Some s- files
override this because their stdio internals differ. */
#ifdef __GNU_LIBRARY__
/* The s- file might have overridden the definition with one that
works for the system's C library. But we are using the GNU C
library, so this is the right definition for every system. */
#ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT
#define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT
#else
#undef PENDING_OUTPUT_COUNT
#define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer)
#endif
#else /* not __GNU_LIBRARY__ */
#if !defined (PENDING_OUTPUT_COUNT) && HAVE_STDIO_EXT_H && HAVE___FPENDING
#include
#define PENDING_OUTPUT_COUNT(FILE) __fpending (FILE)
#endif
#ifndef PENDING_OUTPUT_COUNT
#define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base)
#endif
#endif /* not __GNU_LIBRARY__ */
#if defined(HAVE_TERM_H) && defined (GNU_LINUX) && defined (HAVE_LIBNCURSES)
#include /* for tgetent */
#endif
/* Structure to pass dimensions around. Used for character bounding
boxes, glyph matrix dimensions and alike. */
struct dim
{
int width;
int height;
};
/* Function prototypes. */
static struct glyph_matrix *save_current_matrix P_ ((struct frame *));
static void restore_current_matrix P_ ((struct frame *, struct glyph_matrix *));
static int showing_window_margins_p P_ ((struct window *));
static void fake_current_matrices P_ ((Lisp_Object));
static void redraw_overlapping_rows P_ ((struct window *, int));
static void redraw_overlapped_rows P_ ((struct window *, int));
static int count_blanks P_ ((struct glyph *, int));
static int count_match P_ ((struct glyph *, struct glyph *,
struct glyph *, struct glyph *));
static unsigned line_draw_cost P_ ((struct glyph_matrix *, int));
static void update_frame_line P_ ((struct frame *, int));
static struct dim allocate_matrices_for_frame_redisplay
P_ ((Lisp_Object, int, int, int, int *));
static void allocate_matrices_for_window_redisplay P_ ((struct window *));
static int realloc_glyph_pool P_ ((struct glyph_pool *, struct dim));
static void adjust_frame_glyphs P_ ((struct frame *));
struct glyph_matrix *new_glyph_matrix P_ ((struct glyph_pool *));
static void free_glyph_matrix P_ ((struct glyph_matrix *));
static void adjust_glyph_matrix P_ ((struct window *, struct glyph_matrix *,
int, int, struct dim));
static void change_frame_size_1 P_ ((struct frame *, int, int, int, int, int));
static void swap_glyph_pointers P_ ((struct glyph_row *, struct glyph_row *));
#if GLYPH_DEBUG
static int glyph_row_slice_p P_ ((struct glyph_row *, struct glyph_row *));
#endif
static void fill_up_frame_row_with_spaces P_ ((struct glyph_row *, int));
static void build_frame_matrix_from_window_tree P_ ((struct glyph_matrix *,
struct window *));
static void build_frame_matrix_from_leaf_window P_ ((struct glyph_matrix *,
struct window *));
static struct glyph_pool *new_glyph_pool P_ ((void));
static void free_glyph_pool P_ ((struct glyph_pool *));
static void adjust_frame_glyphs_initially P_ ((void));
static void adjust_frame_message_buffer P_ ((struct frame *));
static void adjust_decode_mode_spec_buffer P_ ((struct frame *));
static void fill_up_glyph_row_with_spaces P_ ((struct glyph_row *));
static void build_frame_matrix P_ ((struct frame *));
void clear_current_matrices P_ ((struct frame *));
void scroll_glyph_matrix_range P_ ((struct glyph_matrix *, int, int,
int, int));
static void clear_window_matrices P_ ((struct window *, int));
static void fill_up_glyph_row_area_with_spaces P_ ((struct glyph_row *, int));
static int scrolling_window P_ ((struct window *, int));
static int update_window_line P_ ((struct window *, int, int *));
static void update_marginal_area P_ ((struct window *, int, int));
static int update_text_area P_ ((struct window *, int));
static void make_current P_ ((struct glyph_matrix *, struct glyph_matrix *,
int));
static void mirror_make_current P_ ((struct window *, int));
void check_window_matrix_pointers P_ ((struct window *));
#if GLYPH_DEBUG
static void check_matrix_pointers P_ ((struct glyph_matrix *,
struct glyph_matrix *));
#endif
static void mirror_line_dance P_ ((struct window *, int, int, int *, char *));
static int update_window_tree P_ ((struct window *, int));
static int update_window P_ ((struct window *, int));
static int update_frame_1 P_ ((struct frame *, int, int));
static void set_window_cursor_after_update P_ ((struct window *));
static int row_equal_p P_ ((struct window *, struct glyph_row *,
struct glyph_row *, int));
static void adjust_frame_glyphs_for_window_redisplay P_ ((struct frame *));
static void adjust_frame_glyphs_for_frame_redisplay P_ ((struct frame *));
static void reverse_rows P_ ((struct glyph_matrix *, int, int));
static int margin_glyphs_to_reserve P_ ((struct window *, int, Lisp_Object));
static void sync_window_with_frame_matrix_rows P_ ((struct window *));
struct window *frame_row_to_window P_ ((struct window *, int));
/* Non-zero means don't pause redisplay for pending input. (This is
for debugging and for a future implementation of EDT-like
scrolling. */
int redisplay_dont_pause;
/* Define PERIODIC_PREEMPTION_CHECKING to 1, if micro-second timers
are supported, so we can check for input during redisplay at
regular intervals. */
#ifdef EMACS_HAS_USECS
#define PERIODIC_PREEMPTION_CHECKING 1
#else
#define PERIODIC_PREEMPTION_CHECKING 0
#endif
#if PERIODIC_PREEMPTION_CHECKING
/* If a number (float), check for user input every N seconds. */
Lisp_Object Vredisplay_preemption_period;
/* Redisplay preemption timers. */
static EMACS_TIME preemption_period;
static EMACS_TIME preemption_next_check;
#endif
/* Nonzero upon entry to redisplay means do not assume anything about
current contents of actual terminal frame; clear and redraw it. */
int frame_garbaged;
/* Nonzero means last display completed. Zero means it was preempted. */
int display_completed;
/* Lisp variable visible-bell; enables use of screen-flash instead of
audible bell. */
int visible_bell;
/* Invert the color of the whole frame, at a low level. */
int inverse_video;
/* Line speed of the terminal. */
EMACS_INT baud_rate;
/* Either nil or a symbol naming the window system under which Emacs
creates the first frame. */
Lisp_Object Vinitial_window_system;
/* Version number of X windows: 10, 11 or nil. */
Lisp_Object Vwindow_system_version;
/* Vector of glyph definitions. Indexed by glyph number, the contents
are a string which is how to output the glyph.
If Vglyph_table is nil, a glyph is output by using its low 8 bits
as a character code.
This is an obsolete feature that is no longer used. The variable
is retained for compatibility. */
Lisp_Object Vglyph_table;
/* Display table to use for vectors that don't specify their own. */
Lisp_Object Vstandard_display_table;
/* Nonzero means reading single-character input with prompt so put
cursor on mini-buffer after the prompt. Positive means at end of
text in echo area; negative means at beginning of line. */
int cursor_in_echo_area;
Lisp_Object Qdisplay_table, Qredisplay_dont_pause;
/* The currently selected frame. In a single-frame version, this
variable always equals the_only_frame. */
Lisp_Object selected_frame;
/* A frame which is not just a mini-buffer, or 0 if there are no such
frames. This is usually the most recent such frame that was
selected. In a single-frame version, this variable always holds
the address of the_only_frame. */
struct frame *last_nonminibuf_frame;
/* 1 means SIGWINCH happened when not safe. */
int delayed_size_change;
/* 1 means glyph initialization has been completed at startup. */
static int glyphs_initialized_initially_p;
/* Updated window if != 0. Set by update_window. */
struct window *updated_window;
/* Glyph row updated in update_window_line, and area that is updated. */
struct glyph_row *updated_row;
int updated_area;
/* A glyph for a space. */
struct glyph space_glyph;
/* Non-zero means update has been performed directly, so that there's
no need for redisplay_internal to do much work. Set by
direct_output_for_insert. */
int redisplay_performed_directly_p;
/* Counts of allocated structures. These counts serve to diagnose
memory leaks and double frees. */
int glyph_matrix_count;
int glyph_pool_count;
/* If non-null, the frame whose frame matrices are manipulated. If
null, window matrices are worked on. */
static struct frame *frame_matrix_frame;
/* Non-zero means that fonts have been loaded since the last glyph
matrix adjustments. Redisplay must stop, and glyph matrices must
be adjusted when this flag becomes non-zero during display. The
reason fonts can be loaded so late is that fonts of fontsets are
loaded on demand. Another reason is that a line contains many
characters displayed by zero width or very narrow glyphs of
variable-width fonts. */
int fonts_changed_p;
/* Convert vpos and hpos from frame to window and vice versa.
This may only be used for terminal frames. */
#if GLYPH_DEBUG
static int window_to_frame_vpos P_ ((struct window *, int));
static int window_to_frame_hpos P_ ((struct window *, int));
#define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS))
#define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS))
/* One element of the ring buffer containing redisplay history
information. */
struct redisplay_history
{
char trace[512 + 100];
};
/* The size of the history buffer. */
#define REDISPLAY_HISTORY_SIZE 30
/* The redisplay history buffer. */
static struct redisplay_history redisplay_history[REDISPLAY_HISTORY_SIZE];
/* Next free entry in redisplay_history. */
static int history_idx;
/* A tick that's incremented each time something is added to the
history. */
static unsigned history_tick;
static void add_frame_display_history P_ ((struct frame *, int));
static void add_window_display_history P_ ((struct window *, char *, int));
/* Add to the redisplay history how window W has been displayed.
MSG is a trace containing the information how W's glyph matrix
has been constructed. PAUSED_P non-zero means that the update
has been interrupted for pending input. */
static void
add_window_display_history (w, msg, paused_p)
struct window *w;
char *msg;
int paused_p;
{
char *buf;
if (history_idx >= REDISPLAY_HISTORY_SIZE)
history_idx = 0;
buf = redisplay_history[history_idx].trace;
++history_idx;
sprintf (buf, "%d: window %p (`%s')%s\n",
history_tick++,
w,
((BUFFERP (w->buffer)
&& STRINGP (XBUFFER (w->buffer)->name))
? (char *) SDATA (XBUFFER (w->buffer)->name)
: "???"),
paused_p ? " ***paused***" : "");
strcat (buf, msg);
}
/* Add to the redisplay history that frame F has been displayed.
PAUSED_P non-zero means that the update has been interrupted for
pending input. */
static void
add_frame_display_history (f, paused_p)
struct frame *f;
int paused_p;
{
char *buf;
if (history_idx >= REDISPLAY_HISTORY_SIZE)
history_idx = 0;
buf = redisplay_history[history_idx].trace;
++history_idx;
sprintf (buf, "%d: update frame %p%s",
history_tick++,
f, paused_p ? " ***paused***" : "");
}
DEFUN ("dump-redisplay-history", Fdump_redisplay_history,
Sdump_redisplay_history, 0, 0, "",
doc: /* Dump redisplay history to stderr. */)
()
{
int i;
for (i = history_idx - 1; i != history_idx; --i)
{
if (i < 0)
i = REDISPLAY_HISTORY_SIZE - 1;
fprintf (stderr, "%s\n", redisplay_history[i].trace);
}
return Qnil;
}
#else /* GLYPH_DEBUG == 0 */
#define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + WINDOW_TOP_EDGE_LINE (W))
#define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + WINDOW_LEFT_EDGE_COL (W))
#endif /* GLYPH_DEBUG == 0 */
/* Like bcopy except never gets confused by overlap. Let this be the
first function defined in this file, or change emacs.c where the
address of this function is used. */
void
safe_bcopy (from, to, size)
const char *from;
char *to;
int size;
{
if (size <= 0 || from == to)
return;
/* If the source and destination don't overlap, then bcopy can
handle it. If they do overlap, but the destination is lower in
memory than the source, we'll assume bcopy can handle that. */
if (to < from || from + size <= to)
bcopy (from, to, size);
/* Otherwise, we'll copy from the end. */
else
{
register const char *endf = from + size;
register char *endt = to + size;
/* If TO - FROM is large, then we should break the copy into
nonoverlapping chunks of TO - FROM bytes each. However, if
TO - FROM is small, then the bcopy function call overhead
makes this not worth it. The crossover point could be about
anywhere. Since I don't think the obvious copy loop is too
bad, I'm trying to err in its favor. */
if (to - from < 64)
{
do
*--endt = *--endf;
while (endf != from);
}
else
{
for (;;)
{
endt -= (to - from);
endf -= (to - from);
if (endt < to)
break;
bcopy (endf, endt, to - from);
}
/* If SIZE wasn't a multiple of TO - FROM, there will be a
little left over. The amount left over is (endt + (to -
from)) - to, which is endt - from. */
bcopy (from, to, endt - from);
}
}
}
/***********************************************************************
Glyph Matrices
***********************************************************************/
/* Allocate and return a glyph_matrix structure. POOL is the glyph
pool from which memory for the matrix should be allocated, or null
for window-based redisplay where no glyph pools are used. The
member `pool' of the glyph matrix structure returned is set to
POOL, the structure is otherwise zeroed. */
struct glyph_matrix *
new_glyph_matrix (pool)
struct glyph_pool *pool;
{
struct glyph_matrix *result;
/* Allocate and clear. */
result = (struct glyph_matrix *) xmalloc (sizeof *result);
bzero (result, sizeof *result);
/* Increment number of allocated matrices. This count is used
to detect memory leaks. */
++glyph_matrix_count;
/* Set pool and return. */
result->pool = pool;
return result;
}
/* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed.
The global counter glyph_matrix_count is decremented when a matrix
is freed. If the count gets negative, more structures were freed
than allocated, i.e. one matrix was freed more than once or a bogus
pointer was passed to this function.
If MATRIX->pool is null, this means that the matrix manages its own
glyph memory---this is done for matrices on X frames. Freeing the
matrix also frees the glyph memory in this case. */
static void
free_glyph_matrix (matrix)
struct glyph_matrix *matrix;
{
if (matrix)
{
int i;
/* Detect the case that more matrices are freed than were
allocated. */
if (--glyph_matrix_count < 0)
abort ();
/* Free glyph memory if MATRIX owns it. */
if (matrix->pool == NULL)
for (i = 0; i < matrix->rows_allocated; ++i)
xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]);
/* Free row structures and the matrix itself. */
xfree (matrix->rows);
xfree (matrix);
}
}
/* Return the number of glyphs to reserve for a marginal area of
window W. TOTAL_GLYPHS is the number of glyphs in a complete
display line of window W. MARGIN gives the width of the marginal
area in canonical character units. MARGIN should be an integer
or a float. */
static int
margin_glyphs_to_reserve (w, total_glyphs, margin)
struct window *w;
int total_glyphs;
Lisp_Object margin;
{
int n;
if (NUMBERP (margin))
{
int width = XFASTINT (w->total_cols);
double d = max (0, XFLOATINT (margin));
d = min (width / 2 - 1, d);
n = (int) ((double) total_glyphs / width * d);
}
else
n = 0;
return n;
}
/* Adjust glyph matrix MATRIX on window W or on a frame to changed
window sizes.
W is null if the function is called for a frame glyph matrix.
Otherwise it is the window MATRIX is a member of. X and Y are the
indices of the first column and row of MATRIX within the frame
matrix, if such a matrix exists. They are zero for purely
window-based redisplay. DIM is the needed size of the matrix.
In window-based redisplay, where no frame matrices exist, glyph
matrices manage their own glyph storage. Otherwise, they allocate
storage from a common frame glyph pool which can be found in
MATRIX->pool.
The reason for this memory management strategy is to avoid complete
frame redraws if possible. When we allocate from a common pool, a
change of the location or size of a sub-matrix within the pool
requires a complete redisplay of the frame because we cannot easily
make sure that the current matrices of all windows still agree with
what is displayed on the screen. While this is usually fast, it
leads to screen flickering. */
static void
adjust_glyph_matrix (w, matrix, x, y, dim)
struct window *w;
struct glyph_matrix *matrix;
int x, y;
struct dim dim;
{
int i;
int new_rows;
int marginal_areas_changed_p = 0;
int header_line_changed_p = 0;
int header_line_p = 0;
int left = -1, right = -1;
int window_width = -1, window_height = -1;
/* See if W had a header line that has disappeared now, or vice versa.
Get W's size. */
if (w)
{
window_box (w, -1, 0, 0, &window_width, &window_height);
header_line_p = WINDOW_WANTS_HEADER_LINE_P (w);
header_line_changed_p = header_line_p != matrix->header_line_p;
}
matrix->header_line_p = header_line_p;
/* If POOL is null, MATRIX is a window matrix for window-based redisplay.
Do nothing if MATRIX' size, position, vscroll, and marginal areas
haven't changed. This optimization is important because preserving
the matrix means preventing redisplay. */
if (matrix->pool == NULL)
{
left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols);
right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols);
xassert (left >= 0 && right >= 0);
marginal_areas_changed_p = (left != matrix->left_margin_glyphs
|| right != matrix->right_margin_glyphs);
if (!marginal_areas_changed_p
&& !fonts_changed_p
&& !header_line_changed_p
&& matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
&& matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
&& matrix->window_height == window_height
&& matrix->window_vscroll == w->vscroll
&& matrix->window_width == window_width)
return;
}
/* Enlarge MATRIX->rows if necessary. New rows are cleared. */
if (matrix->rows_allocated < dim.height)
{
int size = dim.height * sizeof (struct glyph_row);
new_rows = dim.height - matrix->rows_allocated;
matrix->rows = (struct glyph_row *) xrealloc (matrix->rows, size);
bzero (matrix->rows + matrix->rows_allocated,
new_rows * sizeof *matrix->rows);
matrix->rows_allocated = dim.height;
}
else
new_rows = 0;
/* If POOL is not null, MATRIX is a frame matrix or a window matrix
on a frame not using window-based redisplay. Set up pointers for
each row into the glyph pool. */
if (matrix->pool)
{
xassert (matrix->pool->glyphs);
if (w)
{
left = margin_glyphs_to_reserve (w, dim.width,
w->left_margin_cols);
right = margin_glyphs_to_reserve (w, dim.width,
w->right_margin_cols);
}
else
left = right = 0;
for (i = 0; i < dim.height; ++i)
{
struct glyph_row *row = &matrix->rows[i];
row->glyphs[LEFT_MARGIN_AREA]
= (matrix->pool->glyphs
+ (y + i) * matrix->pool->ncolumns
+ x);
if (w == NULL
|| row == matrix->rows + dim.height - 1
|| (row == matrix->rows && matrix->header_line_p))
{
row->glyphs[TEXT_AREA]
= row->glyphs[LEFT_MARGIN_AREA];
row->glyphs[RIGHT_MARGIN_AREA]
= row->glyphs[TEXT_AREA] + dim.width;
row->glyphs[LAST_AREA]
= row->glyphs[RIGHT_MARGIN_AREA];
}
else
{
row->glyphs[TEXT_AREA]
= row->glyphs[LEFT_MARGIN_AREA] + left;
row->glyphs[RIGHT_MARGIN_AREA]
= row->glyphs[TEXT_AREA] + dim.width - left - right;
row->glyphs[LAST_AREA]
= row->glyphs[LEFT_MARGIN_AREA] + dim.width;
}
}
matrix->left_margin_glyphs = left;
matrix->right_margin_glyphs = right;
}
else
{
/* If MATRIX->pool is null, MATRIX is responsible for managing
its own memory. It is a window matrix for window-based redisplay.
Allocate glyph memory from the heap. */
if (dim.width > matrix->matrix_w
|| new_rows
|| header_line_changed_p
|| marginal_areas_changed_p)
{
struct glyph_row *row = matrix->rows;
struct glyph_row *end = row + matrix->rows_allocated;
while (row < end)
{
row->glyphs[LEFT_MARGIN_AREA]
= (struct glyph *) xrealloc (row->glyphs[LEFT_MARGIN_AREA],
(dim.width
* sizeof (struct glyph)));
/* The mode line never has marginal areas. */
if (row == matrix->rows + dim.height - 1
|| (row == matrix->rows && matrix->header_line_p))
{
row->glyphs[TEXT_AREA]
= row->glyphs[LEFT_MARGIN_AREA];
row->glyphs[RIGHT_MARGIN_AREA]
= row->glyphs[TEXT_AREA] + dim.width;
row->glyphs[LAST_AREA]
= row->glyphs[RIGHT_MARGIN_AREA];
}
else
{
row->glyphs[TEXT_AREA]
= row->glyphs[LEFT_MARGIN_AREA] + left;
row->glyphs[RIGHT_MARGIN_AREA]
= row->glyphs[TEXT_AREA] + dim.width - left - right;
row->glyphs[LAST_AREA]
= row->glyphs[LEFT_MARGIN_AREA] + dim.width;
}
++row;
}
}
xassert (left >= 0 && right >= 0);
matrix->left_margin_glyphs = left;
matrix->right_margin_glyphs = right;
}
/* Number of rows to be used by MATRIX. */
matrix->nrows = dim.height;
xassert (matrix->nrows >= 0);
if (w)
{
if (matrix == w->current_matrix)
{
/* Mark rows in a current matrix of a window as not having
valid contents. It's important to not do this for
desired matrices. When Emacs starts, it may already be
building desired matrices when this function runs. */
if (window_width < 0)
window_width = window_box_width (w, -1);
/* Optimize the case that only the height has changed (C-x 2,
upper window). Invalidate all rows that are no longer part
of the window. */
if (!marginal_areas_changed_p
&& !header_line_changed_p
&& new_rows == 0
&& dim.width == matrix->matrix_w
&& matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w)
&& matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w)
&& matrix->window_width == window_width)
{
/* Find the last row in the window. */
for (i = 0; i < matrix->nrows && matrix->rows[i].enabled_p; ++i)
if (MATRIX_ROW_BOTTOM_Y (matrix->rows + i) >= window_height)
{
++i;
break;
}
/* Window end is invalid, if inside of the rows that
are invalidated below. */
if (INTEGERP (w->window_end_vpos)
&& XFASTINT (w->window_end_vpos) >= i)
w->window_end_valid = Qnil;
while (i < matrix->nrows)
matrix->rows[i++].enabled_p = 0;
}
else
{
for (i = 0; i < matrix->nrows; ++i)
matrix->rows[i].enabled_p = 0;
}
}
else if (matrix == w->desired_matrix)
{
/* Rows in desired matrices always have to be cleared;
redisplay expects this is the case when it runs, so it
had better be the case when we adjust matrices between
redisplays. */
for (i = 0; i < matrix->nrows; ++i)
matrix->rows[i].enabled_p = 0;
}
}
/* Remember last values to be able to optimize frame redraws. */
matrix->matrix_x = x;
matrix->matrix_y = y;
matrix->matrix_w = dim.width;
matrix->matrix_h = dim.height;
/* Record the top y location and height of W at the time the matrix
was last adjusted. This is used to optimize redisplay above. */
if (w)
{
matrix->window_left_col = WINDOW_LEFT_EDGE_COL (w);
matrix->window_top_line = WINDOW_TOP_EDGE_LINE (w);
matrix->window_height = window_height;
matrix->window_width = window_width;
matrix->window_vscroll = w->vscroll;
}
}
/* Reverse the contents of rows in MATRIX between START and END. The
contents of the row at END - 1 end up at START, END - 2 at START +
1 etc. This is part of the implementation of rotate_matrix (see
below). */
static void
reverse_rows (matrix, start, end)
struct glyph_matrix *matrix;
int start, end;
{
int i, j;
for (i = start, j = end - 1; i < j; ++i, --j)
{
/* Non-ISO HP/UX compiler doesn't like auto struct
initialization. */
struct glyph_row temp;
temp = matrix->rows[i];
matrix->rows[i] = matrix->rows[j];
matrix->rows[j] = temp;
}
}
/* Rotate the contents of rows in MATRIX in the range FIRST .. LAST -
1 by BY positions. BY < 0 means rotate left, i.e. towards lower
indices. (Note: this does not copy glyphs, only glyph pointers in
row structures are moved around).
