/* Coding system handler (conversion, detection, and etc). Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN. Licensed to the Free Software Foundation. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /*** TABLE OF CONTENTS *** 1. Preamble 2. Emacs' internal format (emacs-mule) handlers 3. ISO2022 handlers 4. Shift-JIS and BIG5 handlers 5. End-of-line handlers 6. C library functions 7. Emacs Lisp library functions 8. Post-amble */ /*** GENERAL NOTE on CODING SYSTEM *** Coding system is an encoding mechanism of one or more character sets. Here's a list of coding systems which Emacs can handle. When we say "decode", it means converting some other coding system to Emacs' internal format (emacs-internal), and when we say "encode", it means converting the coding system emacs-mule to some other coding system. 0. Emacs' internal format (emacs-mule) Emacs itself holds a multi-lingual character in a buffer and a string in a special format. Details are described in section 2. 1. ISO2022 The most famous coding system for multiple character sets. X's Compound Text, various EUCs (Extended Unix Code), and coding systems used in Internet communication such as ISO-2022-JP are all variants of ISO2022. Details are described in section 3. 2. SJIS (or Shift-JIS or MS-Kanji-Code) A coding system to encode character sets: ASCII, JISX0201, and JISX0208. Widely used for PC's in Japan. Details are described in section 4. 3. BIG5 A coding system to encode character sets: ASCII and Big5. Widely used by Chinese (mainly in Taiwan and Hong Kong). Details are described in section 4. In this file, when we write "BIG5" (all uppercase), we mean the coding system, and when we write "Big5" (capitalized), we mean the character set. 4. Raw text A coding system to for a text containing random 8-bit code. Emacs does no code conversion on such a text except for end-of-line format. 5. Other If a user wants to read/write a text encoded in a coding system not listed above, he can supply a decoder and an encoder for it in CCL (Code Conversion Language) programs. Emacs executes the CCL program while reading/writing. Emacs represents a coding-system by a Lisp symbol that has a property `coding-system'. But, before actually using the coding-system, the information about it is set in a structure of type `struct coding_system' for rapid processing. See section 6 for more details. */ /*** GENERAL NOTES on END-OF-LINE FORMAT *** How end-of-line of a text is encoded depends on a system. For instance, Unix's format is just one byte of `line-feed' code, whereas DOS's format is two-byte sequence of `carriage-return' and `line-feed' codes. MacOS's format is one byte of `carriage-return'. Since text characters encoding and end-of-line encoding are independent, any coding system described above can take any format of end-of-line. So, Emacs has information of format of end-of-line in each coding-system. See section 6 for more details. */ /*** GENERAL NOTES on `detect_coding_XXX ()' functions *** These functions check if a text between SRC and SRC_END is encoded in the coding system category XXX. Each returns an integer value in which appropriate flag bits for the category XXX is set. The flag bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the template of these functions. */ #if 0 int detect_coding_emacs_mule (src, src_end) unsigned char *src, *src_end; { ... } #endif /*** GENERAL NOTES on `decode_coding_XXX ()' functions *** These functions decode SRC_BYTES length text at SOURCE encoded in CODING to Emacs' internal format (emacs-mule). The resulting text goes to a place pointed to by DESTINATION, the length of which should not exceed DST_BYTES. The number of bytes actually processed is returned as *CONSUMED. The return value is the length of the decoded text. Below is a template of these functions. */ #if 0 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { ... } #endif /*** GENERAL NOTES on `encode_coding_XXX ()' functions *** These functions encode SRC_BYTES length text at SOURCE of Emacs' internal format (emacs-mule) to CODING. The resulting text goes to a place pointed to by DESTINATION, the length of which should not exceed DST_BYTES. The number of bytes actually processed is returned as *CONSUMED. The return value is the length of the encoded text. Below is a template of these functions. */ #if 0 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { ... } #endif /*** COMMONLY USED MACROS ***/ /* The following three macros ONE_MORE_BYTE, TWO_MORE_BYTES, and THREE_MORE_BYTES safely get one, two, and three bytes from the source text respectively. If there are not enough bytes in the source, they jump to `label_end_of_loop'. The caller should set variables `src' and `src_end' to appropriate areas in advance. */ #define ONE_MORE_BYTE(c1) \ do { \ if (src < src_end) \ c1 = *src++; \ else \ goto label_end_of_loop; \ } while (0) #define TWO_MORE_BYTES(c1, c2) \ do { \ if (src + 1 < src_end) \ c1 = *src++, c2 = *src++; \ else \ goto label_end_of_loop; \ } while (0) #define THREE_MORE_BYTES(c1, c2, c3) \ do { \ if (src + 2 < src_end) \ c1 = *src++, c2 = *src++, c3 = *src++; \ else \ goto label_end_of_loop; \ } while (0) /* The following three macros DECODE_CHARACTER_ASCII, DECODE_CHARACTER_DIMENSION1, and DECODE_CHARACTER_DIMENSION2 put the multi-byte form of a character of each class at the place pointed by `dst'. The caller should set the variable `dst' to point to an appropriate area and the variable `coding' to point to the coding-system of the currently decoding text in advance. */ /* Decode one ASCII character C. */ #define DECODE_CHARACTER_ASCII(c) \ do { \ if (COMPOSING_P (coding->composing)) \ *dst++ = 0xA0, *dst++ = (c) | 0x80; \ else \ *dst++ = (c); \ } while (0) /* Decode one DIMENSION1 character whose charset is CHARSET and whose position-code is C. */ #define DECODE_CHARACTER_DIMENSION1(charset, c) \ do { \ unsigned char leading_code = CHARSET_LEADING_CODE_BASE (charset); \ if (COMPOSING_P (coding->composing)) \ *dst++ = leading_code + 0x20; \ else \ *dst++ = leading_code; \ if (leading_code = CHARSET_LEADING_CODE_EXT (charset)) \ *dst++ = leading_code; \ *dst++ = (c) | 0x80; \ } while (0) /* Decode one DIMENSION2 character whose charset is CHARSET and whose position-codes are C1 and C2. */ #define DECODE_CHARACTER_DIMENSION2(charset, c1, c2) \ do { \ DECODE_CHARACTER_DIMENSION1 (charset, c1); \ *dst++ = (c2) | 0x80; \ } while (0) /*** 1. Preamble ***/ #include #ifdef emacs #include #include "lisp.h" #include "buffer.h" #include "charset.h" #include "ccl.h" #include "coding.h" #include "window.h" #else /* not emacs */ #include "mulelib.h" #endif /* not emacs */ Lisp_Object Qcoding_system, Qeol_type; Lisp_Object Qbuffer_file_coding_system; Lisp_Object Qpost_read_conversion, Qpre_write_conversion; Lisp_Object Qno_conversion, Qundecided; Lisp_Object Qcoding_system_history; extern Lisp_Object Qinsert_file_contents, Qwrite_region; Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument; Lisp_Object Qstart_process, Qopen_network_stream; Lisp_Object Qtarget_idx; /* Mnemonic character of each format of end-of-line. */ int eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac; /* Mnemonic character to indicate format of end-of-line is not yet decided. */ int eol_mnemonic_undecided; /* Format of end-of-line decided by system. This is CODING_EOL_LF on Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */ int system_eol_type; #ifdef emacs Lisp_Object Qcoding_system_spec, Qcoding_system_p, Qcoding_system_error; /* Coding system emacs-mule is for converting only end-of-line format. */ Lisp_Object Qemacs_mule; /* Coding-systems are handed between Emacs Lisp programs and C internal routines by the following three variables. */ /* Coding-system for reading files and receiving data from process. */ Lisp_Object Vcoding_system_for_read; /* Coding-system for writing files and sending data to process. */ Lisp_Object Vcoding_system_for_write; /* Coding-system actually used in the latest I/O. */ Lisp_Object Vlast_coding_system_used; /* A vector of length 256 which contains information about special Latin codes (espepcially for dealing with Microsoft code). */ Lisp_Object Vlatin_extra_code_table; /* Flag to inhibit code conversion of end-of-line format. */ int inhibit_eol_conversion; /* Coding system to be used to encode text for terminal display. */ struct coding_system terminal_coding; /* Coding system to be used to encode text for terminal display when terminal coding system is nil. */ struct coding_system safe_terminal_coding; /* Coding system of what is sent from terminal keyboard. */ struct coding_system keyboard_coding; Lisp_Object Vfile_coding_system_alist; Lisp_Object Vprocess_coding_system_alist; Lisp_Object Vnetwork_coding_system_alist; #endif /* emacs */ Lisp_Object Qcoding_category_index; /* List of symbols `coding-category-xxx' ordered by priority. */ Lisp_Object Vcoding_category_list; /* Table of coding-systems currently assigned to each coding-category. */ Lisp_Object coding_category_table[CODING_CATEGORY_IDX_MAX]; /* Table of names of symbol for each coding-category. */ char *coding_category_name[CODING_CATEGORY_IDX_MAX] = { "coding-category-emacs-mule", "coding-category-sjis", "coding-category-iso-7", "coding-category-iso-8-1", "coding-category-iso-8-2", "coding-category-iso-7-else", "coding-category-iso-8-else", "coding-category-big5", "coding-category-raw-text", "coding-category-binary" }; /* Flag to tell if we look up unification table on character code conversion. */ Lisp_Object Venable_character_unification; /* Standard unification table to look up on decoding (reading). */ Lisp_Object Vstandard_character_unification_table_for_decode; /* Standard unification table to look up on encoding (writing). */ Lisp_Object Vstandard_character_unification_table_for_encode; Lisp_Object Qcharacter_unification_table; Lisp_Object Qcharacter_unification_table_for_decode; Lisp_Object Qcharacter_unification_table_for_encode; /* Alist of charsets vs revision number. */ Lisp_Object Vcharset_revision_alist; /* Default coding systems used for process I/O. */ Lisp_Object Vdefault_process_coding_system; /*** 2. Emacs internal format (emacs-mule) handlers ***/ /* Emacs' internal format for encoding multiple character sets is a kind of multi-byte encoding, i.e. characters are encoded by variable-length sequences of one-byte codes. ASCII characters and control characters (e.g. `tab', `newline') are represented by one-byte sequences which are their ASCII codes, in the range 0x00 through 0x7F. The other characters are represented by a sequence of `base leading-code', optional `extended leading-code', and one or two `position-code's. The length of the sequence is determined by the base leading-code. Leading-code takes the range 0x80 through 0x9F, whereas extended leading-code and position-code take the range 0xA0 through 0xFF. See `charset.h' for more details about leading-code and position-code. There's one exception to this rule. Special leading-code `leading-code-composition' denotes that the following several characters should be composed into one character. Leading-codes of components (except for ASCII) are added 0x20. An ASCII character component is represented by a 2-byte sequence of `0xA0' and `ASCII-code + 0x80'. See also the comments in `charset.h' for the details of composite character. Hence, we can summarize the code range as follows: --- CODE RANGE of Emacs' internal format --- (character set) (range) ASCII 0x00 .. 0x7F ELSE (1st byte) 0x80 .. 0x9F (rest bytes) 0xA0 .. 