The algorithm used for rotating the vector was, I believe, first
described by Kernighan. See the vector R as consisting of two
sub-vectors AB, where A has length BY for BY >= 0. The result
after rotating is then BA. Reverse both sub-vectors to get ArBr
and reverse the result to get (ArBr)r which is BA. Similar for
rotating right. */
void
rotate_matrix (matrix, first, last, by)
struct glyph_matrix *matrix;
int first, last, by;
{
if (by < 0)
{
/* Up (rotate left, i.e. towards lower indices). */
by = -by;
reverse_rows (matrix, first, first + by);
reverse_rows (matrix, first + by, last);
reverse_rows (matrix, first, last);
}
else if (by > 0)
{
/* Down (rotate right, i.e. towards higher indices). */
reverse_rows (matrix, last - by, last);
reverse_rows (matrix, first, last - by);
reverse_rows (matrix, first, last);
}
}
/* Increment buffer positions in glyph rows of MATRIX. Do it for rows
with indices START <= index < END. Increment positions by DELTA/
DELTA_BYTES. */
void
increment_matrix_positions (matrix, start, end, delta, delta_bytes)
struct glyph_matrix *matrix;
int start, end, delta, delta_bytes;
{
/* Check that START and END are reasonable values. */
xassert (start >= 0 && start <= matrix->nrows);
xassert (end >= 0 && end <= matrix->nrows);
xassert (start <= end);
for (; start < end; ++start)
increment_row_positions (matrix->rows + start, delta, delta_bytes);
}
/* Enable a range of rows in glyph matrix MATRIX. START and END are
the row indices of the first and last + 1 row to enable. If
ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */
void
enable_glyph_matrix_rows (matrix, start, end, enabled_p)
struct glyph_matrix *matrix;
int start, end;
int enabled_p;
{
xassert (start <= end);
xassert (start >= 0 && start < matrix->nrows);
xassert (end >= 0 && end <= matrix->nrows);
for (; start < end; ++start)
matrix->rows[start].enabled_p = enabled_p != 0;
}
/* Clear MATRIX.
This empties all rows in MATRIX by setting the enabled_p flag for
all rows of the matrix to zero. The function prepare_desired_row
will eventually really clear a row when it sees one with a zero
enabled_p flag.
Resets update hints to defaults value. The only update hint
currently present is the flag MATRIX->no_scrolling_p. */
void
clear_glyph_matrix (matrix)
struct glyph_matrix *matrix;
{
if (matrix)
{
enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0);
matrix->no_scrolling_p = 0;
}
}
/* Shift part of the glyph matrix MATRIX of window W up or down.
Increment y-positions in glyph rows between START and END by DY,
and recompute their visible height. */
void
shift_glyph_matrix (w, matrix, start, end, dy)
struct window *w;
struct glyph_matrix *matrix;
int start, end, dy;
{
int min_y, max_y;
xassert (start <= end);
xassert (start >= 0 && start < matrix->nrows);
xassert (end >= 0 && end <= matrix->nrows);
min_y = WINDOW_HEADER_LINE_HEIGHT (w);
max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
for (; start < end; ++start)
{
struct glyph_row *row = &matrix->rows[start];
row->y += dy;
row->visible_height = row->height;
if (row->y < min_y)
row->visible_height -= min_y - row->y;
if (row->y + row->height > max_y)
row->visible_height -= row->y + row->height - max_y;
}
}
/* Mark all rows in current matrices of frame F as invalid. Marking
invalid is done by setting enabled_p to zero for all rows in a
current matrix. */
void
clear_current_matrices (f)
register struct frame *f;
{
/* Clear frame current matrix, if we have one. */
if (f->current_matrix)
clear_glyph_matrix (f->current_matrix);
/* Clear the matrix of the menu bar window, if such a window exists.
The menu bar window is currently used to display menus on X when
no toolkit support is compiled in. */
if (WINDOWP (f->menu_bar_window))
clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix);
/* Clear the matrix of the tool-bar window, if any. */
if (WINDOWP (f->tool_bar_window))
clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix);
/* Clear current window matrices. */
xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0);
}
/* Clear out all display lines of F for a coming redisplay. */
void
clear_desired_matrices (f)
register struct frame *f;
{
if (f->desired_matrix)
clear_glyph_matrix (f->desired_matrix);
if (WINDOWP (f->menu_bar_window))
clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix);
if (WINDOWP (f->tool_bar_window))
clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix);
/* Do it for window matrices. */
xassert (WINDOWP (FRAME_ROOT_WINDOW (f)));
clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
}
/* Clear matrices in window tree rooted in W. If DESIRED_P is
non-zero clear desired matrices, otherwise clear current matrices. */
static void
clear_window_matrices (w, desired_p)
struct window *w;
int desired_p;
{
while (w)
{
if (!NILP (w->hchild))
{
xassert (WINDOWP (w->hchild));
clear_window_matrices (XWINDOW (w->hchild), desired_p);
}
else if (!NILP (w->vchild))
{
xassert (WINDOWP (w->vchild));
clear_window_matrices (XWINDOW (w->vchild), desired_p);
}
else
{
if (desired_p)
clear_glyph_matrix (w->desired_matrix);
else
{
clear_glyph_matrix (w->current_matrix);
w->window_end_valid = Qnil;
}
}
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
}
/***********************************************************************
Glyph Rows
See dispextern.h for an overall explanation of glyph rows.
***********************************************************************/
/* Clear glyph row ROW. Do it in a way that makes it robust against
changes in the glyph_row structure, i.e. addition or removal of
structure members. */
static struct glyph_row null_row;
void
clear_glyph_row (row)
struct glyph_row *row;
{
struct glyph *p[1 + LAST_AREA];
/* Save pointers. */
p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA];
p[TEXT_AREA] = row->glyphs[TEXT_AREA];
p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA];
p[LAST_AREA] = row->glyphs[LAST_AREA];
/* Clear. */
*row = null_row;
/* Restore pointers. */
row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA];
row->glyphs[TEXT_AREA] = p[TEXT_AREA];
row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA];
row->glyphs[LAST_AREA] = p[LAST_AREA];
#if 0 /* At some point, some bit-fields of struct glyph were not set,
which made glyphs unequal when compared with GLYPH_EQUAL_P.
Redisplay outputs such glyphs, and flickering effects were
the result. This also depended on the contents of memory
returned by xmalloc. If flickering happens again, activate
the code below. If the flickering is gone with that, chances
are that the flickering has the same reason as here. */
bzero (p[0], (char *) p[LAST_AREA] - (char *) p[0]);
#endif
}
/* Make ROW an empty, enabled row of canonical character height,
in window W starting at y-position Y. */
void
blank_row (w, row, y)
struct window *w;
struct glyph_row *row;
int y;
{
int min_y, max_y;
min_y = WINDOW_HEADER_LINE_HEIGHT (w);
max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w);
clear_glyph_row (row);
row->y = y;
row->ascent = row->phys_ascent = 0;
row->height = row->phys_height = FRAME_LINE_HEIGHT (XFRAME (w->frame));
row->visible_height = row->height;
if (row->y < min_y)
row->visible_height -= min_y - row->y;
if (row->y + row->height > max_y)
row->visible_height -= row->y + row->height - max_y;
row->enabled_p = 1;
}
/* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES
are the amounts by which to change positions. Note that the first
glyph of the text area of a row can have a buffer position even if
the used count of the text area is zero. Such rows display line
ends. */
void
increment_row_positions (row, delta, delta_bytes)
struct glyph_row *row;
int delta, delta_bytes;
{
int area, i;
/* Increment start and end positions. */
MATRIX_ROW_START_CHARPOS (row) += delta;
MATRIX_ROW_START_BYTEPOS (row) += delta_bytes;
MATRIX_ROW_END_CHARPOS (row) += delta;
MATRIX_ROW_END_BYTEPOS (row) += delta_bytes;
if (!row->enabled_p)
return;
/* Increment positions in glyphs. */
for (area = 0; area < LAST_AREA; ++area)
for (i = 0; i < row->used[area]; ++i)
if (BUFFERP (row->glyphs[area][i].object)
&& row->glyphs[area][i].charpos > 0)
row->glyphs[area][i].charpos += delta;
/* Capture the case of rows displaying a line end. */
if (row->used[TEXT_AREA] == 0
&& MATRIX_ROW_DISPLAYS_TEXT_P (row))
row->glyphs[TEXT_AREA]->charpos += delta;
}
#if 0
/* Swap glyphs between two glyph rows A and B. This exchanges glyph
contents, i.e. glyph structure contents are exchanged between A and
B without changing glyph pointers in A and B. */
static void
swap_glyphs_in_rows (a, b)
struct glyph_row *a, *b;
{
int area;
for (area = 0; area < LAST_AREA; ++area)
{
/* Number of glyphs to swap. */
int max_used = max (a->used[area], b->used[area]);
/* Start of glyphs in area of row A. */
struct glyph *glyph_a = a->glyphs[area];
/* End + 1 of glyphs in area of row A. */
struct glyph *glyph_a_end = a->glyphs[max_used];
/* Start of glyphs in area of row B. */
struct glyph *glyph_b = b->glyphs[area];
while (glyph_a < glyph_a_end)
{
/* Non-ISO HP/UX compiler doesn't like auto struct
initialization. */
struct glyph temp;
temp = *glyph_a;
*glyph_a = *glyph_b;
*glyph_b = temp;
++glyph_a;
++glyph_b;
}
}
}
#endif /* 0 */
/* Exchange pointers to glyph memory between glyph rows A and B. */
static INLINE void
swap_glyph_pointers (a, b)
struct glyph_row *a, *b;
{
int i;
for (i = 0; i < LAST_AREA + 1; ++i)
{
struct glyph *temp = a->glyphs[i];
a->glyphs[i] = b->glyphs[i];
b->glyphs[i] = temp;
}
}
/* Copy glyph row structure FROM to glyph row structure TO, except
that glyph pointers in the structures are left unchanged. */
INLINE void
copy_row_except_pointers (to, from)
struct glyph_row *to, *from;
{
struct glyph *pointers[1 + LAST_AREA];
/* Save glyph pointers of TO. */
bcopy (to->glyphs, pointers, sizeof to->glyphs);
/* Do a structure assignment. */
*to = *from;
/* Restore original pointers of TO. */
bcopy (pointers, to->glyphs, sizeof to->glyphs);
}
/* Copy contents of glyph row FROM to glyph row TO. Glyph pointers in
TO and FROM are left unchanged. Glyph contents are copied from the
glyph memory of FROM to the glyph memory of TO. Increment buffer
positions in row TO by DELTA/ DELTA_BYTES. */
void
copy_glyph_row_contents (to, from, delta, delta_bytes)
struct glyph_row *to, *from;
int delta, delta_bytes;
{
int area;
/* This is like a structure assignment TO = FROM, except that
glyph pointers in the rows are left unchanged. */
copy_row_except_pointers (to, from);
/* Copy glyphs from FROM to TO. */
for (area = 0; area < LAST_AREA; ++area)
if (from->used[area])
bcopy (from->glyphs[area], to->glyphs[area],
from->used[area] * sizeof (struct glyph));
/* Increment buffer positions in TO by DELTA. */
increment_row_positions (to, delta, delta_bytes);
}
/* Assign glyph row FROM to glyph row TO. This works like a structure
assignment TO = FROM, except that glyph pointers are not copied but
exchanged between TO and FROM. Pointers must be exchanged to avoid
a memory leak. */
static INLINE void
assign_row (to, from)
struct glyph_row *to, *from;
{
swap_glyph_pointers (to, from);
copy_row_except_pointers (to, from);
}
/* Test whether the glyph memory of the glyph row WINDOW_ROW, which is
a row in a window matrix, is a slice of the glyph memory of the
glyph row FRAME_ROW which is a row in a frame glyph matrix. Value
is non-zero if the glyph memory of WINDOW_ROW is part of the glyph
memory of FRAME_ROW. */
#if GLYPH_DEBUG
static int
glyph_row_slice_p (window_row, frame_row)
struct glyph_row *window_row, *frame_row;
{
struct glyph *window_glyph_start = window_row->glyphs[0];
struct glyph *frame_glyph_start = frame_row->glyphs[0];
struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA];
return (frame_glyph_start <= window_glyph_start
&& window_glyph_start < frame_glyph_end);
}
#endif /* GLYPH_DEBUG */
#if 0
/* Find the row in the window glyph matrix WINDOW_MATRIX being a slice
of ROW in the frame matrix FRAME_MATRIX. Value is null if no row
in WINDOW_MATRIX is found satisfying the condition. */
static struct glyph_row *
find_glyph_row_slice (window_matrix, frame_matrix, row)
struct glyph_matrix *window_matrix, *frame_matrix;
int row;
{
int i;
xassert (row >= 0 && row < frame_matrix->nrows);
for (i = 0; i < window_matrix->nrows; ++i)
if (glyph_row_slice_p (window_matrix->rows + i,
frame_matrix->rows + row))
break;
return i < window_matrix->nrows ? window_matrix->rows + i : 0;
}
#endif /* 0 */
/* Prepare ROW for display. Desired rows are cleared lazily,
i.e. they are only marked as to be cleared by setting their
enabled_p flag to zero. When a row is to be displayed, a prior
call to this function really clears it. */
void
prepare_desired_row (row)
struct glyph_row *row;
{
if (!row->enabled_p)
{
clear_glyph_row (row);
row->enabled_p = 1;
}
}
/* Return a hash code for glyph row ROW. */
int
line_hash_code (row)
struct glyph_row *row;
{
int hash = 0;
if (row->enabled_p)
{
struct glyph *glyph = row->glyphs[TEXT_AREA];
struct glyph *end = glyph + row->used[TEXT_AREA];
while (glyph < end)
{
int c = glyph->u.ch;
int face_id = glyph->face_id;
if (FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
c -= SPACEGLYPH;
hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c;
hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id;
++glyph;
}
if (hash == 0)
hash = 1;
}
return hash;
}
/* Return the cost of drawing line VPOS in MATRIX. The cost equals
the number of characters in the line. If must_write_spaces is
zero, leading and trailing spaces are ignored. */
static unsigned int
line_draw_cost (matrix, vpos)
struct glyph_matrix *matrix;
int vpos;
{
struct glyph_row *row = matrix->rows + vpos;
struct glyph *beg = row->glyphs[TEXT_AREA];
struct glyph *end = beg + row->used[TEXT_AREA];
int len;
Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE;
int glyph_table_len = GLYPH_TABLE_LENGTH;
/* Ignore trailing and leading spaces if we can. */
if (!FRAME_MUST_WRITE_SPACES (SELECTED_FRAME ())) /* XXX Is SELECTED_FRAME OK here? */
{
/* Skip from the end over trailing spaces. */
while (end > beg && CHAR_GLYPH_SPACE_P (*(end - 1)))
--end;
/* All blank line. */
if (end == beg)
return 0;
/* Skip over leading spaces. */
while (CHAR_GLYPH_SPACE_P (*beg))
++beg;
}
/* If we don't have a glyph-table, each glyph is one character,
so return the number of glyphs. */
if (glyph_table_base == 0)
len = end - beg;
else
{
/* Otherwise, scan the glyphs and accumulate their total length
in LEN. */
len = 0;
while (beg < end)
{
GLYPH g;
SET_GLYPH_FROM_CHAR_GLYPH (g, *beg);
if (GLYPH_INVALID_P (g)
|| GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g))
len += 1;
else
len += GLYPH_LENGTH (glyph_table_base, g);
++beg;
}
}
return len;
}
/* Test two glyph rows A and B for equality. Value is non-zero if A
and B have equal contents. W is the window to which the glyphs
rows A and B belong. It is needed here to test for partial row
visibility. MOUSE_FACE_P non-zero means compare the mouse_face_p
flags of A and B, too. */
static INLINE int
row_equal_p (w, a, b, mouse_face_p)
struct window *w;
struct glyph_row *a, *b;
int mouse_face_p;
{
if (a == b)
return 1;
else if (a->hash != b->hash)
return 0;
else
{
struct glyph *a_glyph, *b_glyph, *a_end;
int area;
if (mouse_face_p && a->mouse_face_p != b->mouse_face_p)
return 0;
/* Compare glyphs. */
for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
{
if (a->used[area] != b->used[area])
return 0;
a_glyph = a->glyphs[area];
a_end = a_glyph + a->used[area];
b_glyph = b->glyphs[area];
while (a_glyph < a_end
&& GLYPH_EQUAL_P (a_glyph, b_glyph))
++a_glyph, ++b_glyph;
if (a_glyph != a_end)
return 0;
}
if (a->fill_line_p != b->fill_line_p
|| a->cursor_in_fringe_p != b->cursor_in_fringe_p
|| a->left_fringe_bitmap != b->left_fringe_bitmap
|| a->left_fringe_face_id != b->left_fringe_face_id
|| a->right_fringe_bitmap != b->right_fringe_bitmap
|| a->right_fringe_face_id != b->right_fringe_face_id
|| a->overlay_arrow_bitmap != b->overlay_arrow_bitmap
|| a->exact_window_width_line_p != b->exact_window_width_line_p
|| a->overlapped_p != b->overlapped_p
|| (MATRIX_ROW_CONTINUATION_LINE_P (a)
!= MATRIX_ROW_CONTINUATION_LINE_P (b))
/* Different partially visible characters on left margin. */
|| a->x != b->x
/* Different height. */
|| a->ascent != b->ascent
|| a->phys_ascent != b->phys_ascent
|| a->phys_height != b->phys_height
|| a->visible_height != b->visible_height)
return 0;
}
return 1;
}
/***********************************************************************
Glyph Pool
See dispextern.h for an overall explanation of glyph pools.
***********************************************************************/
/* Allocate a glyph_pool structure. The structure returned is
initialized with zeros. The global variable glyph_pool_count is
incremented for each pool allocated. */
static struct glyph_pool *
new_glyph_pool ()
{
struct glyph_pool *result;
/* Allocate a new glyph_pool and clear it. */
result = (struct glyph_pool *) xmalloc (sizeof *result);
bzero (result, sizeof *result);
/* For memory leak and double deletion checking. */
++glyph_pool_count;
return result;
}
/* Free a glyph_pool structure POOL. The function may be called with
a null POOL pointer. The global variable glyph_pool_count is
decremented with every pool structure freed. If this count gets
negative, more structures were freed than allocated, i.e. one
structure must have been freed more than once or a bogus pointer
was passed to free_glyph_pool. */
static void
free_glyph_pool (pool)
struct glyph_pool *pool;
{
if (pool)
{
/* More freed than allocated? */
--glyph_pool_count;
xassert (glyph_pool_count >= 0);
xfree (pool->glyphs);
xfree (pool);
}
}
/* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and
columns we need. This function never shrinks a pool. The only
case in which this would make sense, would be when a frame's size
is changed from a large value to a smaller one. But, if someone
does it once, we can expect that he will do it again.
Value is non-zero if the pool changed in a way which makes
re-adjusting window glyph matrices necessary. */
static int
realloc_glyph_pool (pool, matrix_dim)
struct glyph_pool *pool;
struct dim matrix_dim;
{
int needed;
int changed_p;
changed_p = (pool->glyphs == 0
|| matrix_dim.height != pool->nrows
|| matrix_dim.width != pool->ncolumns);
/* Enlarge the glyph pool. */
needed = matrix_dim.width * matrix_dim.height;
if (needed > pool->nglyphs)
{
int size = needed * sizeof (struct glyph);
if (pool->glyphs)
pool->glyphs = (struct glyph *) xrealloc (pool->glyphs, size);
else
{
pool->glyphs = (struct glyph *) xmalloc (size);
bzero (pool->glyphs, size);
}
pool->nglyphs = needed;
}
/* Remember the number of rows and columns because (a) we use them
to do sanity checks, and (b) the number of columns determines
where rows in the frame matrix start---this must be available to
determine pointers to rows of window sub-matrices. */
pool->nrows = matrix_dim.height;
pool->ncolumns = matrix_dim.width;
return changed_p;
}
/***********************************************************************
Debug Code
***********************************************************************/
#if GLYPH_DEBUG
/* Flush standard output. This is sometimes useful to call from the debugger.
XXX Maybe this should be changed to flush the current terminal instead of
stdout.
*/
void
flush_stdout ()
{
fflush (stdout);
}
/* Check that no glyph pointers have been lost in MATRIX. If a
pointer has been lost, e.g. by using a structure assignment between
rows, at least one pointer must occur more than once in the rows of
MATRIX. */
void
check_matrix_pointer_lossage (matrix)
struct glyph_matrix *matrix;
{
int i, j;
for (i = 0; i < matrix->nrows; ++i)
for (j = 0; j < matrix->nrows; ++j)
xassert (i == j
|| (matrix->rows[i].glyphs[TEXT_AREA]
!= matrix->rows[j].glyphs[TEXT_AREA]));
}
/* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */
struct glyph_row *
matrix_row (matrix, row)
struct glyph_matrix *matrix;
int row;
{
xassert (matrix && matrix->rows);
xassert (row >= 0 && row < matrix->nrows);
/* That's really too slow for normal testing because this function
is called almost everywhere. Although---it's still astonishingly
fast, so it is valuable to have for debugging purposes. */
#if 0
check_matrix_pointer_lossage (matrix);
#endif
return matrix->rows + row;
}
#if 0 /* This function makes invalid assumptions when text is
partially invisible. But it might come handy for debugging
nevertheless. */
/* Check invariants that must hold for an up to date current matrix of
window W. */
static void
check_matrix_invariants (w)
struct window *w;
{
struct glyph_matrix *matrix = w->current_matrix;
int yb = window_text_bottom_y (w);
struct glyph_row *row = matrix->rows;
struct glyph_row *last_text_row = NULL;
struct buffer *saved = current_buffer;
struct buffer *buffer = XBUFFER (w->buffer);
int c;
/* This can sometimes happen for a fresh window. */
if (matrix->nrows < 2)
return;
set_buffer_temp (buffer);
/* Note: last row is always reserved for the mode line. */
while (MATRIX_ROW_DISPLAYS_TEXT_P (row)
&& MATRIX_ROW_BOTTOM_Y (row) < yb)
{
struct glyph_row *next = row + 1;
if (MATRIX_ROW_DISPLAYS_TEXT_P (row))
last_text_row = row;
/* Check that character and byte positions are in sync. */
xassert (MATRIX_ROW_START_BYTEPOS (row)
== CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row)));
/* CHAR_TO_BYTE aborts when invoked for a position > Z. We can
have such a position temporarily in case of a minibuffer
displaying something like `[Sole completion]' at its end. */
if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer))
xassert (MATRIX_ROW_END_BYTEPOS (row)
== CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row)));
/* Check that end position of `row' is equal to start position
of next row. */
if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next))
{
xassert (MATRIX_ROW_END_CHARPOS (row)
== MATRIX_ROW_START_CHARPOS (next));
xassert (MATRIX_ROW_END_BYTEPOS (row)
== MATRIX_ROW_START_BYTEPOS (next));
}
row = next;
}
xassert (w->current_matrix->nrows == w->desired_matrix->nrows);
xassert (w->desired_matrix->rows != NULL);
set_buffer_temp (saved);
}
#endif /* 0 */
#endif /* GLYPH_DEBUG != 0 */
/**********************************************************************
Allocating/ Adjusting Glyph Matrices
**********************************************************************/
/* Allocate glyph matrices over a window tree for a frame-based
redisplay
X and Y are column/row within the frame glyph matrix where
sub-matrices for the window tree rooted at WINDOW must be
allocated. DIM_ONLY_P non-zero means that the caller of this
function is only interested in the result matrix dimension, and
matrix adjustments should not be performed.
The function returns the total width/height of the sub-matrices of
the window tree. If called on a frame root window, the computation
will take the mini-buffer window into account.
*WINDOW_CHANGE_FLAGS is set to a bit mask with bits
NEW_LEAF_MATRIX set if any window in the tree did not have a
glyph matrices yet, and
CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of
any window in the tree will be changed or have been changed (see
DIM_ONLY_P)
*WINDOW_CHANGE_FLAGS must be initialized by the caller of this
function.
Windows are arranged into chains of windows on the same level
through the next fields of window structures. Such a level can be
either a sequence of horizontally adjacent windows from left to
right, or a sequence of vertically adjacent windows from top to
bottom. Each window in a horizontal sequence can be either a leaf
window or a vertical sequence; a window in a vertical sequence can
be either a leaf or a horizontal sequence. All windows in a
horizontal sequence have the same height, and all windows in a
vertical sequence have the same width.
This function uses, for historical reasons, a more general
algorithm to determine glyph matrix dimensions that would be
necessary.
The matrix height of a horizontal sequence is determined by the
maximum height of any matrix in the sequence. The matrix width of
a horizontal sequence is computed by adding up matrix widths of
windows in the sequence.
|<------- result width ------->|
+---------+----------+---------+ ---
| | | | |
| | | |
+---------+ | | result height
| +---------+
| | |
+----------+ ---
The matrix width of a vertical sequence is the maximum matrix width
of any window in the sequence. Its height is computed by adding up
matrix heights of windows in the sequence.
|<---- result width -->|
+---------+ ---
| | |
| | |
+---------+--+ |
| | |
| | result height
| |
+------------+---------+ |
| | |
| | |
+------------+---------+ --- */
/* Bit indicating that a new matrix will be allocated or has been
allocated. */
#define NEW_LEAF_MATRIX (1 << 0)
/* Bit indicating that a matrix will or has changed its location or
size. */
#define CHANGED_LEAF_MATRIX (1 << 1)
static struct dim
allocate_matrices_for_frame_redisplay (window, x, y, dim_only_p,
window_change_flags)
Lisp_Object window;
int x, y;
int dim_only_p;
int *window_change_flags;
{
struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window)));
int x0 = x, y0 = y;
int wmax = 0, hmax = 0;
struct dim total;
struct dim dim;
struct window *w;
int in_horz_combination_p;
/* What combination is WINDOW part of? Compute this once since the
result is the same for all windows in the `next' chain. The
special case of a root window (parent equal to nil) is treated
like a vertical combination because a root window's `next'
points to the mini-buffer window, if any, which is arranged
vertically below other windows. */
in_horz_combination_p
= (!NILP (XWINDOW (window)->parent)
&& !NILP (XWINDOW (XWINDOW (window)->parent)->hchild));
/* For WINDOW and all windows on the same level. */
do
{
w = XWINDOW (window);
/* Get the dimension of the window sub-matrix for W, depending
on whether this is a combination or a leaf window. */
if (!NILP (w->hchild))
dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y,
dim_only_p,
window_change_flags);
else if (!NILP (w->vchild))
dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y,
dim_only_p,
window_change_flags);
else
{
/* If not already done, allocate sub-matrix structures. */
if (w->desired_matrix == NULL)
{
w->desired_matrix = new_glyph_matrix (f->desired_pool);
w->current_matrix = new_glyph_matrix (f->current_pool);
*window_change_flags |= NEW_LEAF_MATRIX;
}
/* Width and height MUST be chosen so that there are no
holes in the frame matrix. */
dim.width = required_matrix_width (w);
dim.height = required_matrix_height (w);
/* Will matrix be re-allocated? */
if (x != w->desired_matrix->matrix_x
|| y != w->desired_matrix->matrix_y
|| dim.width != w->desired_matrix->matrix_w
|| dim.height != w->desired_matrix->matrix_h
|| (margin_glyphs_to_reserve (w, dim.width,
w->left_margin_cols)
!= w->desired_matrix->left_margin_glyphs)
|| (margin_glyphs_to_reserve (w, dim.width,
w->right_margin_cols)
!= w->desired_matrix->right_margin_glyphs))
*window_change_flags |= CHANGED_LEAF_MATRIX;
/* Actually change matrices, if allowed. Do not consider
CHANGED_LEAF_MATRIX computed above here because the pool
may have been changed which we don't now here. We trust
that we only will be called with DIM_ONLY_P != 0 when
necessary. */
if (!dim_only_p)
{
adjust_glyph_matrix (w, w->desired_matrix, x, y, dim);
adjust_glyph_matrix (w, w->current_matrix, x, y, dim);
}
}
/* If we are part of a horizontal combination, advance x for
windows to the right of W; otherwise advance y for windows
below W. */
if (in_horz_combination_p)
x += dim.width;
else
y += dim.height;
/* Remember maximum glyph matrix dimensions. */
wmax = max (wmax, dim.width);
hmax = max (hmax, dim.height);
/* Next window on same level. */
window = w->next;
}
while (!NILP (window));
/* Set `total' to the total glyph matrix dimension of this window
level. In a vertical combination, the width is the width of the
widest window; the height is the y we finally reached, corrected
by the y we started with. In a horizontal combination, the total
height is the height of the tallest window, and the width is the
x we finally reached, corrected by the x we started with. */
if (in_horz_combination_p)
{
total.width = x - x0;
total.height = hmax;
}
else
{
total.width = wmax;
total.height = y - y0;
}
return total;
}
/* Return the required height of glyph matrices for window W. */
int
required_matrix_height (w)
struct window *w;
{
#ifdef HAVE_WINDOW_SYSTEM
struct frame *f = XFRAME (w->frame);
if (FRAME_WINDOW_P (f))
{
int ch_height = FRAME_SMALLEST_FONT_HEIGHT (f);
int window_pixel_height = window_box_height (w) + eabs (w->vscroll);
return (((window_pixel_height + ch_height - 1)
/ ch_height) * w->nrows_scale_factor
/* One partially visible line at the top and
bottom of the window. */
+ 2
/* 2 for header and mode line. */
+ 2);
}
#endif /* HAVE_WINDOW_SYSTEM */
return WINDOW_TOTAL_LINES (w);
}
/* Return the required width of glyph matrices for window W. */
int
required_matrix_width (w)
struct window *w;
{
#ifdef HAVE_WINDOW_SYSTEM
struct frame *f = XFRAME (w->frame);
if (FRAME_WINDOW_P (f))
{
int ch_width = FRAME_SMALLEST_CHAR_WIDTH (f);
int window_pixel_width = WINDOW_TOTAL_WIDTH (w);
/* Compute number of glyphs needed in a glyph row. */
return (((window_pixel_width + ch_width - 1)
/ ch_width) * w->ncols_scale_factor
/* 2 partially visible columns in the text area. */
+ 2
/* One partially visible column at the right
edge of each marginal area. */
+ 1 + 1);
}
#endif /* HAVE_WINDOW_SYSTEM */
return XINT (w->total_cols);
}
/* Allocate window matrices for window-based redisplay. W is the
window whose matrices must be allocated/reallocated. */
static void
allocate_matrices_for_window_redisplay (w)
struct window *w;
{
while (w)
{
if (!NILP (w->vchild))
allocate_matrices_for_window_redisplay (XWINDOW (w->vchild));
else if (!NILP (w->hchild))
allocate_matrices_for_window_redisplay (XWINDOW (w->hchild));
else
{
/* W is a leaf window. */
struct dim dim;
/* If matrices are not yet allocated, allocate them now. */
if (w->desired_matrix == NULL)
{
w->desired_matrix = new_glyph_matrix (NULL);
w->current_matrix = new_glyph_matrix (NULL);
}
dim.width = required_matrix_width (w);
dim.height = required_matrix_height (w);
adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim);
adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim);
}
w = NILP (w->next) ? NULL : XWINDOW (w->next);
}
}
/* Re-allocate/ re-compute glyph matrices on frame F. If F is null,
do it for all frames; otherwise do it just for the given frame.
This function must be called when a new frame is created, its size
changes, or its window configuration changes. */
void
adjust_glyphs (f)
struct frame *f;
{
/* Block input so that expose events and other events that access
glyph matrices are not processed while we are changing them. */
BLOCK_INPUT;
if (f)
adjust_frame_glyphs (f);
else
{
Lisp_Object tail, lisp_frame;
FOR_EACH_FRAME (tail, lisp_frame)
adjust_frame_glyphs (XFRAME (lisp_frame));
}
UNBLOCK_INPUT;
}
/* Adjust frame glyphs when Emacs is initialized.
To be called from init_display.
We need a glyph matrix because redraw will happen soon.
Unfortunately, window sizes on selected_frame are not yet set to
meaningful values. I believe we can assume that there are only two
windows on the frame---the mini-buffer and the root window. Frame
height and width seem to be correct so far. So, set the sizes of
windows to estimated values. */
static void
adjust_frame_glyphs_initially ()
{
struct frame *sf = SELECTED_FRAME ();
struct window *root = XWINDOW (sf->root_window);
struct window *mini = XWINDOW (root->next);
int frame_lines = FRAME_LINES (sf);
int frame_cols = FRAME_COLS (sf);
int top_margin = FRAME_TOP_MARGIN (sf);
/* Do it for the root window. */
XSETFASTINT (root->top_line, top_margin);
XSETFASTINT (root->total_cols, frame_cols);
set_window_height (sf->root_window, frame_lines - 1 - top_margin, 0);
/* Do it for the mini-buffer window. */
XSETFASTINT (mini->top_line, frame_lines - 1);
XSETFASTINT (mini->total_cols, frame_cols);
set_window_height (root->next, 1, 0);
adjust_frame_glyphs (sf);
glyphs_initialized_initially_p = 1;
}
/* Allocate/reallocate glyph matrices of a single frame F. */
static void
adjust_frame_glyphs (f)
struct frame *f;
{
if (FRAME_WINDOW_P (f))
adjust_frame_glyphs_for_window_redisplay (f);
else
adjust_frame_glyphs_for_frame_redisplay (f);
/* Don't forget the message buffer and the buffer for
decode_mode_spec. */
adjust_frame_message_buffer (f);
adjust_decode_mode_spec_buffer (f);
f->glyphs_initialized_p = 1;
}
/* Return 1 if any window in the tree has nonzero window margins. See
the hack at the end of adjust_frame_glyphs_for_frame_redisplay. */
static int
showing_window_margins_p (w)
struct window *w;
{
while (w)
{
if (!NILP (w->hchild))
{
if (showing_window_margins_p (XWINDOW (w->hchild)))
return 1;
}
else if (!NILP (w->vchild))
{
if (showing_window_margins_p (XWINDOW (w->vchild)))
return 1;
}
else if (!NILP (w->left_margin_cols)
|| !NILP (w->right_margin_cols))
return 1;
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
return 0;
}
/* In the window tree with root W, build current matrices of leaf
windows from the frame's current matrix. */
static void
fake_current_matrices (window)
Lisp_Object window;
{
struct window *w;
for (; !NILP (window); window = w->next)
{
w = XWINDOW (window);
if (!NILP (w->hchild))
fake_current_matrices (w->hchild);
else if (!NILP (w->vchild))
fake_current_matrices (w->vchild);
else
{
int i;
struct frame *f = XFRAME (w->frame);
struct glyph_matrix *m = w->current_matrix;
struct glyph_matrix *fm = f->current_matrix;
xassert (m->matrix_h == WINDOW_TOTAL_LINES (w));
xassert (m->matrix_w == WINDOW_TOTAL_COLS (w));
for (i = 0; i < m->matrix_h; ++i)
{
struct glyph_row *r = m->rows + i;
struct glyph_row *fr = fm->rows + i + WINDOW_TOP_EDGE_LINE (w);
xassert (r->glyphs[TEXT_AREA] >= fr->glyphs[TEXT_AREA]
&& r->glyphs[LAST_AREA] <= fr->glyphs[LAST_AREA]);
r->enabled_p = fr->enabled_p;
if (r->enabled_p)
{
r->used[LEFT_MARGIN_AREA] = m->left_margin_glyphs;
r->used[RIGHT_MARGIN_AREA] = m->right_margin_glyphs;
r->used[TEXT_AREA] = (m->matrix_w
- r->used[LEFT_MARGIN_AREA]
- r->used[RIGHT_MARGIN_AREA]);
r->mode_line_p = 0;
}
}
}
}
}
/* Save away the contents of frame F's current frame matrix. Value is
a glyph matrix holding the contents of F's current frame matrix. */
static struct glyph_matrix *
save_current_matrix (f)
struct frame *f;
{
int i;
struct glyph_matrix *saved;
saved = (struct glyph_matrix *) xmalloc (sizeof *saved);
bzero (saved, sizeof *saved);
saved->nrows = f->current_matrix->nrows;
saved->rows = (struct glyph_row *) xmalloc (saved->nrows
* sizeof *saved->rows);
bzero (saved->rows, saved->nrows * sizeof *saved->rows);
for (i = 0; i < saved->nrows; ++i)
{
struct glyph_row *from = f->current_matrix->rows + i;
struct glyph_row *to = saved->rows + i;
size_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
to->glyphs[TEXT_AREA] = (struct glyph *) xmalloc (nbytes);
bcopy (from->glyphs[TEXT_AREA], to->glyphs[TEXT_AREA], nbytes);
to->used[TEXT_AREA] = from->used[TEXT_AREA];
}
return saved;
}
/* Restore the contents of frame F's current frame matrix from SAVED,
and free memory associated with SAVED. */
static void
restore_current_matrix (f, saved)
struct frame *f;
struct glyph_matrix *saved;
{
int i;
for (i = 0; i < saved->nrows; ++i)
{
struct glyph_row *from = saved->rows + i;
struct glyph_row *to = f->current_matrix->rows + i;
size_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph);
bcopy (from->glyphs[TEXT_AREA], to->glyphs[TEXT_AREA], nbytes);
to->used[TEXT_AREA] = from->used[TEXT_AREA];
xfree (from->glyphs[TEXT_AREA]);
}
xfree (saved->rows);
xfree (saved);
}
/* Allocate/reallocate glyph matrices of a single frame F for
frame-based redisplay. */
static void
adjust_frame_glyphs_for_frame_redisplay (f)
struct frame *f;
{
struct dim matrix_dim;
int pool_changed_p;
int window_change_flags;
int top_window_y;
if (!FRAME_LIVE_P (f))
return;
top_window_y = FRAME_TOP_MARGIN (f);
/* Allocate glyph pool structures if not already done. */
if (f->desired_pool == NULL)
{
f->desired_pool = new_glyph_pool ();
f->current_pool = new_glyph_pool ();
}
/* Allocate frames matrix structures if needed. */
if (f->desired_matrix == NULL)
{
f->desired_matrix = new_glyph_matrix (f->desired_pool);
f->current_matrix = new_glyph_matrix (f->current_pool);
}
/* Compute window glyph matrices. (This takes the mini-buffer
window into account). The result is the size of the frame glyph
matrix needed. The variable window_change_flags is set to a bit
mask indicating whether new matrices will be allocated or
existing matrices change their size or location within the frame
matrix. */
window_change_flags = 0;
matrix_dim
= allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
0, top_window_y,
1,
&window_change_flags);
/* Add in menu bar lines, if any. */
matrix_dim.height += top_window_y;
/* Enlarge pools as necessary. */
pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim);
realloc_glyph_pool (f->current_pool, matrix_dim);
/* Set up glyph pointers within window matrices. Do this only if
absolutely necessary since it requires a frame redraw. */
if (pool_changed_p || window_change_flags)
{
/* Do it for window matrices. */
allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f),
0, top_window_y, 0,
&window_change_flags);
/* Size of frame matrices must equal size of frame. Note
that we are called for X frames with window widths NOT equal
to the frame width (from CHANGE_FRAME_SIZE_1). */
xassert (matrix_dim.width == FRAME_COLS (f)
&& matrix_dim.height == FRAME_LINES (f));
/* Pointers to glyph memory in glyph rows are exchanged during
the update phase of redisplay, which means in general that a
frame's current matrix consists of pointers into both the
desired and current glyph pool of the frame. Adjusting a
matrix sets the frame matrix up so that pointers are all into
the same pool. If we want to preserve glyph contents of the
current matrix over a call to adjust_glyph_matrix, we must
make a copy of the current glyphs, and restore the current
matrix' contents from that copy. */
if (display_completed
&& !FRAME_GARBAGED_P (f)
&& matrix_dim.width == f->current_matrix->matrix_w
&& matrix_dim.height == f->current_matrix->matrix_h
/* For some reason, the frame glyph matrix gets corrupted if
any of the windows contain margins. I haven't been able
to hunt down the reason, but for the moment this prevents
the problem from manifesting. -- cyd */
&& !showing_window_margins_p (XWINDOW (FRAME_ROOT_WINDOW (f))))
{
struct glyph_matrix *copy = save_current_matrix (f);
adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
restore_current_matrix (f, copy);
fake_current_matrices (FRAME_ROOT_WINDOW (f));
}
else
{
adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim);
adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim);
SET_FRAME_GARBAGED (f);
}
}
}
/* Allocate/reallocate glyph matrices of a single frame F for
window-based redisplay. */
static void
adjust_frame_glyphs_for_window_redisplay (f)
struct frame *f;
{
struct window *w;
xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f));
/* Allocate/reallocate window matrices. */
allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f)));
#ifdef HAVE_X_WINDOWS
/* Allocate/ reallocate matrices of the dummy window used to display
the menu bar under X when no X toolkit support is available. */
#if ! defined (USE_X_TOOLKIT) && ! defined (USE_GTK)
{
/* Allocate a dummy window if not already done. */
if (NILP (f->menu_bar_window))
{
f->menu_bar_window = make_window ();
w = XWINDOW (f->menu_bar_window);
XSETFRAME (w->frame, f);
w->pseudo_window_p = 1;
}
else
w = XWINDOW (f->menu_bar_window);
/* Set window dimensions to frame dimensions and allocate or
adjust glyph matrices of W. */
XSETFASTINT (w->top_line, 0);
XSETFASTINT (w->left_col, 0);
XSETFASTINT (w->total_lines, FRAME_MENU_BAR_LINES (f));
XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
allocate_matrices_for_window_redisplay (w);
}
#endif /* not USE_X_TOOLKIT && not USE_GTK */
#endif /* HAVE_X_WINDOWS */
#ifndef USE_GTK
/* Allocate/ reallocate matrices of the tool bar window. If we
don't have a tool bar window yet, make one. */
if (NILP (f->tool_bar_window))
{
f->tool_bar_window = make_window ();
w = XWINDOW (f->tool_bar_window);
XSETFRAME (w->frame, f);
w->pseudo_window_p = 1;
}
else
w = XWINDOW (f->tool_bar_window);
XSETFASTINT (w->top_line, FRAME_MENU_BAR_LINES (f));
XSETFASTINT (w->left_col, 0);
XSETFASTINT (w->total_lines, FRAME_TOOL_BAR_LINES (f));
XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f));
allocate_matrices_for_window_redisplay (w);
#endif
}
/* Adjust/ allocate message buffer of frame F.
Note that the message buffer is never freed. Since I could not
find a free in 19.34, I assume that freeing it would be
problematic in some way and don't do it either.
(Implementation note: It should be checked if we can free it
eventually without causing trouble). */
static void
adjust_frame_message_buffer (f)
struct frame *f;
{
int size = FRAME_MESSAGE_BUF_SIZE (f) + 1;
if (FRAME_MESSAGE_BUF (f))
{
char *buffer = FRAME_MESSAGE_BUF (f);
char *new_buffer = (char *) xrealloc (buffer, size);
FRAME_MESSAGE_BUF (f) = new_buffer;
}
else
FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size);
}
/* Re-allocate buffer for decode_mode_spec on frame F. */
static void
adjust_decode_mode_spec_buffer (f)
struct frame *f;
{
f->decode_mode_spec_buffer
= (char *) xrealloc (f->decode_mode_spec_buffer,
FRAME_MESSAGE_BUF_SIZE (f) + 1);
}
/**********************************************************************
Freeing Glyph Matrices
**********************************************************************/
/* Free glyph memory for a frame F. F may be null. This function can
be called for the same frame more than once. The root window of
F may be nil when this function is called. This is the case when
the function is called when F is destroyed. */
void
free_glyphs (f)
struct frame *f;
{
if (f && f->glyphs_initialized_p)
{
/* Block interrupt input so that we don't get surprised by an X
event while we're in an inconsistent state. */
BLOCK_INPUT;
f->glyphs_initialized_p = 0;
/* Release window sub-matrices. */
if (!NILP (f->root_window))
free_window_matrices (XWINDOW (f->root_window));
/* Free the dummy window for menu bars without X toolkit and its
glyph matrices. */
if (!NILP (f->menu_bar_window))
{
struct window *w = XWINDOW (f->menu_bar_window);
free_glyph_matrix (w->desired_matrix);
free_glyph_matrix (w->current_matrix);
w->desired_matrix = w->current_matrix = NULL;
f->menu_bar_window = Qnil;
}
/* Free the tool bar window and its glyph matrices. */
if (!NILP (f->tool_bar_window))
{
struct window *w = XWINDOW (f->tool_bar_window);
free_glyph_matrix (w->desired_matrix);
free_glyph_matrix (w->current_matrix);
w->desired_matrix = w->current_matrix = NULL;
f->tool_bar_window = Qnil;
}
/* Release frame glyph matrices. Reset fields to zero in
case we are called a second time. */
if (f->desired_matrix)
{
free_glyph_matrix (f->desired_matrix);
free_glyph_matrix (f->current_matrix);
f->desired_matrix = f->current_matrix = NULL;
}
/* Release glyph pools. */
if (f->desired_pool)
{
free_glyph_pool (f->desired_pool);
free_glyph_pool (f->current_pool);
f->desired_pool = f->current_pool = NULL;
}
UNBLOCK_INPUT;
}
}
/* Free glyph sub-matrices in the window tree rooted at W. This
function may be called with a null pointer, and it may be called on
the same tree more than once. */
void
free_window_matrices (w)
struct window *w;
{
while (w)
{
if (!NILP (w->hchild))
free_window_matrices (XWINDOW (w->hchild));
else if (!NILP (w->vchild))
free_window_matrices (XWINDOW (w->vchild));
else
{
/* This is a leaf window. Free its memory and reset fields
to zero in case this function is called a second time for
W. */
free_glyph_matrix (w->current_matrix);
free_glyph_matrix (w->desired_matrix);
w->current_matrix = w->desired_matrix = NULL;
}
/* Next window on same level. */
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
}
/* Check glyph memory leaks. This function is called from
shut_down_emacs. Note that frames are not destroyed when Emacs
exits. We therefore free all glyph memory for all active frames
explicitly and check that nothing is left allocated. */
void
check_glyph_memory ()
{
Lisp_Object tail, frame;
/* Free glyph memory for all frames. */
FOR_EACH_FRAME (tail, frame)
free_glyphs (XFRAME (frame));
/* Check that nothing is left allocated. */
if (glyph_matrix_count)
abort ();
if (glyph_pool_count)
abort ();
}
/**********************************************************************
Building a Frame Matrix
**********************************************************************/
/* Most of the redisplay code works on glyph matrices attached to
windows. This is a good solution most of the time, but it is not
suitable for terminal code. Terminal output functions cannot rely
on being able to set an arbitrary terminal window. Instead they
must be provided with a view of the whole frame, i.e. the whole
screen. We build such a view by constructing a frame matrix from
window matrices in this section.
Windows that must be updated have their must_be_update_p flag set.
For all such windows, their desired matrix is made part of the
desired frame matrix. For other windows, their current matrix is
made part of the desired frame matrix.
+-----------------+----------------+
| desired | desired |
| | |
+-----------------+----------------+
| current |
| |
+----------------------------------+
Desired window matrices can be made part of the frame matrix in a
cheap way: We exploit the fact that the desired frame matrix and
desired window matrices share their glyph memory. This is not
possible for current window matrices. Their glyphs are copied to
the desired frame matrix. The latter is equivalent to
preserve_other_columns in the old redisplay.
Used glyphs counters for frame matrix rows are the result of adding
up glyph lengths of the window matrices. A line in the frame
matrix is enabled, if a corresponding line in a window matrix is
enabled.
After building the desired frame matrix, it will be passed to
terminal code, which will manipulate both the desired and current
frame matrix. Changes applied to the frame's current matrix have
to be visible in current window matrices afterwards, of course.
This problem is solved like this:
1. Window and frame matrices share glyphs. Window matrices are
constructed in a way that their glyph contents ARE the glyph
contents needed in a frame matrix. Thus, any modification of
glyphs done in terminal code will be reflected in window matrices
automatically.
2. Exchanges of rows in a frame matrix done by terminal code are
intercepted by hook functions so that corresponding row operations
on window matrices can be performed. This is necessary because we
use pointers to glyphs in glyph row structures. To satisfy the
assumption of point 1 above that glyphs are updated implicitly in
window matrices when they are manipulated via the frame matrix,
window and frame matrix must of course agree where to find the
glyphs for their rows. Possible manipulations that must be
mirrored are assignments of rows of the desired frame matrix to the
current frame matrix and scrolling the current frame matrix. */
/* Build frame F's desired matrix from window matrices. Only windows
which have the flag must_be_updated_p set have to be updated. Menu
bar lines of a frame are not covered by window matrices, so make
sure not to touch them in this function. */
static void
build_frame_matrix (f)
struct frame *f;
{
int i;
/* F must have a frame matrix when this function is called. */
xassert (!FRAME_WINDOW_P (f));
/* Clear all rows in the frame matrix covered by window matrices.
Menu bar lines are not covered by windows. */
for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i)
clear_glyph_row (MATRIX_ROW (f->desired_matrix, i));
/* Build the matrix by walking the window tree. */
build_frame_matrix_from_window_tree (f->desired_matrix,
XWINDOW (FRAME_ROOT_WINDOW (f)));
}
/* Walk a window tree, building a frame matrix MATRIX from window
matrices. W is the root of a window tree. */
static void
build_frame_matrix_from_window_tree (matrix, w)
struct glyph_matrix *matrix;
struct window *w;
{
while (w)
{
if (!NILP (w->hchild))
build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild));
else if (!NILP (w->vchild))
build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild));
else
build_frame_matrix_from_leaf_window (matrix, w);
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
}
/* Add a window's matrix to a frame matrix. FRAME_MATRIX is the
desired frame matrix built. W is a leaf window whose desired or
current matrix is to be added to FRAME_MATRIX. W's flag
must_be_updated_p determines which matrix it contributes to
FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix
is added to FRAME_MATRIX, otherwise W's current matrix is added.