0xFF --------------------------------------------- */ enum emacs_code_class_type emacs_code_class[256]; /* Go to the next statement only if *SRC is accessible and the code is greater than 0xA0. */ #define CHECK_CODE_RANGE_A0_FF \ do { \ if (src >= src_end) \ goto label_end_of_switch; \ else if (*src++ < 0xA0) \ return 0; \ } while (0) /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions". Check if a text is encoded in Emacs' internal format. If it is, return CODING_CATEGORY_MASK_EMASC_MULE, else return 0. */ int detect_coding_emacs_mule (src, src_end) unsigned char *src, *src_end; { unsigned char c; int composing = 0; while (src < src_end) { c = *src++; if (composing) { if (c < 0xA0) composing = 0; else c -= 0x20; } switch (emacs_code_class[c]) { case EMACS_ascii_code: case EMACS_linefeed_code: break; case EMACS_control_code: if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) return 0; break; case EMACS_invalid_code: return 0; case EMACS_leading_code_composition: /* c == 0x80 */ if (composing) CHECK_CODE_RANGE_A0_FF; else composing = 1; break; case EMACS_leading_code_4: CHECK_CODE_RANGE_A0_FF; /* fall down to check it two more times ... */ case EMACS_leading_code_3: CHECK_CODE_RANGE_A0_FF; /* fall down to check it one more time ... */ case EMACS_leading_code_2: CHECK_CODE_RANGE_A0_FF; break; default: label_end_of_switch: break; } } return CODING_CATEGORY_MASK_EMACS_MULE; } /*** 3. ISO2022 handlers ***/ /* The following note describes the coding system ISO2022 briefly. Since the intention of this note is to help in understanding of the programs in this file, some parts are NOT ACCURATE or OVERLY SIMPLIFIED. For the thorough understanding, please refer to the original document of ISO2022. ISO2022 provides many mechanisms to encode several character sets in 7-bit and 8-bit environment. If one chooses 7-bite environment, all text is encoded by codes of less than 128. This may make the encoded text a little bit longer, but the text gets more stability to pass through several gateways (some of them strip off the MSB). There are two kinds of character set: control character set and graphic character set. The former contains control characters such as `newline' and `escape' to provide control functions (control functions are provided also by escape sequences). The latter contains graphic characters such as ' A' and '-'. Emacs recognizes two control character sets and many graphic character sets. Graphic character sets are classified into one of the following four classes, DIMENSION1_CHARS94, DIMENSION1_CHARS96, DIMENSION2_CHARS94, DIMENSION2_CHARS96 according to the number of bytes (DIMENSION) and the number of characters in one dimension (CHARS) of the set. In addition, each character set is assigned an identification tag (called "final character" and denoted as here after) which is unique in each class. of each character set is decided by ECMA(*) when it is registered in ISO. Code range of is 0x30..0x7F (0x30..0x3F are for private use only). Note (*): ECMA = European Computer Manufacturers Association Here are examples of graphic character set [NAME()]: o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ... o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ... o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ... o DIMENSION2_CHARS96 -- none for the moment A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR. C0 [0x00..0x1F] -- control character plane 0 GL [0x20..0x7F] -- graphic character plane 0 C1 [0x80..0x9F] -- control character plane 1 GR [0xA0..0xFF] -- graphic character plane 1 A control character set is directly designated and invoked to C0 or C1 by an escape sequence. The most common case is that ISO646's control character set is designated/invoked to C0 and ISO6429's control character set is designated/invoked to C1, and usually these designations/invocations are omitted in a coded text. With 7-bit environment, only C0 can be used, and a control character for C1 is encoded by an appropriate escape sequence to fit in the environment. All control characters for C1 are defined the corresponding escape sequences. A graphic character set is at first designated to one of four graphic registers (G0 through G3), then these graphic registers are invoked to GL or GR. These designations and invocations can be done independently. The most common case is that G0 is invoked to GL, G1 is invoked to GR, and ASCII is designated to G0, and usually these invocations and designations are omitted in a coded text. With 7-bit environment, only GL can be used. When a graphic character set of CHARS94 is invoked to GL, code 0x20 and 0x7F of GL area work as control characters SPACE and DEL respectively, and code 0xA0 and 0xFF of GR area should not be used. There are two ways of invocation: locking-shift and single-shift. With locking-shift, the invocation lasts until the next different invocation, whereas with single-shift, the invocation works only for the following character and doesn't affect locking-shift. Invocations are done by the following control characters or escape sequences. ---------------------------------------------------------------------- function control char escape sequence description ---------------------------------------------------------------------- SI (shift-in) 0x0F none invoke G0 to GL SO (shift-out) 0x0E none invoke G1 to GL LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 into GL SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 into GL ---------------------------------------------------------------------- The first four are for locking-shift. Control characters for these functions are defined by macros ISO_CODE_XXX in `coding.h'. Designations are done by the following escape sequences. ---------------------------------------------------------------------- escape sequence description ---------------------------------------------------------------------- ESC '(' designate DIMENSION1_CHARS94 to G0 ESC ')' designate DIMENSION1_CHARS94 to G1 ESC '*' designate DIMENSION1_CHARS94 to G2 ESC '+' designate DIMENSION1_CHARS94 to G3 ESC ',' designate DIMENSION1_CHARS96 to