Adding a desired matrix means setting up used counters and such in
frame rows, while adding a current window matrix to FRAME_MATRIX
means copying glyphs. The latter case corresponds to
preserve_other_columns in the old redisplay. */
static void
build_frame_matrix_from_leaf_window (frame_matrix, w)
struct glyph_matrix *frame_matrix;
struct window *w;
{
struct glyph_matrix *window_matrix;
int window_y, frame_y;
/* If non-zero, a glyph to insert at the right border of W. */
GLYPH right_border_glyph;
SET_GLYPH_FROM_CHAR (right_border_glyph, 0);
/* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */
if (w->must_be_updated_p)
{
window_matrix = w->desired_matrix;
/* Decide whether we want to add a vertical border glyph. */
if (!WINDOW_RIGHTMOST_P (w))
{
struct Lisp_Char_Table *dp = window_display_table (w);
Lisp_Object gc;
SET_GLYPH_FROM_CHAR (right_border_glyph, '|');
if (dp
&& (gc = DISP_BORDER_GLYPH (dp), GLYPH_CODE_P (gc))
&& GLYPH_CODE_CHAR_VALID_P (gc))
{
SET_GLYPH_FROM_GLYPH_CODE (right_border_glyph, gc);
spec_glyph_lookup_face (w, &right_border_glyph);
}
if (GLYPH_FACE (right_border_glyph) <= 0)
SET_GLYPH_FACE (right_border_glyph, VERTICAL_BORDER_FACE_ID);
}
}
else
window_matrix = w->current_matrix;
/* For all rows in the window matrix and corresponding rows in the
frame matrix. */
window_y = 0;
frame_y = window_matrix->matrix_y;
while (window_y < window_matrix->nrows)
{
struct glyph_row *frame_row = frame_matrix->rows + frame_y;
struct glyph_row *window_row = window_matrix->rows + window_y;
int current_row_p = window_matrix == w->current_matrix;
/* Fill up the frame row with spaces up to the left margin of the
window row. */
fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x);
/* Fill up areas in the window matrix row with spaces. */
fill_up_glyph_row_with_spaces (window_row);
/* If only part of W's desired matrix has been built, and
window_row wasn't displayed, use the corresponding current
row instead. */
if (window_matrix == w->desired_matrix
&& !window_row->enabled_p)
{
window_row = w->current_matrix->rows + window_y;
current_row_p = 1;
}
if (current_row_p)
{
/* Copy window row to frame row. */
bcopy (window_row->glyphs[0],
frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x,
window_matrix->matrix_w * sizeof (struct glyph));
}
else
{
xassert (window_row->enabled_p);
/* Only when a desired row has been displayed, we want
the corresponding frame row to be updated. */
frame_row->enabled_p = 1;
/* Maybe insert a vertical border between horizontally adjacent
windows. */
if (GLYPH_CHAR (right_border_glyph) != 0)
{
struct glyph *border = window_row->glyphs[LAST_AREA] - 1;
SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph);
}
#if GLYPH_DEBUG
/* Window row window_y must be a slice of frame row
frame_y. */
xassert (glyph_row_slice_p (window_row, frame_row));
/* If rows are in sync, we don't have to copy glyphs because
frame and window share glyphs. */
strcpy (w->current_matrix->method, w->desired_matrix->method);
add_window_display_history (w, w->current_matrix->method, 0);
#endif
}
/* Set number of used glyphs in the frame matrix. Since we fill
up with spaces, and visit leaf windows from left to right it
can be done simply. */
frame_row->used[TEXT_AREA]
= window_matrix->matrix_x + window_matrix->matrix_w;
/* Next row. */
++window_y;
++frame_y;
}
}
/* Given a user-specified glyph, possibly including a Lisp-level face
ID, return a glyph that has a realized face ID.
This is used for glyphs displayed specially and not part of the text;
for instance, vertical separators, truncation markers, etc. */
void
spec_glyph_lookup_face (w, glyph)
struct window *w;
GLYPH *glyph;
{
int lface_id = GLYPH_FACE (*glyph);
/* Convert the glyph's specified face to a realized (cache) face. */
if (lface_id > 0)
{
int face_id = merge_faces (XFRAME (w->frame),
Qt, lface_id, DEFAULT_FACE_ID);
SET_GLYPH_FACE (*glyph, face_id);
}
}
/* Add spaces to a glyph row ROW in a window matrix.
Each row has the form:
+---------+-----------------------------+------------+
| left | text | right |
+---------+-----------------------------+------------+
Left and right marginal areas are optional. This function adds
spaces to areas so that there are no empty holes between areas.
In other words: If the right area is not empty, the text area
is filled up with spaces up to the right area. If the text area
is not empty, the left area is filled up.
To be called for frame-based redisplay, only. */
static void
fill_up_glyph_row_with_spaces (row)
struct glyph_row *row;
{
fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA);
fill_up_glyph_row_area_with_spaces (row, TEXT_AREA);
fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA);
}
/* Fill area AREA of glyph row ROW with spaces. To be called for
frame-based redisplay only. */
static void
fill_up_glyph_row_area_with_spaces (row, area)
struct glyph_row *row;
int area;
{
if (row->glyphs[area] < row->glyphs[area + 1])
{
struct glyph *end = row->glyphs[area + 1];
struct glyph *text = row->glyphs[area] + row->used[area];
while (text < end)
*text++ = space_glyph;
row->used[area] = text - row->glyphs[area];
}
}
/* Add spaces to the end of ROW in a frame matrix until index UPTO is
reached. In frame matrices only one area, TEXT_AREA, is used. */
static void
fill_up_frame_row_with_spaces (row, upto)
struct glyph_row *row;
int upto;
{
int i = row->used[TEXT_AREA];
struct glyph *glyph = row->glyphs[TEXT_AREA];
while (i < upto)
glyph[i++] = space_glyph;
row->used[TEXT_AREA] = i;
}
/**********************************************************************
Mirroring operations on frame matrices in window matrices
**********************************************************************/
/* Set frame being updated via frame-based redisplay to F. This
function must be called before updates to make explicit that we are
working on frame matrices or not. */
static INLINE void
set_frame_matrix_frame (f)
struct frame *f;
{
frame_matrix_frame = f;
}
/* Make sure glyph row ROW in CURRENT_MATRIX is up to date.
DESIRED_MATRIX is the desired matrix corresponding to
CURRENT_MATRIX. The update is done by exchanging glyph pointers
between rows in CURRENT_MATRIX and DESIRED_MATRIX. If
frame_matrix_frame is non-null, this indicates that the exchange is
done in frame matrices, and that we have to perform analogous
operations in window matrices of frame_matrix_frame. */
static INLINE void
make_current (desired_matrix, current_matrix, row)
struct glyph_matrix *desired_matrix, *current_matrix;
int row;
{
struct glyph_row *current_row = MATRIX_ROW (current_matrix, row);
struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row);
int mouse_face_p = current_row->mouse_face_p;
/* Do current_row = desired_row. This exchanges glyph pointers
between both rows, and does a structure assignment otherwise. */
assign_row (current_row, desired_row);
/* Enable current_row to mark it as valid. */
current_row->enabled_p = 1;
current_row->mouse_face_p = mouse_face_p;
/* If we are called on frame matrices, perform analogous operations
for window matrices. */
if (frame_matrix_frame)
mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row);
}
/* W is the root of a window tree. FRAME_ROW is the index of a row in
W's frame which has been made current (by swapping pointers between
current and desired matrix). Perform analogous operations in the
matrices of leaf windows in the window tree rooted at W. */
static void
mirror_make_current (w, frame_row)
struct window *w;
int frame_row;
{
while (w)
{
if (!NILP (w->hchild))
mirror_make_current (XWINDOW (w->hchild), frame_row);
else if (!NILP (w->vchild))
mirror_make_current (XWINDOW (w->vchild), frame_row);
else
{
/* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS
here because the checks performed in debug mode there
will not allow the conversion. */
int row = frame_row - w->desired_matrix->matrix_y;
/* If FRAME_ROW is within W, assign the desired row to the
current row (exchanging glyph pointers). */
if (row >= 0 && row < w->desired_matrix->matrix_h)
{
struct glyph_row *current_row
= MATRIX_ROW (w->current_matrix, row);
struct glyph_row *desired_row
= MATRIX_ROW (w->desired_matrix, row);
if (desired_row->enabled_p)
assign_row (current_row, desired_row);
else
swap_glyph_pointers (desired_row, current_row);
current_row->enabled_p = 1;
}
}
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
}
/* Perform row dance after scrolling. We are working on the range of
lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not
including) in MATRIX. COPY_FROM is a vector containing, for each
row I in the range 0 <= I < NLINES, the index of the original line
to move to I. This index is relative to the row range, i.e. 0 <=
index < NLINES. RETAINED_P is a vector containing zero for each
row 0 <= I < NLINES which is empty.
This function is called from do_scrolling and do_direct_scrolling. */
void
mirrored_line_dance (matrix, unchanged_at_top, nlines, copy_from,
retained_p)
struct glyph_matrix *matrix;
int unchanged_at_top, nlines;
int *copy_from;
char *retained_p;
{
/* A copy of original rows. */
struct glyph_row *old_rows;
/* Rows to assign to. */
struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top);
int i;
/* Make a copy of the original rows. */
old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows);
bcopy (new_rows, old_rows, nlines * sizeof *old_rows);
/* Assign new rows, maybe clear lines. */
for (i = 0; i < nlines; ++i)
{
int enabled_before_p = new_rows[i].enabled_p;
xassert (i + unchanged_at_top < matrix->nrows);
xassert (unchanged_at_top + copy_from[i] < matrix->nrows);
new_rows[i] = old_rows[copy_from[i]];
new_rows[i].enabled_p = enabled_before_p;
/* RETAINED_P is zero for empty lines. */
if (!retained_p[copy_from[i]])
new_rows[i].enabled_p = 0;
}
/* Do the same for window matrices, if MATRIX is a frame matrix. */
if (frame_matrix_frame)
mirror_line_dance (XWINDOW (frame_matrix_frame->root_window),
unchanged_at_top, nlines, copy_from, retained_p);
}
/* Synchronize glyph pointers in the current matrix of window W with
the current frame matrix. */
static void
sync_window_with_frame_matrix_rows (w)
struct window *w;
{
struct frame *f = XFRAME (w->frame);
struct glyph_row *window_row, *window_row_end, *frame_row;
int left, right, x, width;
/* Preconditions: W must be a leaf window on a tty frame. */
xassert (NILP (w->hchild) && NILP (w->vchild));
xassert (!FRAME_WINDOW_P (f));
left = margin_glyphs_to_reserve (w, 1, w->left_margin_cols);
right = margin_glyphs_to_reserve (w, 1, w->right_margin_cols);
x = w->current_matrix->matrix_x;
width = w->current_matrix->matrix_w;
window_row = w->current_matrix->rows;
window_row_end = window_row + w->current_matrix->nrows;
frame_row = f->current_matrix->rows + WINDOW_TOP_EDGE_LINE (w);
for (; window_row < window_row_end; ++window_row, ++frame_row)
{
window_row->glyphs[LEFT_MARGIN_AREA]
= frame_row->glyphs[0] + x;
window_row->glyphs[TEXT_AREA]
= window_row->glyphs[LEFT_MARGIN_AREA] + left;
window_row->glyphs[LAST_AREA]
= window_row->glyphs[LEFT_MARGIN_AREA] + width;
window_row->glyphs[RIGHT_MARGIN_AREA]
= window_row->glyphs[LAST_AREA] - right;
}
}
/* Return the window in the window tree rooted in W containing frame
row ROW. Value is null if none is found. */
struct window *
frame_row_to_window (w, row)
struct window *w;
int row;
{
struct window *found = NULL;
while (w && !found)
{
if (!NILP (w->hchild))
found = frame_row_to_window (XWINDOW (w->hchild), row);
else if (!NILP (w->vchild))
found = frame_row_to_window (XWINDOW (w->vchild), row);
else if (row >= WINDOW_TOP_EDGE_LINE (w)
&& row < WINDOW_BOTTOM_EDGE_LINE (w))
found = w;
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
return found;
}
/* Perform a line dance in the window tree rooted at W, after
scrolling a frame matrix in mirrored_line_dance.
We are working on the range of lines UNCHANGED_AT_TOP + 1 to
UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix.
COPY_FROM is a vector containing, for each row I in the range 0 <=
I < NLINES, the index of the original line to move to I. This
index is relative to the row range, i.e. 0 <= index < NLINES.
RETAINED_P is a vector containing zero for each row 0 <= I < NLINES
which is empty. */
static void
mirror_line_dance (w, unchanged_at_top, nlines, copy_from, retained_p)
struct window *w;
int unchanged_at_top, nlines;
int *copy_from;
char *retained_p;
{
while (w)
{
if (!NILP (w->hchild))
mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top,
nlines, copy_from, retained_p);
else if (!NILP (w->vchild))
mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top,
nlines, copy_from, retained_p);
else
{
/* W is a leaf window, and we are working on its current
matrix m. */
struct glyph_matrix *m = w->current_matrix;
int i, sync_p = 0;
struct glyph_row *old_rows;
/* Make a copy of the original rows of matrix m. */
old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows);
bcopy (m->rows, old_rows, m->nrows * sizeof *old_rows);
for (i = 0; i < nlines; ++i)
{
/* Frame relative line assigned to. */
int frame_to = i + unchanged_at_top;
/* Frame relative line assigned. */
int frame_from = copy_from[i] + unchanged_at_top;
/* Window relative line assigned to. */
int window_to = frame_to - m->matrix_y;
/* Window relative line assigned. */
int window_from = frame_from - m->matrix_y;
/* Is assigned line inside window? */
int from_inside_window_p
= window_from >= 0 && window_from < m->matrix_h;
/* Is assigned to line inside window? */
int to_inside_window_p
= window_to >= 0 && window_to < m->matrix_h;
if (from_inside_window_p && to_inside_window_p)
{
/* Enabled setting before assignment. */
int enabled_before_p;
/* Do the assignment. The enabled_p flag is saved
over the assignment because the old redisplay did
that. */
enabled_before_p = m->rows[window_to].enabled_p;
m->rows[window_to] = old_rows[window_from];
m->rows[window_to].enabled_p = enabled_before_p;
/* If frame line is empty, window line is empty, too. */
if (!retained_p[copy_from[i]])
m->rows[window_to].enabled_p = 0;
}
else if (to_inside_window_p)
{
/* A copy between windows. This is an infrequent
case not worth optimizing. */
struct frame *f = XFRAME (w->frame);
struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f));
struct window *w2;
struct glyph_matrix *m2;
int m2_from;
w2 = frame_row_to_window (root, frame_from);
/* ttn@surf.glug.org: when enabling menu bar using `emacs
-nw', FROM_FRAME sometimes has no associated window.
This check avoids a segfault if W2 is null. */
if (w2)
{
m2 = w2->current_matrix;
m2_from = frame_from - m2->matrix_y;
copy_row_except_pointers (m->rows + window_to,
m2->rows + m2_from);
/* If frame line is empty, window line is empty, too. */
if (!retained_p[copy_from[i]])
m->rows[window_to].enabled_p = 0;
}
sync_p = 1;
}
else if (from_inside_window_p)
sync_p = 1;
}
/* If there was a copy between windows, make sure glyph
pointers are in sync with the frame matrix. */
if (sync_p)
sync_window_with_frame_matrix_rows (w);
/* Check that no pointers are lost. */
CHECK_MATRIX (m);
}
/* Next window on same level. */
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
}
#if GLYPH_DEBUG
/* Check that window and frame matrices agree about their
understanding where glyphs of the rows are to find. For each
window in the window tree rooted at W, check that rows in the
matrices of leaf window agree with their frame matrices about
glyph pointers. */
void
check_window_matrix_pointers (w)
struct window *w;
{
while (w)
{
if (!NILP (w->hchild))
check_window_matrix_pointers (XWINDOW (w->hchild));
else if (!NILP (w->vchild))
check_window_matrix_pointers (XWINDOW (w->vchild));
else
{
struct frame *f = XFRAME (w->frame);
check_matrix_pointers (w->desired_matrix, f->desired_matrix);
check_matrix_pointers (w->current_matrix, f->current_matrix);
}
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
}
/* Check that window rows are slices of frame rows. WINDOW_MATRIX is
a window and FRAME_MATRIX is the corresponding frame matrix. For
each row in WINDOW_MATRIX check that it's a slice of the
corresponding frame row. If it isn't, abort. */
static void
check_matrix_pointers (window_matrix, frame_matrix)
struct glyph_matrix *window_matrix, *frame_matrix;
{
/* Row number in WINDOW_MATRIX. */
int i = 0;
/* Row number corresponding to I in FRAME_MATRIX. */
int j = window_matrix->matrix_y;
/* For all rows check that the row in the window matrix is a
slice of the row in the frame matrix. If it isn't we didn't
mirror an operation on the frame matrix correctly. */
while (i < window_matrix->nrows)
{
if (!glyph_row_slice_p (window_matrix->rows + i,
frame_matrix->rows + j))
abort ();
++i, ++j;
}
}
#endif /* GLYPH_DEBUG != 0 */
/**********************************************************************
VPOS and HPOS translations
**********************************************************************/
#if GLYPH_DEBUG
/* Translate vertical position VPOS which is relative to window W to a
vertical position relative to W's frame. */
static int
window_to_frame_vpos (w, vpos)
struct window *w;
int vpos;
{
struct frame *f = XFRAME (w->frame);
xassert (!FRAME_WINDOW_P (f));
xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows);
vpos += WINDOW_TOP_EDGE_LINE (w);
xassert (vpos >= 0 && vpos <= FRAME_LINES (f));
return vpos;
}
/* Translate horizontal position HPOS which is relative to window W to
a horizontal position relative to W's frame. */
static int
window_to_frame_hpos (w, hpos)
struct window *w;
int hpos;
{
xassert (!FRAME_WINDOW_P (XFRAME (w->frame)));
hpos += WINDOW_LEFT_EDGE_COL (w);
return hpos;
}
#endif /* GLYPH_DEBUG */
/**********************************************************************
Redrawing Frames
**********************************************************************/
DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0,
doc: /* Clear frame FRAME and output again what is supposed to appear on it. */)
(frame)
Lisp_Object frame;
{
struct frame *f;
CHECK_LIVE_FRAME (frame);
f = XFRAME (frame);
/* Ignore redraw requests, if frame has no glyphs yet.
(Implementation note: It still has to be checked why we are
called so early here). */
if (!glyphs_initialized_initially_p)
return Qnil;
update_begin (f);
#ifdef MSDOS
if (FRAME_MSDOS_P (f))
set_terminal_modes (FRAME_TERMINAL (f));
#endif
clear_frame (f);
clear_current_matrices (f);
update_end (f);
if (FRAME_TERMCAP_P (f))
fflush (FRAME_TTY (f)->output);
windows_or_buffers_changed++;
/* Mark all windows as inaccurate, so that every window will have
its redisplay done. */
mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0);
set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1);
f->garbaged = 0;
return Qnil;
}
/* Redraw frame F. This is nothing more than a call to the Lisp
function redraw-frame. */
void
redraw_frame (f)
struct frame *f;
{
Lisp_Object frame;
XSETFRAME (frame, f);
Fredraw_frame (frame);
}
DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "",
doc: /* Clear and redisplay all visible frames. */)
()
{
Lisp_Object tail, frame;
FOR_EACH_FRAME (tail, frame)
if (FRAME_VISIBLE_P (XFRAME (frame)))
Fredraw_frame (frame);
return Qnil;
}
/* This is used when frame_garbaged is set. Call Fredraw_frame on all
visible frames marked as garbaged. */
void
redraw_garbaged_frames ()
{
Lisp_Object tail, frame;
FOR_EACH_FRAME (tail, frame)
if (FRAME_VISIBLE_P (XFRAME (frame))
&& FRAME_GARBAGED_P (XFRAME (frame)))
Fredraw_frame (frame);
}
/***********************************************************************
Direct Operations
***********************************************************************/
/* Try to update display and current glyph matrix directly.
This function is called after a character G has been inserted into
current_buffer. It tries to update the current glyph matrix and
perform appropriate screen output to reflect the insertion. If it
succeeds, the global flag redisplay_performed_directly_p will be
set to 1, and thereby prevent the more costly general redisplay
from running (see redisplay_internal).
This function is not called for `hairy' character insertions.
In particular, it is not called when after or before change
functions exist, like they are used by font-lock. See keyboard.c
for details where this function is called. */
int
direct_output_for_insert (g)
int g;
{
register struct frame *f = SELECTED_FRAME ();
struct window *w = XWINDOW (selected_window);
struct it it, it2;
struct glyph_row *glyph_row;
struct glyph *glyphs, *glyph, *end;
int n;
/* Non-null means that redisplay of W is based on window matrices. */
int window_redisplay_p = FRAME_WINDOW_P (f);
/* Non-null means we are in overwrite mode. */
int overwrite_p = !NILP (current_buffer->overwrite_mode);
int added_width;
struct text_pos pos;
int delta, delta_bytes;
/* Not done directly. */
redisplay_performed_directly_p = 0;
/* Quickly give up for some common cases. */
if (cursor_in_echo_area
/* Give up if fonts have changed. */
|| fonts_changed_p
/* Give up if face attributes have been changed. */
|| face_change_count
/* Give up if cursor position not really known. */
|| !display_completed
/* Give up if buffer appears in two places. */
|| buffer_shared > 1
/* Give up if currently displaying a message instead of the
minibuffer contents. */
|| (EQ (selected_window, minibuf_window)
&& EQ (minibuf_window, echo_area_window))
/* Give up for hscrolled mini-buffer because display of the prompt
is handled specially there (see display_line). */
|| (MINI_WINDOW_P (w) && XFASTINT (w->hscroll))
/* Give up if overwriting in the middle of a line. */
|| (overwrite_p
&& PT != ZV
&& FETCH_BYTE (PT) != '\n')
/* Give up for tabs and line ends. */
|| g == '\t'
|| g == '\n'
|| g == '\r'
|| (g == ' ' && !NILP (current_buffer->word_wrap))
/* Give up if unable to display the cursor in the window. */
|| w->cursor.vpos < 0
/* Give up if we are showing a message or just cleared the message
because we might need to resize the echo area window. */
|| !NILP (echo_area_buffer[0])
|| !NILP (echo_area_buffer[1])
|| (glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos),
/* Can't do it in a continued line because continuation
lines would change. */
(glyph_row->continued_p
|| glyph_row->exact_window_width_line_p
/* Can't use this method if the line overlaps others or is
overlapped by others because these other lines would
have to be redisplayed. */
|| glyph_row->overlapping_p
|| glyph_row->overlapped_p))
/* Can't do it for partial width windows on terminal frames
because we can't clear to eol in such a window. */
|| (!window_redisplay_p && !WINDOW_FULL_WIDTH_P (w)))
return 0;
/* If we can't insert glyphs, we can use this method only
at the end of a line. */
if (!FRAME_CHAR_INS_DEL_OK (f))
if (PT != ZV && FETCH_BYTE (PT_BYTE) != '\n')
return 0;
/* Set up a display iterator structure for W. Glyphs will be
produced in scratch_glyph_row. Current position is W's cursor
position. */
clear_glyph_row (&scratch_glyph_row);
SET_TEXT_POS (pos, PT, PT_BYTE);
DEC_TEXT_POS (pos, !NILP (current_buffer->enable_multibyte_characters));
init_iterator (&it, w, CHARPOS (pos), BYTEPOS (pos), &scratch_glyph_row,
DEFAULT_FACE_ID);
glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
if (glyph_row->mouse_face_p)
return 0;
/* Give up if highlighting trailing whitespace and we have trailing
whitespace in glyph_row. We would have to remove the trailing
whitespace face in that case. */
if (!NILP (Vshow_trailing_whitespace)
&& glyph_row->used[TEXT_AREA])
{
struct glyph *last;
last = glyph_row->glyphs[TEXT_AREA] + glyph_row->used[TEXT_AREA] - 1;
if (last->type == STRETCH_GLYPH
|| (last->type == CHAR_GLYPH
&& last->u.ch == ' '))
return 0;
}
/* Give up if there are overlay strings at pos. This would fail
if the overlay string has newlines in it. */
if (STRINGP (it.string))
return 0;
it.hpos = w->cursor.hpos;
it.vpos = w->cursor.vpos;
it.current_x = w->cursor.x + it.first_visible_x;
it.current_y = w->cursor.y;
it.end_charpos = PT;
it.stop_charpos = min (PT, it.stop_charpos);
it.stop_charpos = max (IT_CHARPOS (it), it.stop_charpos);
/* More than one display element may be returned for PT - 1 if
(i) it's a control character which is translated into `\003' or
`^C', or (ii) it has a display table entry, or (iii) it's a
combination of both. */
delta = delta_bytes = 0;
while (get_next_display_element (&it))
{
PRODUCE_GLYPHS (&it);
/* Give up if glyph doesn't fit completely on the line. */
if (it.current_x >= it.last_visible_x)
return 0;
/* Give up if new glyph has different ascent or descent than
the original row, or if it is not a character glyph. */
if (glyph_row->ascent != it.ascent
|| glyph_row->height != it.ascent + it.descent
|| glyph_row->phys_ascent != it.phys_ascent
|| glyph_row->phys_height != it.phys_ascent + it.phys_descent
|| it.what != IT_CHARACTER)
return 0;
delta += 1;
delta_bytes += it.len;
set_iterator_to_next (&it, 1);
}
/* Give up if we hit the right edge of the window. We would have
to insert truncation or continuation glyphs. */
added_width = it.current_x - (w->cursor.x + it.first_visible_x);
if (glyph_row->pixel_width + added_width >= it.last_visible_x)
return 0;
/* Give up if there is a \t following in the line. */
it2 = it;
it2.end_charpos = ZV;
it2.stop_charpos = min (it2.stop_charpos, ZV);
while (get_next_display_element (&it2)
&& !ITERATOR_AT_END_OF_LINE_P (&it2))
{
if (it2.c == '\t')
return 0;
set_iterator_to_next (&it2, 1);
}
/* Number of new glyphs produced. */
n = it.glyph_row->used[TEXT_AREA];
/* Start and end of glyphs in original row. */
glyphs = glyph_row->glyphs[TEXT_AREA] + w->cursor.hpos;
end = glyph_row->glyphs[1 + TEXT_AREA];
/* Make room for new glyphs, then insert them. */
xassert (end - glyphs - n >= 0);
safe_bcopy ((char *) glyphs, (char *) (glyphs + n),
(end - glyphs - n) * sizeof (*end));
bcopy (it.glyph_row->glyphs[TEXT_AREA], glyphs, n * sizeof *glyphs);
glyph_row->used[TEXT_AREA] = min (glyph_row->used[TEXT_AREA] + n,
end - glyph_row->glyphs[TEXT_AREA]);
/* Compute new line width. */
glyph = glyph_row->glyphs[TEXT_AREA];
end = glyph + glyph_row->used[TEXT_AREA];
glyph_row->pixel_width = glyph_row->x;
while (glyph < end)
{
glyph_row->pixel_width += glyph->pixel_width;
++glyph;
}
/* Increment buffer positions for glyphs following the newly
inserted ones. */
for (glyph = glyphs + n; glyph < end; ++glyph)
if (glyph->charpos > 0 && BUFFERP (glyph->object))
glyph->charpos += delta;
if (MATRIX_ROW_END_CHARPOS (glyph_row) > 0)
{
MATRIX_ROW_END_CHARPOS (glyph_row) += delta;
MATRIX_ROW_END_BYTEPOS (glyph_row) += delta_bytes;
}
/* Adjust positions in lines following the one we are in. */
increment_matrix_positions (w->current_matrix,
w->cursor.vpos + 1,
w->current_matrix->nrows,
delta, delta_bytes);
glyph_row->contains_overlapping_glyphs_p
|= it.glyph_row->contains_overlapping_glyphs_p;
glyph_row->displays_text_p = 1;
w->window_end_vpos = make_number (max (w->cursor.vpos,
XFASTINT (w->window_end_vpos)));
if (!NILP (Vshow_trailing_whitespace))
highlight_trailing_whitespace (it.f, glyph_row);
/* Write glyphs. If at end of row, we can simply call write_glyphs.
In the middle, we have to insert glyphs. Note that this is now
implemented for X frames. The implementation uses updated_window
and updated_row. */
updated_row = glyph_row;
updated_area = TEXT_AREA;
update_begin (f);
if (FRAME_RIF (f))
{
FRAME_RIF (f)->update_window_begin_hook (w);
if (glyphs == end - n
/* In front of a space added by append_space. */
|| (glyphs == end - n - 1
&& (end - n)->charpos <= 0))
FRAME_RIF (f)->write_glyphs (glyphs, n);
else
FRAME_RIF (f)->insert_glyphs (glyphs, n);
}
else
{
if (glyphs == end - n)
write_glyphs (f, glyphs, n);
else
insert_glyphs (f, glyphs, n);
}
w->cursor.hpos += n;
w->cursor.x = it.current_x - it.first_visible_x;
xassert (w->cursor.hpos >= 0
&& w->cursor.hpos < w->desired_matrix->matrix_w);
/* How to set the cursor differs depending on whether we are
using a frame matrix or a window matrix. Note that when
a frame matrix is used, cursor_to expects frame coordinates,
and the X and Y parameters are not used. */
if (window_redisplay_p)
FRAME_RIF (f)->cursor_to (w->cursor.vpos, w->cursor.hpos,
w->cursor.y, w->cursor.x);
else
{
int x, y;
x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
+ (INTEGERP (w->left_margin_cols)
? XFASTINT (w->left_margin_cols)
: 0));
y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
cursor_to (f, y, x);
}
#ifdef HAVE_WINDOW_SYSTEM
update_window_fringes (w, 0);
#endif
if (FRAME_RIF (f))
FRAME_RIF (f)->update_window_end_hook (w, 1, 0);
update_end (f);
updated_row = NULL;
if (FRAME_TERMCAP_P (f))
fflush (FRAME_TTY (f)->output);
TRACE ((stderr, "direct output for insert\n"));
mark_window_display_accurate (it.window, 1);
redisplay_performed_directly_p = 1;
return 1;
}
/* Perform a direct display update for moving PT by N positions
left or right. N < 0 means a movement backwards. This function
is currently only called for N == 1 or N == -1. */
int
direct_output_forward_char (n)
int n;
{
struct frame *f = SELECTED_FRAME ();
struct window *w = XWINDOW (selected_window);
struct glyph_row *row;
/* Give up if point moved out of or into a composition. */
if (check_point_in_composition (current_buffer, XINT (w->last_point),
current_buffer, PT))
return 0;
/* Give up if face attributes have been changed. */
if (face_change_count)
return 0;
/* Give up if current matrix is not up to date or we are
displaying a message. */
if (!display_completed || cursor_in_echo_area)
return 0;
/* Give up if the buffer's direction is reversed. */
if (!NILP (XBUFFER (w->buffer)->direction_reversed))
return 0;
/* Can't use direct output if highlighting a region. */
if (!NILP (Vtransient_mark_mode) && !NILP (current_buffer->mark_active))
return 0;
/* Can't use direct output if highlighting trailing whitespace. */
if (!NILP (Vshow_trailing_whitespace))
return 0;
/* Give up if we are showing a message or just cleared the message
because we might need to resize the echo area window. */
if (!NILP (echo_area_buffer[0]) || !NILP (echo_area_buffer[1]))
return 0;
/* Give up if currently displaying a message instead of the
minibuffer contents. */
if (XWINDOW (minibuf_window) == w
&& EQ (minibuf_window, echo_area_window))
return 0;
/* Give up if we don't know where the cursor is. */
if (w->cursor.vpos < 0)
return 0;
row = MATRIX_ROW (w->current_matrix, w->cursor.vpos);
/* Give up if PT is outside of the last known cursor row. */
if (PT <= MATRIX_ROW_START_CHARPOS (row)
|| PT >= MATRIX_ROW_END_CHARPOS (row))
return 0;
set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0);
w->last_cursor = w->cursor;
XSETFASTINT (w->last_point, PT);
xassert (w->cursor.hpos >= 0
&& w->cursor.hpos < w->desired_matrix->matrix_w);
if (FRAME_WINDOW_P (f))
FRAME_RIF (f)->cursor_to (w->cursor.vpos, w->cursor.hpos,
w->cursor.y, w->cursor.x);
else
{
int x, y;
x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos)
+ (INTEGERP (w->left_margin_cols)
? XFASTINT (w->left_margin_cols)
: 0));
y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
cursor_to (f, y, x);
}
if (FRAME_TERMCAP_P (f))
fflush (FRAME_TTY (f)->output);
redisplay_performed_directly_p = 1;
return 1;
}
/***********************************************************************
Frame Update
***********************************************************************/
/* Update frame F based on the data in desired matrices.
If FORCE_P is non-zero, don't let redisplay be stopped by detecting
pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try
scrolling.
Value is non-zero if redisplay was stopped due to pending input. */
int
update_frame (f, force_p, inhibit_hairy_id_p)
struct frame *f;
int force_p;
int inhibit_hairy_id_p;
{
/* 1 means display has been paused because of pending input. */
int paused_p;
struct window *root_window = XWINDOW (f->root_window);
if (redisplay_dont_pause)
force_p = 1;
#if PERIODIC_PREEMPTION_CHECKING
else if (NILP (Vredisplay_preemption_period))
force_p = 1;
else if (!force_p && NUMBERP (Vredisplay_preemption_period))
{
EMACS_TIME tm;
double p = XFLOATINT (Vredisplay_preemption_period);
int sec, usec;
if (detect_input_pending_ignore_squeezables ())
{
paused_p = 1;
goto do_pause;
}
sec = (int) p;
usec = (p - sec) * 1000000;
EMACS_GET_TIME (tm);
EMACS_SET_SECS_USECS (preemption_period, sec, usec);
EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
}
#endif
if (FRAME_WINDOW_P (f))
{
/* We are working on window matrix basis. All windows whose
flag must_be_updated_p is set have to be updated. */
/* Record that we are not working on frame matrices. */
set_frame_matrix_frame (NULL);
/* Update all windows in the window tree of F, maybe stopping
when pending input is detected. */
update_begin (f);
/* Update the menu bar on X frames that don't have toolkit
support. */
if (WINDOWP (f->menu_bar_window))
update_window (XWINDOW (f->menu_bar_window), 1);
/* Update the tool-bar window, if present. */
if (WINDOWP (f->tool_bar_window))
{
struct window *w = XWINDOW (f->tool_bar_window);
/* Update tool-bar window. */
if (w->must_be_updated_p)
{
Lisp_Object tem;
update_window (w, 1);
w->must_be_updated_p = 0;
/* Swap tool-bar strings. We swap because we want to
reuse strings. */
tem = f->current_tool_bar_string;
f->current_tool_bar_string = f->desired_tool_bar_string;
f->desired_tool_bar_string = tem;
}
}
/* Update windows. */
paused_p = update_window_tree (root_window, force_p);
update_end (f);
/* This flush is a performance bottleneck under X,
and it doesn't seem to be necessary anyway (in general).
It is necessary when resizing the window with the mouse, or
at least the fringes are not redrawn in a timely manner. ++kfs */
if (f->force_flush_display_p)
{
FRAME_RIF (f)->flush_display (f);
f->force_flush_display_p = 0;
}
}
else
{
/* We are working on frame matrix basis. Set the frame on whose
frame matrix we operate. */
set_frame_matrix_frame (f);
/* Build F's desired matrix from window matrices. */
build_frame_matrix (f);
/* Update the display */
update_begin (f);
paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p);
update_end (f);
if (FRAME_TERMCAP_P (f))
{
if (FRAME_TTY (f)->termscript)
fflush (FRAME_TTY (f)->termscript);
fflush (FRAME_TTY (f)->output);
}
/* Check window matrices for lost pointers. */
#if GLYPH_DEBUG
check_window_matrix_pointers (root_window);
add_frame_display_history (f, paused_p);
#endif
}
do_pause:
/* Reset flags indicating that a window should be updated. */
set_window_update_flags (root_window, 0);
display_completed = !paused_p;
return paused_p;
}
/************************************************************************
Window-based updates
************************************************************************/
/* Perform updates in window tree rooted at W. FORCE_P non-zero means
don't stop updating when input is pending. */
static int
update_window_tree (w, force_p)
struct window *w;
int force_p;
{
int paused_p = 0;
while (w && !paused_p)
{
if (!NILP (w->hchild))
paused_p |= update_window_tree (XWINDOW (w->hchild), force_p);
else if (!NILP (w->vchild))
paused_p |= update_window_tree (XWINDOW (w->vchild), force_p);
else if (w->must_be_updated_p)
paused_p |= update_window (w, force_p);
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
return paused_p;
}
/* Update window W if its flag must_be_updated_p is non-zero. If
FORCE_P is non-zero, don't stop updating if input is pending. */
void
update_single_window (w, force_p)
struct window *w;
int force_p;
{
if (w->must_be_updated_p)
{
struct frame *f = XFRAME (WINDOW_FRAME (w));
/* Record that this is not a frame-based redisplay. */
set_frame_matrix_frame (NULL);
if (redisplay_dont_pause)
force_p = 1;
#if PERIODIC_PREEMPTION_CHECKING
else if (NILP (Vredisplay_preemption_period))
force_p = 1;
else if (!force_p && NUMBERP (Vredisplay_preemption_period))
{
EMACS_TIME tm;
double p = XFLOATINT (Vredisplay_preemption_period);
int sec, usec;
sec = (int) p;
usec = (p - sec) * 1000000;
EMACS_GET_TIME (tm);
EMACS_SET_SECS_USECS (preemption_period, sec, usec);
EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
}
#endif
/* Update W. */
update_begin (f);
update_window (w, force_p);
update_end (f);
/* Reset flag in W. */
w->must_be_updated_p = 0;
}
}
#ifdef HAVE_WINDOW_SYSTEM
/* Redraw lines from the current matrix of window W that are
overlapped by other rows. YB is bottom-most y-position in W. */
static void
redraw_overlapped_rows (w, yb)
struct window *w;
int yb;
{
int i;
struct frame *f = XFRAME (WINDOW_FRAME (w));
/* If rows overlapping others have been changed, the rows being
overlapped have to be redrawn. This won't draw lines that have
already been drawn in update_window_line because overlapped_p in
desired rows is 0, so after row assignment overlapped_p in
current rows is 0. */
for (i = 0; i < w->current_matrix->nrows; ++i)
{
struct glyph_row *row = w->current_matrix->rows + i;
if (!row->enabled_p)
break;
else if (row->mode_line_p)
continue;
if (row->overlapped_p)
{
enum glyph_row_area area;
for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
{
updated_row = row;
updated_area = area;
FRAME_RIF (f)->cursor_to (i, 0, row->y,
area == TEXT_AREA ? row->x : 0);
if (row->used[area])
FRAME_RIF (f)->write_glyphs (row->glyphs[area],
row->used[area]);
FRAME_RIF (f)->clear_end_of_line (-1);
}
row->overlapped_p = 0;
}
if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
break;
}
}
/* Redraw lines from the current matrix of window W that overlap
others. YB is bottom-most y-position in W. */
static void
redraw_overlapping_rows (w, yb)
struct window *w;
int yb;
{
int i, bottom_y;
struct glyph_row *row;
struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
for (i = 0; i < w->current_matrix->nrows; ++i)
{
row = w->current_matrix->rows + i;
if (!row->enabled_p)
break;
else if (row->mode_line_p)
continue;
bottom_y = MATRIX_ROW_BOTTOM_Y (row);
if (row->overlapping_p && i > 0 && bottom_y < yb)
{
int overlaps = 0;
if (MATRIX_ROW_OVERLAPS_PRED_P (row)
&& !MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p)
overlaps |= OVERLAPS_PRED;
if (MATRIX_ROW_OVERLAPS_SUCC_P (row)
&& !MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p)
overlaps |= OVERLAPS_SUCC;
if (overlaps)
{
if (row->used[LEFT_MARGIN_AREA])
rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA, overlaps);
if (row->used[TEXT_AREA])
rif->fix_overlapping_area (w, row, TEXT_AREA, overlaps);
if (row->used[RIGHT_MARGIN_AREA])
rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA, overlaps);
/* Record in neighbour rows that ROW overwrites part of
their display. */
if (overlaps & OVERLAPS_PRED)
MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1;
if (overlaps & OVERLAPS_SUCC)
MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1;
}
}
if (bottom_y >= yb)
break;
}
}
#endif /* HAVE_WINDOW_SYSTEM */
#ifdef GLYPH_DEBUG
/* Check that no row in the current matrix of window W is enabled
which is below what's displayed in the window. */
void
check_current_matrix_flags (w)
struct window *w;
{
int last_seen_p = 0;
int i, yb = window_text_bottom_y (w);
for (i = 0; i < w->current_matrix->nrows - 1; ++i)
{
struct glyph_row *row = MATRIX_ROW (w->current_matrix, i);
if (!last_seen_p && MATRIX_ROW_BOTTOM_Y (row) >= yb)
last_seen_p = 1;
else if (last_seen_p && row->enabled_p)
abort ();
}
}
#endif /* GLYPH_DEBUG */
/* Update display of window W. FORCE_P non-zero means that we should
not stop when detecting pending input. */
static int
update_window (w, force_p)
struct window *w;
int force_p;
{
struct glyph_matrix *desired_matrix = w->desired_matrix;
int paused_p;
#if !PERIODIC_PREEMPTION_CHECKING
int preempt_count = baud_rate / 2400 + 1;
#endif
extern int input_pending;
extern Lisp_Object do_mouse_tracking;
struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
#if GLYPH_DEBUG
/* Check that W's frame doesn't have glyph matrices. */
xassert (FRAME_WINDOW_P (XFRAME (WINDOW_FRAME (w))));
#endif
/* Check pending input the first time so that we can quickly return. */
#if !PERIODIC_PREEMPTION_CHECKING
if (!force_p)
detect_input_pending_ignore_squeezables ();
#endif
/* If forced to complete the update, or if no input is pending, do
the update. */
if (force_p || !input_pending || !NILP (do_mouse_tracking))
{
struct glyph_row *row, *end;
struct glyph_row *mode_line_row;
struct glyph_row *header_line_row;
int yb, changed_p = 0, mouse_face_overwritten_p = 0, n_updated;
rif->update_window_begin_hook (w);
yb = window_text_bottom_y (w);
/* If window has a header line, update it before everything else.
Adjust y-positions of other rows by the header line height. */
row = desired_matrix->rows;
end = row + desired_matrix->nrows - 1;
if (row->mode_line_p)
{
header_line_row = row;
++row;
}
else
header_line_row = NULL;
/* Update the mode line, if necessary. */
mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix);
if (mode_line_row->mode_line_p && mode_line_row->enabled_p)
{
mode_line_row->y = yb;
update_window_line (w, MATRIX_ROW_VPOS (mode_line_row,
desired_matrix),
&mouse_face_overwritten_p);
}
/* Find first enabled row. Optimizations in redisplay_internal
may lead to an update with only one row enabled. There may
be also completely empty matrices. */
while (row < end && !row->enabled_p)
++row;
/* Try reusing part of the display by copying. */
if (row < end && !desired_matrix->no_scrolling_p)
{
int rc = scrolling_window (w, header_line_row != NULL);
if (rc < 0)
{
/* All rows were found to be equal. */
paused_p = 0;
goto set_cursor;
}
else if (rc > 0)
{
/* We've scrolled the display. */
force_p = 1;
changed_p = 1;
}
}
/* Update the rest of the lines. */
for (n_updated = 0; row < end && (force_p || !input_pending); ++row)
if (row->enabled_p)
{
int vpos = MATRIX_ROW_VPOS (row, desired_matrix);
int i;
/* We'll have to play a little bit with when to
detect_input_pending. If it's done too often,
scrolling large windows with repeated scroll-up
commands will too quickly pause redisplay. */
#if PERIODIC_PREEMPTION_CHECKING
if (!force_p)
{
EMACS_TIME tm, dif;
EMACS_GET_TIME (tm);
EMACS_SUB_TIME (dif, preemption_next_check, tm);
if (EMACS_TIME_NEG_P (dif))
{
EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
if (detect_input_pending_ignore_squeezables ())
break;
}
}
#else
if (!force_p && ++n_updated % preempt_count == 0)
detect_input_pending_ignore_squeezables ();
#endif
changed_p |= update_window_line (w, vpos,
&mouse_face_overwritten_p);
/* Mark all rows below the last visible one in the current
matrix as invalid. This is necessary because of
variable line heights. Consider the case of three
successive redisplays, where the first displays 5
lines, the second 3 lines, and the third 5 lines again.
If the second redisplay wouldn't mark rows in the
current matrix invalid, the third redisplay might be
tempted to optimize redisplay based on lines displayed
in the first redisplay. */
if (MATRIX_ROW_BOTTOM_Y (row) >= yb)
for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i)
MATRIX_ROW (w->current_matrix, i)->enabled_p = 0;
}
/* Was display preempted? */
paused_p = row < end;
set_cursor:
/* Update the header line after scrolling because a new header
line would otherwise overwrite lines at the top of the window
that can be scrolled. */
if (header_line_row && header_line_row->enabled_p)
{
header_line_row->y = 0;
update_window_line (w, 0, &mouse_face_overwritten_p);
}
/* Fix the appearance of overlapping/overlapped rows. */
if (!paused_p && !w->pseudo_window_p)
{
#ifdef HAVE_WINDOW_SYSTEM
if (changed_p && rif->fix_overlapping_area)
{
redraw_overlapped_rows (w, yb);
redraw_overlapping_rows (w, yb);
}
#endif
/* Make cursor visible at cursor position of W. */
set_window_cursor_after_update (w);
#if 0 /* Check that current matrix invariants are satisfied. This is
for debugging only. See the comment of check_matrix_invariants. */
IF_DEBUG (check_matrix_invariants (w));
#endif
}
#if GLYPH_DEBUG
/* Remember the redisplay method used to display the matrix. */
strcpy (w->current_matrix->method, w->desired_matrix->method);
#endif
#ifdef HAVE_WINDOW_SYSTEM
update_window_fringes (w, 0);
#endif
/* End the update of window W. Don't set the cursor if we
paused updating the display because in this case,
set_window_cursor_after_update hasn't been called, and
output_cursor doesn't contain the cursor location. */
rif->update_window_end_hook (w, !paused_p, mouse_face_overwritten_p);
}
else
paused_p = 1;
#if GLYPH_DEBUG
/* check_current_matrix_flags (w); */
add_window_display_history (w, w->current_matrix->method, paused_p);
#endif
clear_glyph_matrix (desired_matrix);
return paused_p;
}
/* Update the display of area AREA in window W, row number VPOS.
AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */
static void
update_marginal_area (w, area, vpos)
struct window *w;
int area, vpos;
{
struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
/* Let functions in xterm.c know what area subsequent X positions
will be relative to. */
updated_area = area;
/* Set cursor to start of glyphs, write them, and clear to the end
of the area. I don't think that something more sophisticated is
necessary here, since marginal areas will not be the default. */
rif->cursor_to (vpos, 0, desired_row->y, 0);
if (desired_row->used[area])
rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]);
rif->clear_end_of_line (-1);
}
/* Update the display of the text area of row VPOS in window W.
Value is non-zero if display has changed. */
static int
update_text_area (w, vpos)
struct window *w;
int vpos;
{
struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
int changed_p = 0;
/* Let functions in xterm.c know what area subsequent X positions
will be relative to. */
updated_area = TEXT_AREA;
/* If rows are at different X or Y, or rows have different height,
or the current row is marked invalid, write the entire line. */
if (!current_row->enabled_p
|| desired_row->y != current_row->y
|| desired_row->ascent != current_row->ascent
|| desired_row->phys_ascent != current_row->phys_ascent
|| desired_row->phys_height != current_row->phys_height
|| desired_row->visible_height != current_row->visible_height
|| current_row->overlapped_p
/* This next line is necessary for correctly redrawing
mouse-face areas after scrolling and other operations.
However, it causes excessive flickering when mouse is moved
across the mode line. Luckily, turning it off for the mode
line doesn't seem to hurt anything. -- cyd.
But it is still needed for the header line. -- kfs. */
|| (current_row->mouse_face_p
&& !(current_row->mode_line_p && vpos > 0))
|| current_row->x != desired_row->x)
{
rif->cursor_to (vpos, 0, desired_row->y, desired_row->x);
if (desired_row->used[TEXT_AREA])
rif->write_glyphs (desired_row->glyphs[TEXT_AREA],
desired_row->used[TEXT_AREA]);
/* Clear to end of window. */
rif->clear_end_of_line (-1);
changed_p = 1;
/* This erases the cursor. We do this here because
notice_overwritten_cursor cannot easily check this, which
might indicate that the whole functionality of
notice_overwritten_cursor would better be implemented here.