G0 (*) ESC '-' designate DIMENSION1_CHARS96 to G1 ESC '.' designate DIMENSION1_CHARS96 to G2 ESC '/' designate DIMENSION1_CHARS96 to G3 ESC '$' '(' designate DIMENSION2_CHARS94 to G0 (**) ESC '$' ')' designate DIMENSION2_CHARS94 to G1 ESC '$' '*' designate DIMENSION2_CHARS94 to G2 ESC '$' '+' designate DIMENSION2_CHARS94 to G3 ESC '$' ',' designate DIMENSION2_CHARS96 to G0 (*) ESC '$' '-' designate DIMENSION2_CHARS96 to G1 ESC '$' '.' designate DIMENSION2_CHARS96 to G2 ESC '$' '/' designate DIMENSION2_CHARS96 to G3 ---------------------------------------------------------------------- In this list, "DIMENSION1_CHARS94" means a graphic character set of dimension 1, chars 94, and final character , and etc. Note (*): Although these designations are not allowed in ISO2022, Emacs accepts them on decoding, and produces them on encoding CHARS96 character set in a coding system which is characterized as 7-bit environment, non-locking-shift, and non-single-shift. Note (**): If is '@', 'A', or 'B', the intermediate character '(' can be omitted. We call this as "short-form" here after. Now you may notice that there are a lot of ways for encoding the same multilingual text in ISO2022. Actually, there exists many coding systems such as Compound Text (used in X's inter client communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR (used in Korean Internet), EUC (Extended UNIX Code, used in Asian localized platforms), and all of these are variants of ISO2022. In addition to the above, Emacs handles two more kinds of escape sequences: ISO6429's direction specification and Emacs' private sequence for specifying character composition. ISO6429's direction specification takes the following format: o CSI ']' -- end of the current direction o CSI '0' ']' -- end of the current direction o CSI '1' ']' -- start of left-to-right text o CSI '2' ']' -- start of right-to-left text The control character CSI (0x9B: control sequence introducer) is abbreviated to the escape sequence ESC '[' in 7-bit environment. Character composition specification takes the following format: o ESC '0' -- start character composition o ESC '1' -- end character composition Since these are not standard escape sequences of any ISO, the use of them for these meaning is restricted to Emacs only. */ enum iso_code_class_type iso_code_class[256]; /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions". Check if a text is encoded in ISO2022. If it is, returns an integer in which appropriate flag bits any of: CODING_CATEGORY_MASK_ISO_7 CODING_CATEGORY_MASK_ISO_8_1 CODING_CATEGORY_MASK_ISO_8_2 CODING_CATEGORY_MASK_ISO_7_ELSE CODING_CATEGORY_MASK_ISO_8_ELSE are set. If a code which should never appear in ISO2022 is found, returns 0. */ int detect_coding_iso2022 (src, src_end) unsigned char *src, *src_end; { int mask = (CODING_CATEGORY_MASK_ISO_7 | CODING_CATEGORY_MASK_ISO_8_1 | CODING_CATEGORY_MASK_ISO_8_2 | CODING_CATEGORY_MASK_ISO_7_ELSE | CODING_CATEGORY_MASK_ISO_8_ELSE ); int g1 = 0; /* 1 iff designating to G1. */ int c, i; struct coding_system coding_iso_8_1, coding_iso_8_2; /* Coding systems of these categories may accept latin extra codes. */ setup_coding_system (XSYMBOL (coding_category_table[CODING_CATEGORY_IDX_ISO_8_1])->value, &coding_iso_8_1); setup_coding_system (XSYMBOL (coding_category_table[CODING_CATEGORY_IDX_ISO_8_2])->value, &coding_iso_8_2); while (mask && src < src_end) { c = *src++; switch (c) { case ISO_CODE_ESC: if (src >= src_end) break; c = *src++; if ((c >= '(' && c <= '/')) { /* Designation sequence for a charset of dimension 1. */ if (src >= src_end) break; c = *src++; if (c < ' ' || c >= 0x80) /* Invalid designation sequence. */ return 0; } else if (c == '$') { /* Designation sequence for a charset of dimension 2. */ if (src >= src_end) break; c = *src++; if (c >= '@' && c <= 'B') /* Designation for JISX0208.1978, GB2312, or JISX0208. */ ; else if (c >= '(' && c <= '/') { if (src >= src_end) break; c = *src++; if (c < ' ' || c >= 0x80) /* Invalid designation sequence. */ return 0; } else /* Invalid designation sequence. */ return 0; } else if (c == 'N' || c == 'O' || c == 'n' || c == 'o') /* Locking shift. */ mask &= (CODING_CATEGORY_MASK_ISO_7_ELSE | CODING_CATEGORY_MASK_ISO_8_ELSE); else if (c == '0' || c == '1' || c == '2') /* Start/end composition. */ ; else /* Invalid escape sequence. */ return 0; break; case ISO_CODE_SO: mask &= (CODING_CATEGORY_MASK_ISO_7_ELSE | CODING_CATEGORY_MASK_ISO_8_ELSE); break; case ISO_CODE_CSI: case ISO_CODE_SS2: case ISO_CODE_SS3: { int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE; if (VECTORP (Vlatin_extra_code_table) && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])) { if (coding_iso_8_1.flags & CODING_FLAG_ISO_LATIN_EXTRA) newmask |= CODING_CATEGORY_MASK_ISO_8_1; if (coding_iso_8_2.flags & CODING_FLAG_ISO_LATIN_EXTRA) newmask |= CODING_CATEGORY_MASK_ISO_8_2; } mask &= newmask; } break; default: if (c < 0x80) break; else if (c < 0xA0) { if (VECTORP (Vlatin_extra_code_table) && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])) { int newmask = 0; if (coding_iso_8_1.flags & CODING_FLAG_ISO_LATIN_EXTRA) newmask |= CODING_CATEGORY_MASK_ISO_8_1; if (coding_iso_8_2.flags & CODING_FLAG_ISO_LATIN_EXTRA) newmask |= CODING_CATEGORY_MASK_ISO_8_2; mask &= newmask; } else return 0; } else { unsigned char *src_begin = src; mask &= ~(CODING_CATEGORY_MASK_ISO_7 | CODING_CATEGORY_MASK_ISO_7_ELSE); while (src < src_end && *src >= 0xA0) src++; if ((src - src_begin - 1) & 1 && src < src_end) mask &= ~CODING_CATEGORY_MASK_ISO_8_2; } break; } } return mask; } /* Decode a character of which charset is CHARSET and the 1st position code is C1. If dimension of CHARSET is 2, the 2nd position code is fetched from SRC and set to C2. If CHARSET is negative, it means that we are decoding ill formed text, and what we can do is just to read C1 as is. */ #define