On the other hand, we need notice_overwritten_cursor as long
as mouse highlighting is done asynchronously outside of
redisplay. */
if (vpos == w->phys_cursor.vpos)
w->phys_cursor_on_p = 0;
}
else
{
int stop, i, x;
struct glyph *current_glyph = current_row->glyphs[TEXT_AREA];
struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA];
int overlapping_glyphs_p = current_row->contains_overlapping_glyphs_p;
int desired_stop_pos = desired_row->used[TEXT_AREA];
/* If the desired row extends its face to the text area end, and
unless the current row also does so at the same position,
make sure we write at least one glyph, so that the face
extension actually takes place. */
if (MATRIX_ROW_EXTENDS_FACE_P (desired_row)
&& (desired_stop_pos < current_row->used[TEXT_AREA]
|| (desired_stop_pos == current_row->used[TEXT_AREA]
&& !MATRIX_ROW_EXTENDS_FACE_P (current_row))))
--desired_stop_pos;
stop = min (current_row->used[TEXT_AREA], desired_stop_pos);
i = 0;
x = desired_row->x;
/* Loop over glyphs that current and desired row may have
in common. */
while (i < stop)
{
int can_skip_p = 1;
/* Skip over glyphs that both rows have in common. These
don't have to be written. We can't skip if the last
current glyph overlaps the glyph to its right. For
example, consider a current row of `if ' with the `f' in
Courier bold so that it overlaps the ` ' to its right.
If the desired row is ` ', we would skip over the space
after the `if' and there would remain a pixel from the
`f' on the screen. */
if (overlapping_glyphs_p && i > 0)
{
struct glyph *glyph = ¤t_row->glyphs[TEXT_AREA][i - 1];
int left, right;
rif->get_glyph_overhangs (glyph, XFRAME (w->frame),
&left, &right);
can_skip_p = right == 0;
}
if (can_skip_p)
{
while (i < stop
&& GLYPH_EQUAL_P (desired_glyph, current_glyph))
{
x += desired_glyph->pixel_width;
++desired_glyph, ++current_glyph, ++i;
}
/* Consider the case that the current row contains "xxx
ppp ggg" in italic Courier font, and the desired row
is "xxx ggg". The character `p' has lbearing, `g'
has not. The loop above will stop in front of the
first `p' in the current row. If we would start
writing glyphs there, we wouldn't erase the lbearing
of the `p'. The rest of the lbearing problem is then
taken care of by draw_glyphs. */
if (overlapping_glyphs_p
&& i > 0
&& i < current_row->used[TEXT_AREA]
&& (current_row->used[TEXT_AREA]
!= desired_row->used[TEXT_AREA]))
{
int left, right;
rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame),
&left, &right);
while (left > 0 && i > 0)
{
--i, --desired_glyph, --current_glyph;
x -= desired_glyph->pixel_width;
left -= desired_glyph->pixel_width;
}
}
}
/* Try to avoid writing the entire rest of the desired row
by looking for a resync point. This mainly prevents
mode line flickering in the case the mode line is in
fixed-pitch font, which it usually will be. */
if (i < desired_row->used[TEXT_AREA])
{
int start_x = x, start_hpos = i;
struct glyph *start = desired_glyph;
int current_x = x;
int skip_first_p = !can_skip_p;
/* Find the next glyph that's equal again. */
while (i < stop
&& (skip_first_p
|| !GLYPH_EQUAL_P (desired_glyph, current_glyph))
&& x == current_x)
{
x += desired_glyph->pixel_width;
current_x += current_glyph->pixel_width;
++desired_glyph, ++current_glyph, ++i;
skip_first_p = 0;
}
if (i == start_hpos || x != current_x)
{
i = start_hpos;
x = start_x;
desired_glyph = start;
break;
}
rif->cursor_to (vpos, start_hpos, desired_row->y, start_x);
rif->write_glyphs (start, i - start_hpos);
changed_p = 1;
}
}
/* Write the rest. */
if (i < desired_row->used[TEXT_AREA])
{
rif->cursor_to (vpos, i, desired_row->y, x);
rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i);
changed_p = 1;
}
/* Maybe clear to end of line. */
if (MATRIX_ROW_EXTENDS_FACE_P (desired_row))
{
/* If new row extends to the end of the text area, nothing
has to be cleared, if and only if we did a write_glyphs
above. This is made sure by setting desired_stop_pos
appropriately above. */
xassert (i < desired_row->used[TEXT_AREA]
|| ((desired_row->used[TEXT_AREA]
== current_row->used[TEXT_AREA])
&& MATRIX_ROW_EXTENDS_FACE_P (current_row)));
}
else if (MATRIX_ROW_EXTENDS_FACE_P (current_row))
{
/* If old row extends to the end of the text area, clear. */
if (i >= desired_row->used[TEXT_AREA])
rif->cursor_to (vpos, i, desired_row->y,
desired_row->pixel_width);
rif->clear_end_of_line (-1);
changed_p = 1;
}
else if (desired_row->pixel_width < current_row->pixel_width)
{
/* Otherwise clear to the end of the old row. Everything
after that position should be clear already. */
int x;
if (i >= desired_row->used[TEXT_AREA])
rif->cursor_to (vpos, i, desired_row->y,
desired_row->pixel_width);
/* If cursor is displayed at the end of the line, make sure
it's cleared. Nowadays we don't have a phys_cursor_glyph
with which to erase the cursor (because this method
doesn't work with lbearing/rbearing), so we must do it
this way. */
if (vpos == w->phys_cursor.vpos
&& w->phys_cursor.hpos >= desired_row->used[TEXT_AREA])
{
w->phys_cursor_on_p = 0;
x = -1;
}
else
x = current_row->pixel_width;
rif->clear_end_of_line (x);
changed_p = 1;
}
}
return changed_p;
}
/* Update row VPOS in window W. Value is non-zero if display has been
changed. */
static int
update_window_line (w, vpos, mouse_face_overwritten_p)
struct window *w;
int vpos, *mouse_face_overwritten_p;
{
struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos);
struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos);
struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
int changed_p = 0;
/* Set the row being updated. This is important to let xterm.c
know what line height values are in effect. */
updated_row = desired_row;
/* A row can be completely invisible in case a desired matrix was
built with a vscroll and then make_cursor_line_fully_visible shifts
the matrix. Make sure to make such rows current anyway, since
we need the correct y-position, for example, in the current matrix. */
if (desired_row->mode_line_p
|| desired_row->visible_height > 0)
{
xassert (desired_row->enabled_p);
/* Update display of the left margin area, if there is one. */
if (!desired_row->full_width_p
&& !NILP (w->left_margin_cols))
{
changed_p = 1;
update_marginal_area (w, LEFT_MARGIN_AREA, vpos);
}
/* Update the display of the text area. */
if (update_text_area (w, vpos))
{
changed_p = 1;
if (current_row->mouse_face_p)
*mouse_face_overwritten_p = 1;
}
/* Update display of the right margin area, if there is one. */
if (!desired_row->full_width_p
&& !NILP (w->right_margin_cols))
{
changed_p = 1;
update_marginal_area (w, RIGHT_MARGIN_AREA, vpos);
}
/* Draw truncation marks etc. */
if (!current_row->enabled_p
|| desired_row->y != current_row->y
|| desired_row->visible_height != current_row->visible_height
|| desired_row->cursor_in_fringe_p != current_row->cursor_in_fringe_p
|| desired_row->overlay_arrow_bitmap != current_row->overlay_arrow_bitmap
|| current_row->redraw_fringe_bitmaps_p
|| desired_row->mode_line_p != current_row->mode_line_p
|| desired_row->exact_window_width_line_p != current_row->exact_window_width_line_p
|| (MATRIX_ROW_CONTINUATION_LINE_P (desired_row)
!= MATRIX_ROW_CONTINUATION_LINE_P (current_row)))
rif->after_update_window_line_hook (desired_row);
}
/* Update current_row from desired_row. */
make_current (w->desired_matrix, w->current_matrix, vpos);
updated_row = NULL;
return changed_p;
}
/* Set the cursor after an update of window W. This function may only
be called from update_window. */
static void
set_window_cursor_after_update (w)
struct window *w;
{
struct frame *f = XFRAME (w->frame);
struct redisplay_interface *rif = FRAME_RIF (f);
int cx, cy, vpos, hpos;
/* Not intended for frame matrix updates. */
xassert (FRAME_WINDOW_P (f));
if (cursor_in_echo_area
&& !NILP (echo_area_buffer[0])
/* If we are showing a message instead of the mini-buffer,
show the cursor for the message instead. */
&& XWINDOW (minibuf_window) == w
&& EQ (minibuf_window, echo_area_window)
/* These cases apply only to the frame that contains
the active mini-buffer window. */
&& FRAME_HAS_MINIBUF_P (f)
&& EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
{
cx = cy = vpos = hpos = 0;
if (cursor_in_echo_area >= 0)
{
/* If the mini-buffer is several lines high, find the last
line that has any text on it. Note: either all lines
are enabled or none. Otherwise we wouldn't be able to
determine Y. */
struct glyph_row *row, *last_row;
struct glyph *glyph;
int yb = window_text_bottom_y (w);
last_row = NULL;
row = w->current_matrix->rows;
while (row->enabled_p
&& (last_row == NULL
|| MATRIX_ROW_BOTTOM_Y (row) <= yb))
{
if (row->used[TEXT_AREA]
&& row->glyphs[TEXT_AREA][0].charpos >= 0)
last_row = row;
++row;
}
if (last_row)
{
struct glyph *start = last_row->glyphs[TEXT_AREA];
struct glyph *last = start + last_row->used[TEXT_AREA] - 1;
while (last > start && last->charpos < 0)
--last;
for (glyph = start; glyph < last; ++glyph)
{
cx += glyph->pixel_width;
++hpos;
}
cy = last_row->y;
vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix);
}
}
}
else
{
cx = w->cursor.x;
cy = w->cursor.y;
hpos = w->cursor.hpos;
vpos = w->cursor.vpos;
}
/* Window cursor can be out of sync for horizontally split windows. */
hpos = max (0, hpos);
hpos = min (w->current_matrix->matrix_w - 1, hpos);
vpos = max (0, vpos);
vpos = min (w->current_matrix->nrows - 1, vpos);
rif->cursor_to (vpos, hpos, cy, cx);
}
/* Set WINDOW->must_be_updated_p to ON_P for all windows in the window
tree rooted at W. */
void
set_window_update_flags (w, on_p)
struct window *w;
int on_p;
{
while (w)
{
if (!NILP (w->hchild))
set_window_update_flags (XWINDOW (w->hchild), on_p);
else if (!NILP (w->vchild))
set_window_update_flags (XWINDOW (w->vchild), on_p);
else
w->must_be_updated_p = on_p;
w = NILP (w->next) ? 0 : XWINDOW (w->next);
}
}
/***********************************************************************
Window-Based Scrolling
***********************************************************************/
/* Structure describing rows in scrolling_window. */
struct row_entry
{
/* Number of occurrences of this row in desired and current matrix. */
int old_uses, new_uses;
/* Vpos of row in new matrix. */
int new_line_number;
/* Bucket index of this row_entry in the hash table row_table. */
int bucket;
/* The row described by this entry. */
struct glyph_row *row;
/* Hash collision chain. */
struct row_entry *next;
};
/* A pool to allocate row_entry structures from, and the size of the
pool. The pool is reallocated in scrolling_window when we find
that we need a larger one. */
static struct row_entry *row_entry_pool;
static int row_entry_pool_size;
/* Index of next free entry in row_entry_pool. */
static int row_entry_idx;
/* The hash table used during scrolling, and the table's size. This
table is used to quickly identify equal rows in the desired and
current matrix. */
static struct row_entry **row_table;
static int row_table_size;
/* Vectors of pointers to row_entry structures belonging to the
current and desired matrix, and the size of the vectors. */
static struct row_entry **old_lines, **new_lines;
static int old_lines_size, new_lines_size;
/* A pool to allocate run structures from, and its size. */
static struct run *run_pool;
static int runs_size;
/* A vector of runs of lines found during scrolling. */
static struct run **runs;
/* Add glyph row ROW to the scrolling hash table during the scrolling
of window W. */
static INLINE struct row_entry *
add_row_entry (w, row)
struct window *w;
struct glyph_row *row;
{
struct row_entry *entry;
int i = row->hash % row_table_size;
entry = row_table[i];
while (entry && !row_equal_p (w, entry->row, row, 1))
entry = entry->next;
if (entry == NULL)
{
entry = row_entry_pool + row_entry_idx++;
entry->row = row;
entry->old_uses = entry->new_uses = 0;
entry->new_line_number = 0;
entry->bucket = i;
entry->next = row_table[i];
row_table[i] = entry;
}
return entry;
}
/* Try to reuse part of the current display of W by scrolling lines.
HEADER_LINE_P non-zero means W has a header line.
The algorithm is taken from Communications of the ACM, Apr78 "A
Technique for Isolating Differences Between Files." It should take
O(N) time.
A short outline of the steps of the algorithm
1. Skip lines equal at the start and end of both matrices.
2. Enter rows in the current and desired matrix into a symbol
table, counting how often they appear in both matrices.
3. Rows that appear exactly once in both matrices serve as anchors,
i.e. we assume that such lines are likely to have been moved.
4. Starting from anchor lines, extend regions to be scrolled both
forward and backward.
Value is
-1 if all rows were found to be equal.
0 to indicate that we did not scroll the display, or
1 if we did scroll. */
static int
scrolling_window (w, header_line_p)
struct window *w;
int header_line_p;
{
struct glyph_matrix *desired_matrix = w->desired_matrix;
struct glyph_matrix *current_matrix = w->current_matrix;
int yb = window_text_bottom_y (w);
int i, j, first_old, first_new, last_old, last_new;
int nruns, nbytes, n, run_idx;
struct row_entry *entry;
struct redisplay_interface *rif = FRAME_RIF (XFRAME (WINDOW_FRAME (w)));
/* Skip over rows equal at the start. */
for (i = header_line_p ? 1 : 0; i < current_matrix->nrows - 1; ++i)
{
struct glyph_row *d = MATRIX_ROW (desired_matrix, i);
struct glyph_row *c = MATRIX_ROW (current_matrix, i);
if (c->enabled_p
&& d->enabled_p
&& !d->redraw_fringe_bitmaps_p
&& c->y == d->y
&& MATRIX_ROW_BOTTOM_Y (c) <= yb
&& MATRIX_ROW_BOTTOM_Y (d) <= yb
&& row_equal_p (w, c, d, 1))
{
assign_row (c, d);
d->enabled_p = 0;
}
else
break;
}
/* Give up if some rows in the desired matrix are not enabled. */
if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
return -1;
first_old = first_new = i;
/* Set last_new to the index + 1 of the last enabled row in the
desired matrix. */
i = first_new + 1;
while (i < desired_matrix->nrows - 1
&& MATRIX_ROW (desired_matrix, i)->enabled_p
&& MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)) <= yb)
++i;
if (!MATRIX_ROW (desired_matrix, i)->enabled_p)
return 0;
last_new = i;
/* Set last_old to the index + 1 of the last enabled row in the
current matrix. We don't look at the enabled flag here because
we plan to reuse part of the display even if other parts are
disabled. */
i = first_old + 1;
while (i < current_matrix->nrows - 1)
{
int bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i));
if (bottom <= yb)
++i;
if (bottom >= yb)
break;
}
last_old = i;
/* Skip over rows equal at the bottom. */
i = last_new;
j = last_old;
while (i - 1 > first_new
&& j - 1 > first_old
&& MATRIX_ROW (current_matrix, i - 1)->enabled_p
&& (MATRIX_ROW (current_matrix, i - 1)->y
== MATRIX_ROW (desired_matrix, j - 1)->y)
&& !MATRIX_ROW (desired_matrix, j - 1)->redraw_fringe_bitmaps_p
&& row_equal_p (w,
MATRIX_ROW (desired_matrix, i - 1),
MATRIX_ROW (current_matrix, j - 1), 1))
--i, --j;
last_new = i;
last_old = j;
/* Nothing to do if all rows are equal. */
if (last_new == first_new)
return 0;
/* Reallocate vectors, tables etc. if necessary. */
if (current_matrix->nrows > old_lines_size)
{
old_lines_size = current_matrix->nrows;
nbytes = old_lines_size * sizeof *old_lines;
old_lines = (struct row_entry **) xrealloc (old_lines, nbytes);
}
if (desired_matrix->nrows > new_lines_size)
{
new_lines_size = desired_matrix->nrows;
nbytes = new_lines_size * sizeof *new_lines;
new_lines = (struct row_entry **) xrealloc (new_lines, nbytes);
}
n = desired_matrix->nrows + current_matrix->nrows;
if (3 * n > row_table_size)
{
row_table_size = next_almost_prime (3 * n);
nbytes = row_table_size * sizeof *row_table;
row_table = (struct row_entry **) xrealloc (row_table, nbytes);
bzero (row_table, nbytes);
}
if (n > row_entry_pool_size)
{
row_entry_pool_size = n;
nbytes = row_entry_pool_size * sizeof *row_entry_pool;
row_entry_pool = (struct row_entry *) xrealloc (row_entry_pool, nbytes);
}
if (desired_matrix->nrows > runs_size)
{
runs_size = desired_matrix->nrows;
nbytes = runs_size * sizeof *runs;
runs = (struct run **) xrealloc (runs, nbytes);
nbytes = runs_size * sizeof *run_pool;
run_pool = (struct run *) xrealloc (run_pool, nbytes);
}
nruns = run_idx = 0;
row_entry_idx = 0;
/* Add rows from the current and desired matrix to the hash table
row_hash_table to be able to find equal ones quickly. */
for (i = first_old; i < last_old; ++i)
{
if (MATRIX_ROW (current_matrix, i)->enabled_p)
{
entry = add_row_entry (w, MATRIX_ROW (current_matrix, i));
old_lines[i] = entry;
++entry->old_uses;
}
else
old_lines[i] = NULL;
}
for (i = first_new; i < last_new; ++i)
{
xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i));
entry = add_row_entry (w, MATRIX_ROW (desired_matrix, i));
++entry->new_uses;
entry->new_line_number = i;
new_lines[i] = entry;
}
/* Identify moves based on lines that are unique and equal
in both matrices. */
for (i = first_old; i < last_old;)
if (old_lines[i]
&& old_lines[i]->old_uses == 1
&& old_lines[i]->new_uses == 1)
{
int j, k;
int new_line = old_lines[i]->new_line_number;
struct run *run = run_pool + run_idx++;
/* Record move. */
run->current_vpos = i;
run->current_y = MATRIX_ROW (current_matrix, i)->y;
run->desired_vpos = new_line;
run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y;
run->nrows = 1;
run->height = MATRIX_ROW (current_matrix, i)->height;
/* Extend backward. */
j = i - 1;
k = new_line - 1;
while (j > first_old
&& k > first_new
&& old_lines[j] == new_lines[k])
{
int h = MATRIX_ROW (current_matrix, j)->height;
--run->current_vpos;
--run->desired_vpos;
++run->nrows;
run->height += h;
run->desired_y -= h;
run->current_y -= h;
--j, --k;
}
/* Extend forward. */
j = i + 1;
k = new_line + 1;
while (j < last_old
&& k < last_new
&& old_lines[j] == new_lines[k])
{
int h = MATRIX_ROW (current_matrix, j)->height;
++run->nrows;
run->height += h;
++j, ++k;
}
/* Insert run into list of all runs. Order runs by copied
pixel lines. Note that we record runs that don't have to
be copied because they are already in place. This is done
because we can avoid calling update_window_line in this
case. */
for (j = 0; j < nruns && runs[j]->height > run->height; ++j)
;
for (k = nruns; k > j; --k)
runs[k] = runs[k - 1];
runs[j] = run;
++nruns;
i += run->nrows;
}
else
++i;
/* Do the moves. Do it in a way that we don't overwrite something
we want to copy later on. This is not solvable in general
because there is only one display and we don't have a way to
exchange areas on this display. Example:
+-----------+ +-----------+
| A | | B |
+-----------+ --> +-----------+
| B | | A |
+-----------+ +-----------+
Instead, prefer bigger moves, and invalidate moves that would
copy from where we copied to. */
for (i = 0; i < nruns; ++i)
if (runs[i]->nrows > 0)
{
struct run *r = runs[i];
/* Copy on the display. */
if (r->current_y != r->desired_y)
{
rif->scroll_run_hook (w, r);
/* Invalidate runs that copy from where we copied to. */
for (j = i + 1; j < nruns; ++j)
{
struct run *p = runs[j];
if ((p->current_y >= r->desired_y
&& p->current_y < r->desired_y + r->height)
|| (p->current_y + p->height >= r->desired_y
&& (p->current_y + p->height
< r->desired_y + r->height)))
p->nrows = 0;
}
}
/* Assign matrix rows. */
for (j = 0; j < r->nrows; ++j)
{
struct glyph_row *from, *to;
int to_overlapped_p;
to = MATRIX_ROW (current_matrix, r->desired_vpos + j);
from = MATRIX_ROW (desired_matrix, r->desired_vpos + j);
to_overlapped_p = to->overlapped_p;
if (!from->mode_line_p && !w->pseudo_window_p
&& (to->left_fringe_bitmap != from->left_fringe_bitmap
|| to->right_fringe_bitmap != from->right_fringe_bitmap
|| to->left_fringe_face_id != from->left_fringe_face_id
|| to->right_fringe_face_id != from->right_fringe_face_id
|| to->overlay_arrow_bitmap != from->overlay_arrow_bitmap))
from->redraw_fringe_bitmaps_p = 1;
assign_row (to, from);
to->enabled_p = 1, from->enabled_p = 0;
to->overlapped_p = to_overlapped_p;
}
}
/* Clear the hash table, for the next time. */
for (i = 0; i < row_entry_idx; ++i)
row_table[row_entry_pool[i].bucket] = NULL;
/* Value is > 0 to indicate that we scrolled the display. */
return nruns;
}
/************************************************************************
Frame-Based Updates
************************************************************************/
/* Update the desired frame matrix of frame F.
FORCE_P non-zero means that the update should not be stopped by
pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling
should not be tried.
Value is non-zero if update was stopped due to pending input. */
static int
update_frame_1 (f, force_p, inhibit_id_p)
struct frame *f;
int force_p;
int inhibit_id_p;
{
/* Frame matrices to work on. */
struct glyph_matrix *current_matrix = f->current_matrix;
struct glyph_matrix *desired_matrix = f->desired_matrix;
int i;
int pause;
int preempt_count = baud_rate / 2400 + 1;
extern int input_pending;
xassert (current_matrix && desired_matrix);
if (baud_rate != FRAME_COST_BAUD_RATE (f))
calculate_costs (f);
if (preempt_count <= 0)
preempt_count = 1;
#if !PERIODIC_PREEMPTION_CHECKING
if (!force_p && detect_input_pending_ignore_squeezables ())
{
pause = 1;
goto do_pause;
}
#endif
/* If we cannot insert/delete lines, it's no use trying it. */
if (!FRAME_LINE_INS_DEL_OK (f))
inhibit_id_p = 1;
/* See if any of the desired lines are enabled; don't compute for
i/d line if just want cursor motion. */
for (i = 0; i < desired_matrix->nrows; i++)
if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
break;
/* Try doing i/d line, if not yet inhibited. */
if (!inhibit_id_p && i < desired_matrix->nrows)
force_p |= scrolling (f);
/* Update the individual lines as needed. Do bottom line first. */
if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1))
update_frame_line (f, desired_matrix->nrows - 1);
/* Now update the rest of the lines. */
for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++)
{
if (MATRIX_ROW_ENABLED_P (desired_matrix, i))
{
if (FRAME_TERMCAP_P (f))
{
/* Flush out every so many lines.