DECODE_ISO_CHARACTER(charset, c1) \ do { \ int c_alt, charset_alt = (charset); \ if (COMPOSING_HEAD_P (coding->composing)) \ { \ *dst++ = LEADING_CODE_COMPOSITION; \ if (COMPOSING_WITH_RULE_P (coding->composing)) \ /* To tell composition rules are embeded. */ \ *dst++ = 0xFF; \ coding->composing += 2; \ } \ if ((charset) >= 0) \ { \ if (CHARSET_DIMENSION (charset) == 2) \ ONE_MORE_BYTE (c2); \ if (!NILP (unification_table) \ && ((c_alt = unify_char (unification_table, \ -1, (charset), c1, c2)) >= 0)) \ SPLIT_CHAR (c_alt, charset_alt, c1, c2); \ } \ if (charset_alt == CHARSET_ASCII || charset_alt < 0) \ DECODE_CHARACTER_ASCII (c1); \ else if (CHARSET_DIMENSION (charset_alt) == 1) \ DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \ else \ DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \ if (COMPOSING_WITH_RULE_P (coding->composing)) \ /* To tell a composition rule follows. */ \ coding->composing = COMPOSING_WITH_RULE_RULE; \ } while (0) /* Set designation state into CODING. */ #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \ do { \ int charset = ISO_CHARSET_TABLE (make_number (dimension), \ make_number (chars), \ make_number (final_char)); \ if (charset >= 0) \ { \ if (coding->direction == 1 \ && CHARSET_REVERSE_CHARSET (charset) >= 0) \ charset = CHARSET_REVERSE_CHARSET (charset); \ CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \ } \ } while (0) /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */ int decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { unsigned char *src = source; unsigned char *src_end = source + src_bytes; unsigned char *dst = destination; unsigned char *dst_end = destination + dst_bytes; /* Since the maximum bytes produced by each loop is 7, we subtract 6 from DST_END to assure that overflow checking is necessary only at the head of loop. */ unsigned char *adjusted_dst_end = dst_end - 6; int charset; /* Charsets invoked to graphic plane 0 and 1 respectively. */ int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0); int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1); Lisp_Object unification_table = coding->character_unification_table_for_decode; if (!NILP (Venable_character_unification) && NILP (unification_table)) unification_table = Vstandard_character_unification_table_for_decode; while (src < src_end && dst < adjusted_dst_end) { /* SRC_BASE remembers the start position in source in each loop. The loop will be exited when there's not enough source text to analyze long escape sequence or 2-byte code (within macros ONE_MORE_BYTE or TWO_MORE_BYTES). In that case, SRC is reset to SRC_BASE before exiting. */ unsigned char *src_base = src; int c1 = *src++, c2; switch (iso_code_class [c1]) { case ISO_0x20_or_0x7F: if (!coding->composing && (charset0 < 0 || CHARSET_CHARS (charset0) == 94)) { /* This is SPACE or DEL. */ *dst++ = c1; break; } /* This is a graphic character, we fall down ... */ case ISO_graphic_plane_0: if (coding->composing == COMPOSING_WITH_RULE_RULE) { /* This is a composition rule. */ *dst++ = c1 | 0x80; coding->composing = COMPOSING_WITH_RULE_TAIL; } else DECODE_ISO_CHARACTER (charset0, c1); break; case ISO_0xA0_or_0xFF: if (charset1 < 0 || CHARSET_CHARS (charset1) == 94) { /* Invalid code. */ *dst++ = c1; break; } /* This is a graphic character, we fall down ... */ case ISO_graphic_plane_1: DECODE_ISO_CHARACTER (charset1, c1); break; case ISO_control_code: /* All ISO2022 control characters in this class have the same representation in Emacs internal format. */ *dst++ = c1; break; case ISO_carriage_return: if (coding->eol_type == CODING_EOL_CR) { *dst++ = '\n'; } else if (coding->eol_type == CODING_EOL_CRLF) { ONE_MORE_BYTE (c1); if (c1 == ISO_CODE_LF) *dst++ = '\n'; else { src--; *dst++ = c1; } } else { *dst++ = c1; } break; case ISO_shift_out: if (CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0) goto label_invalid_escape_sequence; CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0); break; case ISO_shift_in: CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0); break; case ISO_single_shift_2_7: case ISO_single_shift_2: /* SS2 is handled as an escape sequence of ESC 'N' */ c1 = 'N'; goto label_escape_sequence; case ISO_single_shift_3: /* SS2 is handled as an escape sequence of ESC 'O' */ c1 = 'O'; goto label_escape_sequence; case ISO_control_sequence_introducer: /* CSI is handled as an escape sequence of ESC '[' ... */ c1 = '['; goto label_escape_sequence; case ISO_escape: ONE_MORE_BYTE (c1); label_escape_sequence: /* Escape sequences handled by Emacs are invocation, designation, direction specification, and character composition specification. */ switch (c1) { case '&': /* revision of following character set */ ONE_MORE_BYTE (c1); if (!(c1 >= '@' && c1 <= '~')) goto label_invalid_escape_sequence; ONE_MORE_BYTE (c1); if (c1 != ISO_CODE_ESC) goto label_invalid_escape_sequence; ONE_MORE_BYTE (c1); goto label_escape_sequence; case '$': /* designation of 2-byte character set */ ONE_MORE_BYTE (c1); if (c1 >= '@' && c1 <= 'B') { /* designation of JISX0208.1978, GB2312.1980, or JISX0208.1980 */ DECODE_DESIGNATION (0, 2, 94, c1); } else if (c1 >= 0x28 && c1 <= 0x2B) { /* designation of DIMENSION2_CHARS94 character set */ ONE_MORE_BYTE (c2); DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2); } else if (c1 >= 0x2C && c1 <= 0x2F) { /* designation of DIMENSION2_CHARS96 character set */ ONE_MORE_BYTE (c2); DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2); } else goto label_invalid_escape_sequence; break; case 'n': /* invocation of locking-shift-2 */ if (CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0) goto label_invalid_escape_sequence; CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0); break; case 'o': /* invocation of locking-shift-3 */ if (CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0) goto label_invalid_escape_sequence; CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0); break; case 'N': /* invocation of single-shift-2 */ if (CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0) goto label_invalid_escape_sequence; ONE_MORE_BYTE (c1); charset = CODING_SPEC_ISO_DESIGNATION (coding, 2); DECODE_ISO_CHARACTER (charset, c1); break; case 'O': /* invocation of single-shift-3 */ if (CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0) goto label_invalid_escape_sequence; ONE_MORE_BYTE (c1); charset = CODING_SPEC_ISO_DESIGNATION (coding, 3); DECODE_ISO_CHARACTER (charset, c1); break; case '0': /* start composing without embeded rules */ coding->composing = COMPOSING_NO_RULE_HEAD; break; case '1': /* end composing */ coding->composing = COMPOSING_NO; break; case '2': /* start composing with embeded rules */ coding->composing = COMPOSING_WITH_RULE_HEAD; break; case '[': /* specification of direction */ /* For the moment, nested direction is not supported. So, the value of `coding->direction' is 0 or 1: 0 means left-to-right, 1 means right-to-left. */ ONE_MORE_BYTE (c1); switch (c1) { case ']': /* end of the current direction */ coding->direction = 0; case '0': /* end of the current direction */ case '1': /* start of left-to-right direction */ ONE_MORE_BYTE (c1); if (c1 == ']') coding->direction = 0; else goto label_invalid_escape_sequence; break; case '2': /* start of right-to-left direction */ ONE_MORE_BYTE (c1); if (c1 == ']') coding->direction= 1; else goto label_invalid_escape_sequence; break; default: goto label_invalid_escape_sequence; } break; default: if (c1 >= 0x28 && c1 <= 0x2B) { /* designation of DIMENSION1_CHARS94 character set */ ONE_MORE_BYTE (c2); DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2); } else if (c1 >= 0x2C && c1 <= 0x2F) { /* designation of DIMENSION1_CHARS96 character set */ ONE_MORE_BYTE (c2); DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2); } else { goto label_invalid_escape_sequence; } } /* We must update these variables now. */ charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0); charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1); break; label_invalid_escape_sequence: { int length = src - src_base; bcopy (src_base, dst, length); dst += length; } } continue; label_end_of_loop: coding->carryover_size = src - src_base; bcopy (src_base, coding->carryover, coding->carryover_size); src = src_base; break; } /* If this is the last block of the text to be decoded, we had better just flush out all remaining codes in the text although they are not valid characters. */ if (coding->last_block) { bcopy (src, dst, src_end - src); dst += (src_end - src); src = src_end; } *consumed = src - source; return dst - destination; } /* ISO2022 encoding stuff. */ /* It is not enough to say just "ISO2022" on encoding, we have to specify more details. In Emacs, each coding-system of ISO2022 variant has the following specifications: 1. Initial designation to G0 thru G3. 2. Allows short-form designation? 3. ASCII should be designated to G0 before control characters? 4. ASCII should be designated to G0 at end of line? 5. 7-bit environment or 8-bit environment? 6. Use locking-shift? 7. Use Single-shift? And the following two are only for Japanese: 8. Use ASCII in place of JIS0201-1976-Roman? 9. Use JISX0208-1983 in place of JISX0208-1978? These specifications are encoded in `coding->flags' as flag bits defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more details. */ /* Produce codes (escape sequence) for designating CHARSET to graphic register REG. If of CHARSET is '@', 'A', or 'B' and the coding system CODING allows, produce designation sequence of short-form. */ #define ENCODE_DESIGNATION(charset, reg, coding) \ do { \ unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \ char *intermediate_char_94 = "()*+"; \ char *intermediate_char_96 = ",-./"; \ Lisp_Object temp \ = Fassq (make_number (charset), Vcharset_revision_alist); \ if (! NILP (temp)) \ { \ *dst++ = ISO_CODE_ESC; \ *dst++ = '&'; \ *dst++ = XINT (XCONS (temp)->cdr) + '@'; \ } \ *dst++ = ISO_CODE_ESC; \ if (CHARSET_DIMENSION (charset) == 1) \ { \ if (CHARSET_CHARS (charset) == 94) \ *dst++ = (unsigned char) (intermediate_char_94[reg]); \ else \ *dst++ = (unsigned char) (intermediate_char_96[reg]); \ } \ else \ { \ *dst++ = '$'; \ if (CHARSET_CHARS (charset) == 94) \ { \ if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \ || reg != 0 \ || final_char < '@' || final_char > 'B') \ *dst++ = (unsigned char) (intermediate_char_94[reg]); \ } \ else \ *dst++ = (unsigned char) (intermediate_char_96[reg]); \ } \ *dst++ = final_char; \ CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \ } while (0) /* The following two macros produce codes (control character or escape sequence) for ISO2022 single-shift functions (single-shift-2 and single-shift-3). */ #define ENCODE_SINGLE_SHIFT_2 \ do { \ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \ *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \ else \ *dst++ = ISO_CODE_SS2; \ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \ } while (0) #define ENCODE_SINGLE_SHIFT_3 \ do { \ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \ *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \ else \ *dst++ = ISO_CODE_SS3; \ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \ } while (0) /* The following four macros produce codes (control character or escape sequence) for ISO2022 locking-shift functions (shift-in, shift-out, locking-shift-2, and locking-shift-3). */ #define ENCODE_SHIFT_IN \ do { \ *dst++ = ISO_CODE_SI; \ CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \ } while (0) #define ENCODE_SHIFT_OUT \ do { \ *dst++ = ISO_CODE_SO; \ CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \ } while (0) #define ENCODE_LOCKING_SHIFT_2 \ do { \ *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \ CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \ } while (0) #define