Also flush out if likely to have more than 1k buffered
otherwise. I'm told that some telnet connections get
really screwed by more than 1k output at once. */
FILE *display_output = FRAME_TTY (f)->output;
if (display_output)
{
int outq = PENDING_OUTPUT_COUNT (display_output);
if (outq > 900
|| (outq > 20 && ((i - 1) % preempt_count == 0)))
{
fflush (display_output);
if (preempt_count == 1)
{
#ifdef EMACS_OUTQSIZE
if (EMACS_OUTQSIZE (0, &outq) < 0)
/* Probably not a tty. Ignore the error and reset
the outq count. */
outq = PENDING_OUTPUT_COUNT (FRAME_TTY (f->output));
#endif
outq *= 10;
if (baud_rate <= outq && baud_rate > 0)
sleep (outq / baud_rate);
}
}
}
}
#if PERIODIC_PREEMPTION_CHECKING
if (!force_p)
{
EMACS_TIME tm, dif;
EMACS_GET_TIME (tm);
EMACS_SUB_TIME (dif, preemption_next_check, tm);
if (EMACS_TIME_NEG_P (dif))
{
EMACS_ADD_TIME (preemption_next_check, tm, preemption_period);
if (detect_input_pending_ignore_squeezables ())
break;
}
}
#else
if (!force_p && (i - 1) % preempt_count == 0)
detect_input_pending_ignore_squeezables ();
#endif
update_frame_line (f, i);
}
}
pause = (i < FRAME_LINES (f) - 1) ? i : 0;
/* Now just clean up termcap drivers and set cursor, etc. */
if (!pause)
{
if ((cursor_in_echo_area
/* If we are showing a message instead of the mini-buffer,
show the cursor for the message instead of for the
(now hidden) mini-buffer contents. */
|| (EQ (minibuf_window, selected_window)
&& EQ (minibuf_window, echo_area_window)
&& !NILP (echo_area_buffer[0])))
/* These cases apply only to the frame that contains
the active mini-buffer window. */
&& FRAME_HAS_MINIBUF_P (f)
&& EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window))
{
int top = WINDOW_TOP_EDGE_LINE (XWINDOW (FRAME_MINIBUF_WINDOW (f)));
int row, col;
if (cursor_in_echo_area < 0)
{
/* Negative value of cursor_in_echo_area means put
cursor at beginning of line. */
row = top;
col = 0;
}
else
{
/* Positive value of cursor_in_echo_area means put
cursor at the end of the prompt. If the mini-buffer
is several lines high, find the last line that has
any text on it. */
row = FRAME_LINES (f);
do
{
--row;
col = 0;
if (MATRIX_ROW_ENABLED_P (current_matrix, row))
{
/* Frame rows are filled up with spaces that
must be ignored here. */
struct glyph_row *r = MATRIX_ROW (current_matrix,
row);
struct glyph *start = r->glyphs[TEXT_AREA];
struct glyph *last = start + r->used[TEXT_AREA];
while (last > start
&& (last - 1)->charpos < 0)
--last;
col = last - start;
}
}
while (row > top && col == 0);
/* Make sure COL is not out of range. */
if (col >= FRAME_CURSOR_X_LIMIT (f))
{
/* If we have another row, advance cursor into it. */
if (row < FRAME_LINES (f) - 1)
{
col = FRAME_LEFT_SCROLL_BAR_COLS (f);
row++;
}
/* Otherwise move it back in range. */
else
col = FRAME_CURSOR_X_LIMIT (f) - 1;
}
}
cursor_to (f, row, col);
}
else
{
/* We have only one cursor on terminal frames. Use it to
display the cursor of the selected window. */
struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
if (w->cursor.vpos >= 0
/* The cursor vpos may be temporarily out of bounds
in the following situation: There is one window,
with the cursor in the lower half of it. The window
is split, and a message causes a redisplay before
a new cursor position has been computed. */
&& w->cursor.vpos < WINDOW_TOTAL_LINES (w))
{
int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos);
int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos);
if (INTEGERP (w->left_margin_cols))
x += XFASTINT (w->left_margin_cols);
/* x = max (min (x, FRAME_TOTAL_COLS (f) - 1), 0); */
cursor_to (f, y, x);
}
}
}
do_pause:
clear_desired_matrices (f);
return pause;
}
/* Do line insertions/deletions on frame F for frame-based redisplay. */
int
scrolling (frame)
struct frame *frame;
{
int unchanged_at_top, unchanged_at_bottom;
int window_size;
int changed_lines;
int *old_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
int *new_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
int *draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
int *old_draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int));
register int i;
int free_at_end_vpos = FRAME_LINES (frame);
struct glyph_matrix *current_matrix = frame->current_matrix;
struct glyph_matrix *desired_matrix = frame->desired_matrix;
if (!current_matrix)
abort ();
/* Compute hash codes of all the lines. Also calculate number of
changed lines, number of unchanged lines at the beginning, and
number of unchanged lines at the end. */
changed_lines = 0;
unchanged_at_top = 0;
unchanged_at_bottom = FRAME_LINES (frame);
for (i = 0; i < FRAME_LINES (frame); i++)
{
/* Give up on this scrolling if some old lines are not enabled. */
if (!MATRIX_ROW_ENABLED_P (current_matrix, i))
return 0;
old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i));
if (! MATRIX_ROW_ENABLED_P (desired_matrix, i))
{
/* This line cannot be redrawn, so don't let scrolling mess it. */
new_hash[i] = old_hash[i];
#define INFINITY 1000000 /* Taken from scroll.c */
draw_cost[i] = INFINITY;
}
else
{
new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i));
draw_cost[i] = line_draw_cost (desired_matrix, i);
}
if (old_hash[i] != new_hash[i])
{
changed_lines++;
unchanged_at_bottom = FRAME_LINES (frame) - i - 1;
}
else if (i == unchanged_at_top)
unchanged_at_top++;
old_draw_cost[i] = line_draw_cost (current_matrix, i);
}
/* If changed lines are few, don't allow preemption, don't scroll. */
if ((!FRAME_SCROLL_REGION_OK (frame)
&& changed_lines < baud_rate / 2400)
|| unchanged_at_bottom == FRAME_LINES (frame))
return 1;
window_size = (FRAME_LINES (frame) - unchanged_at_top
- unchanged_at_bottom);
if (FRAME_SCROLL_REGION_OK (frame))
free_at_end_vpos -= unchanged_at_bottom;
else if (FRAME_MEMORY_BELOW_FRAME (frame))
free_at_end_vpos = -1;
/* If large window, fast terminal and few lines in common between
current frame and desired frame, don't bother with i/d calc. */
if (!FRAME_SCROLL_REGION_OK (frame)
&& window_size >= 18 && baud_rate > 2400
&& (window_size >=
10 * scrolling_max_lines_saved (unchanged_at_top,
FRAME_LINES (frame) - unchanged_at_bottom,
old_hash, new_hash, draw_cost)))
return 0;
if (window_size < 2)
return 0;
scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom,
draw_cost + unchanged_at_top - 1,
old_draw_cost + unchanged_at_top - 1,
old_hash + unchanged_at_top - 1,
new_hash + unchanged_at_top - 1,
free_at_end_vpos - unchanged_at_top);
return 0;
}
/* Count the number of blanks at the start of the vector of glyphs R
which is LEN glyphs long. */
static int
count_blanks (r, len)
struct glyph *r;
int len;
{
int i;
for (i = 0; i < len; ++i)
if (!CHAR_GLYPH_SPACE_P (r[i]))
break;
return i;
}
/* Count the number of glyphs in common at the start of the glyph
vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end
of STR2. Value is the number of equal glyphs equal at the start. */
static int
count_match (str1, end1, str2, end2)
struct glyph *str1, *end1, *str2, *end2;
{
struct glyph *p1 = str1;
struct glyph *p2 = str2;
while (p1 < end1
&& p2 < end2
&& GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2))
++p1, ++p2;
return p1 - str1;
}
/* Char insertion/deletion cost vector, from term.c */
extern int *char_ins_del_vector;
#define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_TOTAL_COLS((f))])
/* Perform a frame-based update on line VPOS in frame FRAME. */
static void
update_frame_line (f, vpos)
struct frame *f;
int vpos;
{
struct glyph *obody, *nbody, *op1, *op2, *np1, *nend;
int tem;
int osp, nsp, begmatch, endmatch, olen, nlen;
struct glyph_matrix *current_matrix = f->current_matrix;
struct glyph_matrix *desired_matrix = f->desired_matrix;
struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos);
struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos);
int must_write_whole_line_p;
int write_spaces_p = FRAME_MUST_WRITE_SPACES (f);
int colored_spaces_p = (FACE_FROM_ID (f, DEFAULT_FACE_ID)->background
!= FACE_TTY_DEFAULT_BG_COLOR);
if (colored_spaces_p)
write_spaces_p = 1;
/* Current row not enabled means it has unknown contents. We must
write the whole desired line in that case. */
must_write_whole_line_p = !current_row->enabled_p;
if (must_write_whole_line_p)
{
obody = 0;
olen = 0;
}
else
{
obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos);
olen = current_row->used[TEXT_AREA];
/* Ignore trailing spaces, if we can. */
if (!write_spaces_p)
while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1]))
olen--;
}
current_row->enabled_p = 1;
current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA];
/* If desired line is empty, just clear the line. */
if (!desired_row->enabled_p)
{
nlen = 0;
goto just_erase;
}
nbody = desired_row->glyphs[TEXT_AREA];
nlen = desired_row->used[TEXT_AREA];
nend = nbody + nlen;
/* If display line has unknown contents, write the whole line. */
if (must_write_whole_line_p)
{
/* Ignore spaces at the end, if we can. */
if (!write_spaces_p)
while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
--nlen;
/* Write the contents of the desired line. */
if (nlen)
{
cursor_to (f, vpos, 0);
write_glyphs (f, nbody, nlen);
}
/* Don't call clear_end_of_line if we already wrote the whole
line. The cursor will not be at the right margin in that
case but in the line below. */
if (nlen < FRAME_TOTAL_COLS (f))
{
cursor_to (f, vpos, nlen);
clear_end_of_line (f, FRAME_TOTAL_COLS (f));
}
else
/* Make sure we are in the right row, otherwise cursor movement
with cmgoto might use `ch' in the wrong row. */
cursor_to (f, vpos, 0);
make_current (desired_matrix, current_matrix, vpos);
return;
}
/* Pretend trailing spaces are not there at all,
unless for one reason or another we must write all spaces. */
if (!write_spaces_p)
while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1]))
nlen--;
/* If there's no i/d char, quickly do the best we can without it. */
if (!FRAME_CHAR_INS_DEL_OK (f))
{
int i, j;
/* Find the first glyph in desired row that doesn't agree with
a glyph in the current row, and write the rest from there on. */
for (i = 0; i < nlen; i++)
{
if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i))
{
/* Find the end of the run of different glyphs. */
j = i + 1;
while (j < nlen
&& (j >= olen
|| !GLYPH_EQUAL_P (nbody + j, obody + j)
|| CHAR_GLYPH_PADDING_P (nbody[j])))
++j;
/* Output this run of non-matching chars. */
cursor_to (f, vpos, i);
write_glyphs (f, nbody + i, j - i);
i = j - 1;
/* Now find the next non-match. */
}
}
/* Clear the rest of the line, or the non-clear part of it. */
if (olen > nlen)
{
cursor_to (f, vpos, nlen);
clear_end_of_line (f, olen);
}
/* Make current row = desired row. */
make_current (desired_matrix, current_matrix, vpos);
return;
}
/* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete
characters in a row. */
if (!olen)
{
/* If current line is blank, skip over initial spaces, if
possible, and write the rest. */
if (write_spaces_p)
nsp = 0;
else
nsp = count_blanks (nbody, nlen);
if (nlen > nsp)
{
cursor_to (f, vpos, nsp);
write_glyphs (f, nbody + nsp, nlen - nsp);
}
/* Exchange contents between current_frame and new_frame. */
make_current (desired_matrix, current_matrix, vpos);
return;
}
/* Compute number of leading blanks in old and new contents. */
osp = count_blanks (obody, olen);
nsp = (colored_spaces_p ? 0 : count_blanks (nbody, nlen));
/* Compute number of matching chars starting with first non-blank. */
begmatch = count_match (obody + osp, obody + olen,
nbody + nsp, nbody + nlen);
/* Spaces in new match implicit space past the end of old. */
/* A bug causing this to be a no-op was fixed in 18.29. */
if (!write_spaces_p && osp + begmatch == olen)
{
np1 = nbody + nsp;
while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch]))
++begmatch;
}
/* Avoid doing insert/delete char
just cause number of leading spaces differs
when the following text does not match. */
if (begmatch == 0 && osp != nsp)
osp = nsp = min (osp, nsp);
/* Find matching characters at end of line */
op1 = obody + olen;
np1 = nbody + nlen;
op2 = op1 + begmatch - min (olen - osp, nlen - nsp);
while (op1 > op2
&& GLYPH_EQUAL_P (op1 - 1, np1 - 1))
{
op1--;
np1--;
}
endmatch = obody + olen - op1;
/* tem gets the distance to insert or delete.
endmatch is how many characters we save by doing so.
Is it worth it? */
tem = (nlen - nsp) - (olen - osp);
if (endmatch && tem
&& (!FRAME_CHAR_INS_DEL_OK (f)
|| endmatch <= char_ins_del_cost (f)[tem]))
endmatch = 0;
/* nsp - osp is the distance to insert or delete.
If that is nonzero, begmatch is known to be nonzero also.
begmatch + endmatch is how much we save by doing the ins/del.
Is it worth it? */
if (nsp != osp
&& (!FRAME_CHAR_INS_DEL_OK (f)
|| begmatch + endmatch <= char_ins_del_cost (f)[nsp - osp]))
{
begmatch = 0;
endmatch = 0;
osp = nsp = min (osp, nsp);
}
/* Now go through the line, inserting, writing and
deleting as appropriate. */
if (osp > nsp)
{
cursor_to (f, vpos, nsp);
delete_glyphs (f, osp - nsp);
}
else if (nsp > osp)
{
/* If going to delete chars later in line
and insert earlier in the line,
must delete first to avoid losing data in the insert */
if (endmatch && nlen < olen + nsp - osp)
{
cursor_to (f, vpos, nlen - endmatch + osp - nsp);
delete_glyphs (f, olen + nsp - osp - nlen);
olen = nlen - (nsp - osp);
}
cursor_to (f, vpos, osp);
insert_glyphs (f, 0, nsp - osp);
}
olen += nsp - osp;
tem = nsp + begmatch + endmatch;
if (nlen != tem || olen != tem)
{
if (!endmatch || nlen == olen)
{
/* If new text being written reaches right margin, there is
no need to do clear-to-eol at the end of this function
(and it would not be safe, since cursor is not going to
be "at the margin" after the text is done). */
if (nlen == FRAME_TOTAL_COLS (f))
olen = 0;
/* Function write_glyphs is prepared to do nothing
if passed a length <= 0. Check it here to avoid
unnecessary cursor movement. */
if (nlen - tem > 0)
{
cursor_to (f, vpos, nsp + begmatch);
write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
}
}
else if (nlen > olen)
{
/* Here, we used to have the following simple code:
----------------------------------------
write_glyphs (nbody + nsp + begmatch, olen - tem);
insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen);
----------------------------------------
but it doesn't work if nbody[nsp + begmatch + olen - tem]
is a padding glyph. */
int out = olen - tem; /* Columns to be overwritten originally. */
int del;
cursor_to (f, vpos, nsp + begmatch);
/* Calculate columns we can actually overwrite. */
while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out]))
out--;
write_glyphs (f, nbody + nsp + begmatch, out);
/* If we left columns to be overwritten, we must delete them. */
del = olen - tem - out;
if (del > 0)
delete_glyphs (f, del);
/* At last, we insert columns not yet written out. */
insert_glyphs (f, nbody + nsp + begmatch + out, nlen - olen + del);
olen = nlen;
}
else if (olen > nlen)
{
cursor_to (f, vpos, nsp + begmatch);
write_glyphs (f, nbody + nsp + begmatch, nlen - tem);
delete_glyphs (f, olen - nlen);
olen = nlen;
}
}
just_erase:
/* If any unerased characters remain after the new line, erase them. */
if (olen > nlen)
{
cursor_to (f, vpos, nlen);
clear_end_of_line (f, olen);
}
/* Exchange contents between current_frame and new_frame. */
make_current (desired_matrix, current_matrix, vpos);
}
/***********************************************************************
X/Y Position -> Buffer Position
***********************************************************************/
/* Determine what's under window-relative pixel position (*X, *Y).
Return the object (string or buffer) that's there.
Return in *POS the position in that object.
Adjust *X and *Y to character positions. */
Lisp_Object
buffer_posn_from_coords (w, x, y, pos, object, dx, dy, width, height)
struct window *w;
int *x, *y;
struct display_pos *pos;
Lisp_Object *object;
int *dx, *dy;
int *width, *height;
{
struct it it;
struct buffer *old_current_buffer = current_buffer;
struct text_pos startp;
Lisp_Object string;
struct glyph_row *row;
#ifdef HAVE_WINDOW_SYSTEM
struct image *img = 0;
#endif
int x0, x1;
current_buffer = XBUFFER (w->buffer);
SET_TEXT_POS_FROM_MARKER (startp, w->start);
CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp)));
BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp)));
start_display (&it, w, startp);
x0 = *x - WINDOW_LEFT_MARGIN_WIDTH (w);
move_it_to (&it, -1, x0 + it.first_visible_x, *y, -1,
MOVE_TO_X | MOVE_TO_Y);
current_buffer = old_current_buffer;
*dx = x0 + it.first_visible_x - it.current_x;
*dy = *y - it.current_y;
string = w->buffer;
if (STRINGP (it.string))
string = it.string;
*pos = it.current;
#ifdef HAVE_WINDOW_SYSTEM
if (it.what == IT_IMAGE)
{
if ((img = IMAGE_FROM_ID (it.f, it.image_id)) != NULL
&& !NILP (img->spec))
*object = img->spec;
}
#endif
if (it.vpos < w->current_matrix->nrows
&& (row = MATRIX_ROW (w->current_matrix, it.vpos),
row->enabled_p))
{
if (it.hpos < row->used[TEXT_AREA])
{
struct glyph *glyph = row->glyphs[TEXT_AREA] + it.hpos;
#ifdef HAVE_WINDOW_SYSTEM
if (img)
{
*dy -= row->ascent - glyph->ascent;
*dx += glyph->slice.x;
*dy += glyph->slice.y;
/* Image slices positions are still relative to the entire image */
*width = img->width;
*height = img->height;
}
else
#endif
{
*width = glyph->pixel_width;
*height = glyph->ascent + glyph->descent;
}
}
else
{
*width = 0;
*height = row->height;
}
}
else
{
*width = *height = 0;
}
/* Add extra (default width) columns if clicked after EOL. */
x1 = max(0, it.current_x + it.pixel_width - it.first_visible_x);
if (x0 > x1)
it.hpos += (x0 - x1) / WINDOW_FRAME_COLUMN_WIDTH (w);
*x = it.hpos;
*y = it.vpos;
return string;
}
/* Value is the string under window-relative coordinates X/Y in the
mode line or header line (PART says which) of window W, or nil if none.
*CHARPOS is set to the position in the string returned. */
Lisp_Object
mode_line_string (w, part, x, y, charpos, object, dx, dy, width, height)
struct window *w;
enum window_part part;
int *x, *y;
int *charpos;
Lisp_Object *object;
int *dx, *dy;
int *width, *height;
{
struct glyph_row *row;
struct glyph *glyph, *end;
int x0, y0;
Lisp_Object string = Qnil;
if (part == ON_MODE_LINE)
row = MATRIX_MODE_LINE_ROW (w->current_matrix);
else
row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
y0 = *y - row->y;
*y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
if (row->mode_line_p && row->enabled_p)
{
/* Find the glyph under X. If we find one with a string object,
it's the one we were looking for. */
glyph = row->glyphs[TEXT_AREA];
end = glyph + row->used[TEXT_AREA];
for (x0 = *x; glyph < end && x0 >= glyph->pixel_width; ++glyph)
x0 -= glyph->pixel_width;
*x = glyph - row->glyphs[TEXT_AREA];
if (glyph < end)
{
string = glyph->object;
*charpos = glyph->charpos;
*width = glyph->pixel_width;
*height = glyph->ascent + glyph->descent;
#ifdef HAVE_WINDOW_SYSTEM
if (glyph->type == IMAGE_GLYPH)
{
struct image *img;
img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
if (img != NULL)
*object = img->spec;
y0 -= row->ascent - glyph->ascent;
}
#endif
}
else
{
/* Add extra (default width) columns if clicked after EOL. */
*x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
*width = 0;
*height = row->height;
}
}
else
{
*x = 0;
x0 = 0;
*width = *height = 0;
}
*dx = x0;
*dy = y0;
return string;
}
/* Value is the string under window-relative coordinates X/Y in either
marginal area, or nil if none. *CHARPOS is set to the position in
the string returned. */
Lisp_Object
marginal_area_string (w, part, x, y, charpos, object, dx, dy, width, height)
struct window *w;
enum window_part part;
int *x, *y;
int *charpos;
Lisp_Object *object;
int *dx, *dy;
int *width, *height;
{
struct glyph_row *row = w->current_matrix->rows;
struct glyph *glyph, *end;
int x0, y0, i, wy = *y;
int area;
Lisp_Object string = Qnil;
if (part == ON_LEFT_MARGIN)
area = LEFT_MARGIN_AREA;
else if (part == ON_RIGHT_MARGIN)
area = RIGHT_MARGIN_AREA;
else
abort ();
for (i = 0; row->enabled_p && i < w->current_matrix->nrows; ++i, ++row)
if (wy >= row->y && wy < MATRIX_ROW_BOTTOM_Y (row))
break;
y0 = *y - row->y;
*y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix);
if (row->enabled_p)
{
/* Find the glyph under X. If we find one with a string object,
it's the one we were looking for. */
if (area == RIGHT_MARGIN_AREA)
x0 = ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? WINDOW_LEFT_FRINGE_WIDTH (w)
: WINDOW_TOTAL_FRINGE_WIDTH (w))
+ window_box_width (w, LEFT_MARGIN_AREA)
+ window_box_width (w, TEXT_AREA));
else
x0 = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? WINDOW_LEFT_FRINGE_WIDTH (w)
: 0);
glyph = row->glyphs[area];
end = glyph + row->used[area];
for (x0 = *x - x0; glyph < end && x0 >= glyph->pixel_width; ++glyph)
x0 -= glyph->pixel_width;
*x = glyph - row->glyphs[area];
if (glyph < end)
{
string = glyph->object;
*charpos = glyph->charpos;
*width = glyph->pixel_width;
*height = glyph->ascent + glyph->descent;
#ifdef HAVE_WINDOW_SYSTEM
if (glyph->type == IMAGE_GLYPH)
{
struct image *img;
img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id);
if (img != NULL)
*object = img->spec;
y0 -= row->ascent - glyph->ascent;
x0 += glyph->slice.x;
y0 += glyph->slice.y;
}
#endif
}
else
{
/* Add extra (default width) columns if clicked after EOL. */
*x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w);
*width = 0;
*height = row->height;
}
}
else
{
x0 = 0;
*x = 0;
*width = *height = 0;
}
*dx = x0;
*dy = y0;
return string;
}
/***********************************************************************
Changing Frame Sizes
***********************************************************************/
#ifdef SIGWINCH
SIGTYPE
window_change_signal (signalnum) /* If we don't have an argument, */
int signalnum; /* some compilers complain in signal calls. */
{
int width, height;
#ifndef USE_CRT_DLL
extern int errno;
#endif
int old_errno = errno;
struct tty_display_info *tty;
signal (SIGWINCH, window_change_signal);
SIGNAL_THREAD_CHECK (signalnum);
/* The frame size change obviously applies to a single
termcap-controlled terminal, but we can't decide which.
Therefore, we resize the frames corresponding to each tty.
*/
for (tty = tty_list; tty; tty = tty->next) {
if (! tty->term_initted)
continue;
get_tty_size (fileno (tty->input), &width, &height);
if (width > 5 && height > 2) {
Lisp_Object tail, frame;
FOR_EACH_FRAME (tail, frame)
if (FRAME_TERMCAP_P (XFRAME (frame)) && FRAME_TTY (XFRAME (frame)) == tty)
/* Record the new sizes, but don't reallocate the data
structures now. Let that be done later outside of the
signal handler. */
change_frame_size (XFRAME (frame), height, width, 0, 1, 0);
}
}
errno = old_errno;
}
#endif /* SIGWINCH */
/* Do any change in frame size that was requested by a signal. SAFE
non-zero means this function is called from a place where it is
safe to change frame sizes while a redisplay is in progress. */
void
do_pending_window_change (safe)
int safe;
{
/* If window_change_signal should have run before, run it now. */
if (redisplaying_p && !safe)
return;
while (delayed_size_change)
{
Lisp_Object tail, frame;
delayed_size_change = 0;
FOR_EACH_FRAME (tail, frame)
{
struct frame *f = XFRAME (frame);
if (f->new_text_lines != 0 || f->new_text_cols != 0)
change_frame_size (f, f->new_text_lines, f->new_text_cols,
0, 0, safe);
}
}
}
/* Change the frame height and/or width. Values may be given as zero to
indicate no change is to take place.
If DELAY is non-zero, then assume we're being called from a signal
handler, and queue the change for later - perhaps the next
redisplay. Since this tries to resize windows, we can't call it
from a signal handler.
SAFE non-zero means this function is called from a place where it's
safe to change frame sizes while a redisplay is in progress. */
void
change_frame_size (f, newheight, newwidth, pretend, delay, safe)
register struct frame *f;
int newheight, newwidth, pretend, delay, safe;
{
Lisp_Object tail, frame;
if (FRAME_MSDOS_P (f))
{
/* On MS-DOS, all frames use the same screen, so a change in
size affects all frames. Termcap now supports multiple
ttys. */
FOR_EACH_FRAME (tail, frame)
if (! FRAME_WINDOW_P (XFRAME (frame)))
change_frame_size_1 (XFRAME (frame), newheight, newwidth,
pretend, delay, safe);
}
else
change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe);
}
static void
change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe)
register struct frame *f;
int newheight, newwidth, pretend, delay, safe;
{
int new_frame_total_cols;
int count = SPECPDL_INDEX ();
/* If we can't deal with the change now, queue it for later. */
if (delay || (redisplaying_p && !safe))
{
f->new_text_lines = newheight;
f->new_text_cols = newwidth;
delayed_size_change = 1;
return;
}
/* This size-change overrides any pending one for this frame. */
f->new_text_lines = 0;
f->new_text_cols = 0;
/* If an argument is zero, set it to the current value. */
if (newheight == 0)
newheight = FRAME_LINES (f);
if (newwidth == 0)
newwidth = FRAME_COLS (f);
/* Compute width of windows in F.
This is the width of the frame without vertical scroll bars. */
new_frame_total_cols = FRAME_TOTAL_COLS_ARG (f, newwidth);
/* Round up to the smallest acceptable size. */
check_frame_size (f, &newheight, &newwidth);
/* If we're not changing the frame size, quit now. */
if (newheight == FRAME_LINES (f)
&& new_frame_total_cols == FRAME_TOTAL_COLS (f))
return;
BLOCK_INPUT;
#ifdef MSDOS
/* We only can set screen dimensions to certain values supported
by our video hardware. Try to find the smallest size greater
or equal to the requested dimensions. */
dos_set_window_size (&newheight, &newwidth);
#endif
if (newheight != FRAME_LINES (f))
{
if (FRAME_HAS_MINIBUF_P (f) && !FRAME_MINIBUF_ONLY_P (f))
{
/* Frame has both root and mini-buffer. */
XSETFASTINT (XWINDOW (FRAME_ROOT_WINDOW (f))->top_line,
FRAME_TOP_MARGIN (f));
set_window_height (FRAME_ROOT_WINDOW (f),
(newheight
- 1
- FRAME_TOP_MARGIN (f)),
2);
XSETFASTINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top_line,
newheight - 1);
set_window_height (FRAME_MINIBUF_WINDOW (f), 1, 0);
}
else
/* Frame has just one top-level window. */
set_window_height (FRAME_ROOT_WINDOW (f),
newheight - FRAME_TOP_MARGIN (f), 2);
if (FRAME_TERMCAP_P (f) && !pretend)
FrameRows (FRAME_TTY (f)) = newheight;
}
if (new_frame_total_cols != FRAME_TOTAL_COLS (f))
{
set_window_width (FRAME_ROOT_WINDOW (f), new_frame_total_cols, 2);
if (FRAME_HAS_MINIBUF_P (f))
set_window_width (FRAME_MINIBUF_WINDOW (f), new_frame_total_cols, 0);
if (FRAME_TERMCAP_P (f) && !pretend)
FrameCols (FRAME_TTY (f)) = newwidth;
if (WINDOWP (f->tool_bar_window))
XSETFASTINT (XWINDOW (f->tool_bar_window)->total_cols, newwidth);
}
FRAME_LINES (f) = newheight;
SET_FRAME_COLS (f, newwidth);
{
struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f));
int text_area_x, text_area_y, text_area_width, text_area_height;
window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width,
&text_area_height);
if (w->cursor.x >= text_area_x + text_area_width)
w->cursor.hpos = w->cursor.x = 0;
if (w->cursor.y >= text_area_y + text_area_height)
w->cursor.vpos = w->cursor.y = 0;
}
adjust_glyphs (f);
calculate_costs (f);
SET_FRAME_GARBAGED (f);
f->resized_p = 1;
UNBLOCK_INPUT;
record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
run_window_configuration_change_hook (f);
unbind_to (count, Qnil);
}
/***********************************************************************
Terminal Related Lisp Functions
***********************************************************************/
DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript,
1, 1, "FOpen termscript file: ",
doc: /* Start writing all terminal output to FILE as well as the terminal.
FILE = nil means just close any termscript file currently open. */)
(file)
Lisp_Object file;
{
struct tty_display_info *tty;
if (! FRAME_TERMCAP_P (SELECTED_FRAME ()))
error ("Current frame is not on a tty device");
tty = CURTTY ();
if (tty->termscript != 0)
{
BLOCK_INPUT;
fclose (tty->termscript);
UNBLOCK_INPUT;
}
tty->termscript = 0;
if (! NILP (file))
{
file = Fexpand_file_name (file, Qnil);
tty->termscript = fopen (SDATA (file), "w");
if (tty->termscript == 0)
report_file_error ("Opening termscript", Fcons (file, Qnil));
}
return Qnil;
}
DEFUN ("send-string-to-terminal", Fsend_string_to_terminal,
Ssend_string_to_terminal, 1, 2, 0,
doc: /* Send STRING to the terminal without alteration.
Control characters in STRING will have terminal-dependent effects.
Optional parameter TERMINAL specifies the tty terminal device to use.
It may be a terminal id, a frame, or nil for the terminal used by the
currently selected frame. */)
(string, terminal)
Lisp_Object string;
Lisp_Object terminal;
{
struct terminal *t = get_tty_terminal (terminal, 1);
struct tty_display_info *tty;
/* ??? Perhaps we should do something special for multibyte strings here. */
CHECK_STRING (string);
BLOCK_INPUT;
if (!t)
error ("Unknown terminal device");
tty = t->display_info.tty;
if (tty->termscript)
{
fwrite (SDATA (string), 1, SBYTES (string), tty->termscript);
fflush (tty->termscript);
}
fwrite (SDATA (string), 1, SBYTES (string), tty->output);
fflush (tty->output);
UNBLOCK_INPUT;
return Qnil;
}
DEFUN ("ding", Fding, Sding, 0, 1, 0,
doc: /* Beep, or flash the screen.
Also, unless an argument is given,
terminate any keyboard macro currently executing. */)
(arg)
Lisp_Object arg;
{
if (!NILP (arg))
{
if (noninteractive)
putchar (07);
else
ring_bell (XFRAME (selected_frame));
}
else
bitch_at_user ();
return Qnil;
}
void
bitch_at_user ()
{
if (noninteractive)
putchar (07);
else if (!INTERACTIVE) /* Stop executing a keyboard macro. */
error ("Keyboard macro terminated by a command ringing the bell");
else
ring_bell (XFRAME (selected_frame));
}
/***********************************************************************
Sleeping, Waiting
***********************************************************************/
DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0,
doc: /* Pause, without updating display, for SECONDS seconds.
SECONDS may be a floating-point value, meaning that you can wait for a
fraction of a second. Optional second arg MILLISECONDS specifies an
additional wait period, in milliseconds; this may be useful if your
Emacs was built without floating point support.
\(Not all operating systems support waiting for a fraction of a second.) */)
(seconds, milliseconds)
Lisp_Object seconds, milliseconds;
{
int sec, usec;
if (NILP (milliseconds))
XSETINT (milliseconds, 0);
else
CHECK_NUMBER (milliseconds);
usec = XINT (milliseconds) * 1000;
{
double duration = extract_float (seconds);
sec = (int) duration;
usec += (duration - sec) * 1000000;
}
#ifndef EMACS_HAS_USECS
if (sec == 0 && usec != 0)
error ("Millisecond `sleep-for' not supported on %s", SYSTEM_TYPE);
#endif
/* Assure that 0 <= usec < 1000000. */
if (usec < 0)
{
/* We can't rely on the rounding being correct if usec is negative. */
if (-1000000 < usec)
sec--, usec += 1000000;
else
sec -= -usec / 1000000, usec = 1000000 - (-usec % 1000000);
}
else
sec += usec / 1000000, usec %= 1000000;
if (sec < 0 || (sec == 0 && usec == 0))
return Qnil;
wait_reading_process_output (sec, usec, 0, 0, Qnil, NULL, 0);
return Qnil;
}
/* This is just like wait_reading_process_output, except that
it does redisplay.
TIMEOUT is number of seconds to wait (float or integer),
or t to wait forever.
READING is 1 if reading input.
If DO_DISPLAY is >0 display process output while waiting.
If DO_DISPLAY is >1 perform an initial redisplay before waiting.
*/
Lisp_Object
sit_for (timeout, reading, do_display)
Lisp_Object timeout;
int reading, do_display;
{
int sec, usec;
swallow_events (do_display);
if ((detect_input_pending_run_timers (do_display))
|| !NILP (Vexecuting_kbd_macro))
return Qnil;
if (do_display >= 2)
redisplay_preserve_echo_area (2);
if (INTEGERP (timeout))
{
sec = XINT (timeout);
usec = 0;
}
else if (FLOATP (timeout))
{
double seconds = XFLOAT_DATA (timeout);
sec = (int) seconds;
usec = (int) ((seconds - sec) * 1000000);
}
else if (EQ (timeout, Qt))
{
sec = 0;
usec = 0;
}
else
wrong_type_argument (Qnumberp, timeout);
if (sec == 0 && usec == 0 && !EQ (timeout, Qt))
return Qt;
#ifdef SIGIO
gobble_input (0);
#endif
wait_reading_process_output (sec, usec, reading ? -1 : 1, do_display,
Qnil, NULL, 0);
return detect_input_pending () ? Qnil : Qt;
}
DEFUN ("redisplay", Fredisplay, Sredisplay, 0, 1, 0,
doc: /* Perform redisplay if no input is available.
If optional arg FORCE is non-nil or `redisplay-dont-pause' is non-nil,
perform a full redisplay even if input is available.
Return t if redisplay was performed, nil otherwise. */)
(force)
Lisp_Object force;
{
int count;
swallow_events (1);
if ((detect_input_pending_run_timers (1)
&& NILP (force) && !redisplay_dont_pause)
|| !NILP (Vexecuting_kbd_macro))
return Qnil;
count = SPECPDL_INDEX ();
if (!NILP (force) && !redisplay_dont_pause)
specbind (Qredisplay_dont_pause, Qt);
redisplay_preserve_echo_area (2);
unbind_to (count, Qnil);
return Qt;
}
/***********************************************************************
Other Lisp Functions
***********************************************************************/
/* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the
session's frames, frame names, buffers, buffer-read-only flags, and
buffer-modified-flags. */
static Lisp_Object frame_and_buffer_state;
DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p,
Sframe_or_buffer_changed_p, 0, 1, 0,
doc: /* Return non-nil if the frame and buffer state appears to have changed.
VARIABLE is a variable name whose value is either nil or a state vector
that will be updated to contain all frames and buffers,
aside from buffers whose names start with space,
along with the buffers' read-only and modified flags. This allows a fast
check to see whether buffer menus might need to be recomputed.
If this function returns non-nil, it updates the internal vector to reflect
the current state.
If VARIABLE is nil, an internal variable is used. Users should not
pass nil for VARIABLE. */)
(variable)
Lisp_Object variable;
{
Lisp_Object state, tail, frame, buf;
Lisp_Object *vecp, *end;
int n;
if (! NILP (variable))
{
CHECK_SYMBOL (variable);
state = Fsymbol_value (variable);
if (! VECTORP (state))
goto changed;
}
else
state = frame_and_buffer_state;
vecp = XVECTOR (state)->contents;
end = vecp + XVECTOR (state)->size;
FOR_EACH_FRAME (tail, frame)
{
if (vecp == end)
goto changed;
if (!EQ (*vecp++, frame))
goto changed;
if (vecp == end)
goto changed;
if (!EQ (*vecp++, XFRAME (frame)->name))
goto changed;
}
/* Check that the buffer info matches. */
for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
{
buf = XCDR (XCAR (tail));
/* Ignore buffers that aren't included in buffer lists. */
if (SREF (XBUFFER (buf)->name, 0) == ' ')
continue;
if (vecp == end)
goto changed;
if (!EQ (*vecp++, buf))
goto changed;
if (vecp == end)
goto changed;
if (!EQ (*vecp++, XBUFFER (buf)->read_only))
goto changed;
if (vecp == end)
goto changed;
if (!EQ (*vecp++, Fbuffer_modified_p (buf)))
goto changed;
}
if (vecp == end)
goto changed;
/* Detect deletion of a buffer at the end of the list. */
if (EQ (*vecp, Qlambda))
return Qnil;
/* Come here if we decide the data has changed. */
changed:
/* Count the size we will need.
Start with 1 so there is room for at least one lambda at the end. */
n = 1;
FOR_EACH_FRAME (tail, frame)
n += 2;
for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
n += 3;
/* Reallocate the vector if data has grown to need it,
or if it has shrunk a lot. */
if (! VECTORP (state)
|| n > XVECTOR (state)->size
|| n + 20 < XVECTOR (state)->size / 2)
/* Add 20 extra so we grow it less often. */
{
state = Fmake_vector (make_number (n + 20), Qlambda);
if (! NILP (variable))
Fset (variable, state);
else
frame_and_buffer_state = state;
}
/* Record the new data in the (possibly reallocated) vector. */
vecp = XVECTOR (state)->contents;
FOR_EACH_FRAME (tail, frame)
{
*vecp++ = frame;
*vecp++ = XFRAME (frame)->name;
}
for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail))
{
buf = XCDR (XCAR (tail));
/* Ignore buffers that aren't included in buffer lists. */
if (SREF (XBUFFER (buf)->name, 0) == ' ')
continue;
*vecp++ = buf;
*vecp++ = XBUFFER (buf)->read_only;
*vecp++ = Fbuffer_modified_p (buf);
}
/* Fill up the vector with lambdas (always at least one). */
*vecp++ = Qlambda;
while (vecp - XVECTOR (state)->contents
< XVECTOR (state)->size)
*vecp++ = Qlambda;
/* Make sure we didn't overflow the vector. */
if (vecp - XVECTOR (state)->contents
> XVECTOR (state)->size)
abort ();
return Qt;
}
/***********************************************************************
Initialization
***********************************************************************/
/* Initialization done when Emacs fork is started, before doing stty.
Determine terminal type and set terminal_driver. Then invoke its
decoding routine to set up variables in the terminal package. */
void
init_display ()
{
char *terminal_type;
#ifdef HAVE_X_WINDOWS
extern int display_arg;
#endif
/* Construct the space glyph. */
space_glyph.type = CHAR_GLYPH;
SET_CHAR_GLYPH (space_glyph, ' ', DEFAULT_FACE_ID, 0);
space_glyph.charpos = -1;
inverse_video = 0;
cursor_in_echo_area = 0;
terminal_type = (char *) 0;
/* Now is the time to initialize this; it's used by init_sys_modes
during startup. */
Vinitial_window_system = Qnil;
/* SIGWINCH needs to be handled no matter what display we start
with. Otherwise newly opened tty frames will not resize
automatically. */
#ifdef SIGWINCH
#ifndef CANNOT_DUMP
if (initialized)
#endif /* CANNOT_DUMP */
signal (SIGWINCH, window_change_signal);
#endif /* SIGWINCH */
/* If the user wants to use a window system, we shouldn't bother
initializing the terminal. This is especially important when the
terminal is so dumb that emacs gives up before and doesn't bother
using the window system.
If the DISPLAY environment variable is set and nonempty,
try to use X, and die with an error message if that doesn't work. */
#ifdef HAVE_X_WINDOWS
if (! inhibit_window_system && ! display_arg)
{
char *display;
display = getenv ("DISPLAY");
display_arg = (display != 0 && *display != 0);
if (display_arg && !x_display_ok (display))
{
fprintf (stderr, "Display %s unavailable, simulating -nw\n",
display);
inhibit_window_system = 1;
}
}
if (!inhibit_window_system && display_arg
#ifndef CANNOT_DUMP
&& initialized
#endif
)
{
Vinitial_window_system = intern ("x");
#ifdef HAVE_X11
Vwindow_system_version = make_number (11);
#endif
#if defined (GNU_LINUX) && defined (HAVE_LIBNCURSES)
/* In some versions of ncurses,
tputs crashes if we have not called tgetent.
So call tgetent. */
{ char b[2044]; tgetent (b, "xterm");}
#endif
adjust_frame_glyphs_initially ();
return;
}
#endif /* HAVE_X_WINDOWS */
#ifdef HAVE_NTGUI
if (!inhibit_window_system)
{
Vinitial_window_system = intern ("w32");
Vwindow_system_version = make_number (1);
adjust_frame_glyphs_initially ();
return;
}
#endif /* HAVE_NTGUI */
#ifdef HAVE_NS
if (!inhibit_window_system
#ifndef CANNOT_DUMP
&& initialized
#endif
)
{
Vinitial_window_system = intern("ns");
Vwindow_system_version = make_number(10);
adjust_frame_glyphs_initially ();
return;
}
#endif
/* If no window system has been specified, try to use the terminal. */
if (! isatty (0))
{
fatal ("standard input is not a tty");
exit (1);
}
#ifdef WINDOWSNT
terminal_type = "w32console";
#else
/* Look at the TERM variable. */
terminal_type = (char *) getenv ("TERM");
#endif
if (!terminal_type)
{
#ifdef HAVE_WINDOW_SYSTEM
if (! inhibit_window_system)
fprintf (stderr, "Please set the environment variable DISPLAY or TERM (see `tset').\n");
else
#endif /* HAVE_WINDOW_SYSTEM */
fprintf (stderr, "Please set the environment variable TERM; see `tset'.\n");
exit (1);
}
{
struct terminal *t;
struct frame *f = XFRAME (selected_frame);
/* Open a display on the controlling tty. */
t = init_tty (0, terminal_type, 1); /* Errors are fatal. */
/* Convert the initial frame to use the new display. */
if (f->output_method != output_initial)
abort ();
f->output_method = t->type;
f->terminal = t;
t->reference_count++;
t->display_info.tty->top_frame = selected_frame;
change_frame_size (XFRAME (selected_frame),
FrameRows (t->display_info.tty),
FrameCols (t->display_info.tty), 0, 0, 1);
/* Delete the initial terminal. */
if (--initial_terminal->reference_count == 0
&& initial_terminal->delete_terminal_hook)
(*initial_terminal->delete_terminal_hook) (initial_terminal);
/* Update frame parameters to reflect the new type. */
Fmodify_frame_parameters
(selected_frame, Fcons (Fcons (Qtty_type,
Ftty_type (selected_frame)), Qnil));
Fmodify_frame_parameters (selected_frame, Fcons (Fcons (Qtty, Qnil), Qnil));
}
{
struct frame *sf = SELECTED_FRAME ();
int width = FRAME_TOTAL_COLS (sf);
int height = FRAME_LINES (sf);
unsigned int total_glyphs = height * (width + 2) * sizeof (struct glyph);
/* If these sizes are so big they cause overflow, just ignore the
change. It's not clear what better we could do. */
if (total_glyphs / sizeof (struct glyph) / height != width + 2)
fatal ("screen size %dx%d too big", width, height);
}
adjust_frame_glyphs_initially ();
calculate_costs (XFRAME (selected_frame));
/* Set up faces of the initial terminal frame of a dumped Emacs. */
if (initialized
&& !noninteractive
#ifdef MSDOS
/* The MSDOS terminal turns on its ``window system'' relatively
late into the startup, so we cannot do the frame faces'
initialization just yet. It will be done later by pc-win.el
and internal_terminal_init. */
&& (strcmp (terminal_type, "internal") != 0 || inhibit_window_system)
#endif
&& NILP (Vinitial_window_system))
{
/* For the initial frame, we don't have any way of knowing what
are the foreground and background colors of the terminal. */
struct frame *sf = SELECTED_FRAME();
FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR;
FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR;
call0 (intern ("tty-set-up-initial-frame-faces"));
}
}
/***********************************************************************
Blinking cursor
***********************************************************************/
DEFUN ("internal-show-cursor", Finternal_show_cursor,
Sinternal_show_cursor, 2, 2, 0,
doc: /* Set the cursor-visibility flag of WINDOW to SHOW.
WINDOW nil means use the selected window. SHOW non-nil means
show a cursor in WINDOW in the next redisplay. SHOW nil means
don't show a cursor. */)
(window, show)
Lisp_Object window, show;
{
/* Don't change cursor state while redisplaying. This could confuse
output routines. */
if (!redisplaying_p)
{
if (NILP (window))
window = selected_window;
else
CHECK_WINDOW (window);
XWINDOW (window)->cursor_off_p = NILP (show);
}
return Qnil;
}
DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p,
Sinternal_show_cursor_p, 0, 1, 0,
doc: /* Value is non-nil if next redisplay will display a cursor in WINDOW.
WINDOW nil or omitted means report on the selected window. */)
(window)
Lisp_Object window;
{
struct window *w;
if (NILP (window))
window = selected_window;
else
CHECK_WINDOW (window);
w = XWINDOW (window);
return w->cursor_off_p ? Qnil : Qt;
}
DEFUN ("last-nonminibuffer-frame", Flast_nonminibuf_frame,
Slast_nonminibuf_frame, 0, 0, 0,
doc: /* Value is last nonminibuffer frame. */)
()
{
Lisp_Object frame = Qnil;
if (last_nonminibuf_frame)
XSETFRAME (frame, last_nonminibuf_frame);
return frame;
}
/***********************************************************************
Initialization
***********************************************************************/
void
syms_of_display ()
{
defsubr (&Sredraw_frame);
defsubr (&Sredraw_display);
defsubr (&Sframe_or_buffer_changed_p);
defsubr (&Sopen_termscript);
defsubr (&Sding);
defsubr (&Sredisplay);
defsubr (&Ssleep_for);
defsubr (&Ssend_string_to_terminal);
defsubr (&Sinternal_show_cursor);
defsubr (&Sinternal_show_cursor_p);
defsubr (&Slast_nonminibuf_frame);
#if GLYPH_DEBUG
defsubr (&Sdump_redisplay_history);
#endif
frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda);
staticpro (&frame_and_buffer_state);
Qdisplay_table = intern ("display-table");
staticpro (&Qdisplay_table);
Qredisplay_dont_pause = intern ("redisplay-dont-pause");
staticpro (&Qredisplay_dont_pause);
DEFVAR_INT ("baud-rate", &baud_rate,
doc: /* *The output baud rate of the terminal.
On most systems, changing this value will affect the amount of padding
and the other strategic decisions made during redisplay. */);
DEFVAR_BOOL ("inverse-video", &inverse_video,
doc: /* *Non-nil means invert the entire frame display.
This means everything is in inverse video which otherwise would not be. */);
DEFVAR_BOOL ("visible-bell", &visible_bell,
doc: /* *Non-nil means try to flash the frame to represent a bell.
See also `ring-bell-function'. */);
DEFVAR_BOOL ("no-redraw-on-reenter", &no_redraw_on_reenter,
doc: /* *Non-nil means no need to redraw entire frame after suspending.
A non-nil value is useful if the terminal can automatically preserve
Emacs's frame display when you reenter Emacs.
It is up to you to set this variable if your terminal can do that. */);
DEFVAR_LISP ("initial-window-system", &Vinitial_window_system,
doc: /* Name of the window system that Emacs uses for the first frame.
The value is a symbol--for instance, `x' for X windows.
The value is nil if Emacs is using a text-only terminal. */);
DEFVAR_KBOARD ("window-system", Vwindow_system,
doc: /* Name of window system through which the selected frame is displayed.
The value is a symbol--for instance, `x' for X windows.
The value is nil if the selected frame is on a text-only-terminal. */);
DEFVAR_LISP ("window-system-version", &Vwindow_system_version,
doc: /* The version number of the window system in use.
For X windows, this is 11. */);
DEFVAR_BOOL ("cursor-in-echo-area", &cursor_in_echo_area,
doc: /* Non-nil means put cursor in minibuffer, at end of any message there. */);
DEFVAR_LISP ("glyph-table", &Vglyph_table,
doc: /* Table defining how to output a glyph code to the frame.
If not nil, this is a vector indexed by glyph code to define the glyph.
Each element can be:
integer: a glyph code which this glyph is an alias for.
string: output this glyph using that string (not impl. in X windows).
nil: this glyph mod 524288 is the code of a character to output,
and this glyph / 524288 is the face number (see `face-id') to use
while outputting it. */);
Vglyph_table = Qnil;
DEFVAR_LISP ("standard-display-table", &Vstandard_display_table,
doc: /* Display table to use for buffers that specify none.
See `buffer-display-table' for more information. */);
Vstandard_display_table = Qnil;
DEFVAR_BOOL ("redisplay-dont-pause", &redisplay_dont_pause,
doc: /* *Non-nil means update isn't paused when input is detected. */);
redisplay_dont_pause = 0;
#if PERIODIC_PREEMPTION_CHECKING
DEFVAR_LISP ("redisplay-preemption-period", &Vredisplay_preemption_period,
doc: /* *The period in seconds between checking for input during redisplay.
If input is detected, redisplay is pre-empted, and the input is processed.
If nil, never pre-empt redisplay. */);
Vredisplay_preemption_period = make_float (0.10);
#endif
#ifdef CANNOT_DUMP
if (noninteractive)
#endif
{
Vinitial_window_system = Qnil;
Vwindow_system_version = Qnil;
}
}
/* arch-tag: 8d812b1f-04a2-4195-a9c4-381f8457a413
(do not change this comment) */