ENCODE_LOCKING_SHIFT_3 \ do { \ *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \ CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \ } while (0) /* Produce codes for a DIMENSION1 character whose character set is CHARSET and whose position-code is C1. Designation and invocation sequences are also produced in advance if necessary. */ #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \ do { \ if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \ { \ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \ *dst++ = c1 & 0x7F; \ else \ *dst++ = c1 | 0x80; \ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \ break; \ } \ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \ { \ *dst++ = c1 & 0x7F; \ break; \ } \ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \ { \ *dst++ = c1 | 0x80; \ break; \ } \ else if (coding->flags & CODING_FLAG_ISO_SAFE \ && !CODING_SPEC_ISO_EXPECTED_CHARSETS (coding)[charset]) \ { \ /* We should not encode this character, instead produce one or \ two `?'s. */ \ *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \ if (CHARSET_WIDTH (charset) == 2) \ *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \ break; \ } \ else \ /* Since CHARSET is not yet invoked to any graphic planes, we \ must invoke it, or, at first, designate it to some graphic \ register. Then repeat the loop to actually produce the \ character. */ \ dst = encode_invocation_designation (charset, coding, dst); \ } while (1) /* Produce codes for a DIMENSION2 character whose character set is CHARSET and whose position-codes are C1 and C2. Designation and invocation codes are also produced in advance if necessary. */ #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \ do { \ if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \ { \ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \ *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \ else \ *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \ break; \ } \ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \ { \ *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \ break; \ } \ else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \ { \ *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \ break; \ } \ else if (coding->flags & CODING_FLAG_ISO_SAFE \ && !CODING_SPEC_ISO_EXPECTED_CHARSETS (coding)[charset]) \ { \ /* We should not encode this character, instead produce one or \ two `?'s. */ \ *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \ if (CHARSET_WIDTH (charset) == 2) \ *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \ break; \ } \ else \ /* Since CHARSET is not yet invoked to any graphic planes, we \ must invoke it, or, at first, designate it to some graphic \ register. Then repeat the loop to actually produce the \ character. */ \ dst = encode_invocation_designation (charset, coding, dst); \ } while (1) #define ENCODE_ISO_CHARACTER(charset, c1, c2) \ do { \ int c_alt, charset_alt; \ if (!NILP (unification_table) \ && ((c_alt = unify_char (unification_table, -1, charset, c1, c2)) \ >= 0)) \ SPLIT_CHAR (c_alt, charset_alt, c1, c2); \ else \ charset_alt = charset; \ if (CHARSET_DIMENSION (charset_alt) == 1) \ ENCODE_ISO_CHARACTER_DIMENSION1 (charset_alt, c1); \ else \ ENCODE_ISO_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \ } while (0) /* Produce designation and invocation codes at a place pointed by DST to use CHARSET. The element `spec.iso2022' of *CODING is updated. Return new DST. */ unsigned char * encode_invocation_designation (charset, coding, dst) int charset; struct coding_system *coding; unsigned char *dst; { int reg; /* graphic register number */ /* At first, check designations. */ for (reg = 0; reg < 4; reg++) if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg)) break; if (reg >= 4) { /* CHARSET is not yet designated to any graphic registers. */ /* At first check the requested designation. */ reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset); if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION) /* Since CHARSET requests no special designation, designate it to graphic register 0. */ reg = 0; ENCODE_DESIGNATION (charset, reg, coding); } if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg) { /* Since the graphic register REG is not invoked to any graphic planes, invoke it to graphic plane 0. */ switch (reg) { case 0: /* graphic register 0 */ ENCODE_SHIFT_IN; break; case 1: /* graphic register 1 */ ENCODE_SHIFT_OUT; break; case 2: /* graphic register 2 */ if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT) ENCODE_SINGLE_SHIFT_2; else ENCODE_LOCKING_SHIFT_2; break; case 3: /* graphic register 3 */ if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT) ENCODE_SINGLE_SHIFT_3; else ENCODE_LOCKING_SHIFT_3; break; } } return dst; } /* The following two macros produce codes for indicating composition. */ #define ENCODE_COMPOSITION_NO_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '0' #define ENCODE_COMPOSITION_WITH_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '2' #define ENCODE_COMPOSITION_END *dst++ = ISO_CODE_ESC, *dst++ = '1' /* The following three macros produce codes for indicating direction of text. */ #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \ do { \ if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \ *dst++ = ISO_CODE_ESC, *dst++ = '['; \ else \ *dst++ = ISO_CODE_CSI; \ } while (0) #define ENCODE_DIRECTION_R2L \ ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '2', *dst++ = ']' #define ENCODE_DIRECTION_L2R \ ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '0', *dst++ = ']' /* Produce codes for designation and invocation to reset the graphic planes and registers to initial state. */ #define ENCODE_RESET_PLANE_AND_REGISTER \ do { \ int reg; \ if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \ ENCODE_SHIFT_IN; \ for (reg = 0; reg < 4; reg++) \ if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \ && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \ != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \ ENCODE_DESIGNATION \ (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \ } while (0) /* Produce designation sequences of charsets in the line started from *SRC to a place pointed by DSTP. If the current block ends before any end-of-line, we may fail to find all the necessary *designations. */ encode_designation_at_bol (coding, table, src, src_end, dstp) struct coding_system *coding; Lisp_Object table; unsigned char *src, *src_end, **dstp; { int charset, c, found = 0, reg; /* Table of charsets to be designated to each graphic register. */ int r[4]; unsigned char *dst = *dstp; for (reg = 0; reg < 4; reg++) r[reg] = -1; while (src < src_end && *src != '\n' && found < 4) { int bytes = BYTES_BY_CHAR_HEAD (*src); if (NILP (table)) charset = CHARSET_AT (src); else { int c_alt; unsigned char c1, c2; SPLIT_STRING(src, bytes, charset, c1, c2); if ((c_alt = unify_char (table, -1, charset, c1, c2)) >= 0) charset = CHAR_CHARSET (c_alt); } reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset); if (r[reg] == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION) { found++; r[reg] = charset; } src += bytes; } if (found) { for (reg = 0; reg < 4; reg++) if (r[reg] >= 0 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg]) ENCODE_DESIGNATION (r[reg], reg, coding); *dstp = dst; } } /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */ int encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { unsigned char *src = source; unsigned char *src_end = source + src_bytes; unsigned char *dst = destination; unsigned char *dst_end = destination + dst_bytes; /* Since the maximum bytes produced by each loop is 20, we subtract 19 from DST_END to assure overflow checking is necessary only at the head of loop. */ unsigned char *adjusted_dst_end = dst_end - 19; Lisp_Object unification_table = coding->character_unification_table_for_encode; if (!NILP (Venable_character_unification) && NILP (unification_table)) unification_table = Vstandard_character_unification_table_for_encode; while (src < src_end && dst < adjusted_dst_end) { /* SRC_BASE remembers the start position in source in each loop. The loop will be exited when there's not enough source text to analyze multi-byte codes (within macros ONE_MORE_BYTE, TWO_MORE_BYTES, and THREE_MORE_BYTES). In that case, SRC is reset to SRC_BASE before exiting. */ unsigned char *src_base = src; int charset, c1, c2, c3, c4; if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL && CODING_SPEC_ISO_BOL (coding)) { /* We have to produce designation sequences if any now. */ encode_designation_at_bol (coding, unification_table, src, src_end, &dst); CODING_SPEC_ISO_BOL (coding) = 0; } c1 = *src++; /* If we are seeing a component of a composite character, we are seeing a leading-code specially encoded for composition, or a composition rule if composing with rule. We must set C1 to a normal leading-code or an ASCII code. If we are not at a composed character, we must reset the composition state. */ if (COMPOSING_P (coding->composing)) { if (c1 < 0xA0) { /* We are not in a composite character any longer. */ coding->composing = COMPOSING_NO; ENCODE_COMPOSITION_END; } else { if (coding->composing == COMPOSING_WITH_RULE_RULE) { *dst++ = c1 & 0x7F; coding->composing = COMPOSING_WITH_RULE_HEAD; continue; } else if (coding->composing == COMPOSING_WITH_RULE_HEAD) coding->composing = COMPOSING_WITH_RULE_RULE; if (c1 == 0xA0) { /* This is an ASCII component. */ ONE_MORE_BYTE (c1); c1 &= 0x7F; } else /* This is a leading-code of non ASCII component. */ c1 -= 0x20; } } /* Now encode one character. C1 is a control character, an ASCII character, or a leading-code of multi-byte character. */ switch (emacs_code_class[c1]) { case EMACS_ascii_code: ENCODE_ISO_CHARACTER (CHARSET_ASCII, c1, /* dummy */ c2); break; case EMACS_control_code: if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL) ENCODE_RESET_PLANE_AND_REGISTER; *dst++ = c1; break; case EMACS_carriage_return_code: if (!coding->selective) { if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL) ENCODE_RESET_PLANE_AND_REGISTER; *dst++ = c1; break; } /* fall down to treat '\r' as '\n' ... */ case EMACS_linefeed_code: if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL) ENCODE_RESET_PLANE_AND_REGISTER; if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL) bcopy (coding->spec.iso2022.initial_designation, coding->spec.iso2022.current_designation, sizeof coding->spec.iso2022.initial_designation); if (coding->eol_type == CODING_EOL_LF || coding->eol_type == CODING_EOL_UNDECIDED) *dst++ = ISO_CODE_LF; else if (coding->eol_type == CODING_EOL_CRLF) *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF; else *dst++ = ISO_CODE_CR; CODING_SPEC_ISO_BOL (coding) = 1; break; case EMACS_leading_code_2: ONE_MORE_BYTE (c2); if (c2 < 0xA0) { /* invalid sequence */ *dst++ = c1; *dst++ = c2; } else ENCODE_ISO_CHARACTER (c1, c2, /* dummy */ c3); break; case EMACS_leading_code_3: TWO_MORE_BYTES (c2, c3); if (c2 < 0xA0 || c3 < 0xA0) { /* invalid sequence */ *dst++ = c1; *dst++ = c2; *dst++ = c3; } else if (c1 < LEADING_CODE_PRIVATE_11) ENCODE_ISO_CHARACTER (c1, c2, c3); else ENCODE_ISO_CHARACTER (c2, c3, /* dummy */ c4); break; case EMACS_leading_code_4: THREE_MORE_BYTES (c2, c3, c4); if (c2 < 0xA0 || c3 < 0xA0 || c4 < 0xA0) { /* invalid sequence */ *dst++ = c1; *dst++ = c2; *dst++ = c3; *dst++ = c4; } else ENCODE_ISO_CHARACTER (c2, c3, c4); break; case EMACS_leading_code_composition: ONE_MORE_BYTE (c2); if (c2 < 0xA0) { /* invalid sequence */ *dst++ = c1; *dst++ = c2; } else if (c2 == 0xFF) { coding->composing = COMPOSING_WITH_RULE_HEAD; ENCODE_COMPOSITION_WITH_RULE_START; } else { /* Rewind one byte because it is a character code of composition elements. */ src--; coding->composing = COMPOSING_NO_RULE_HEAD; ENCODE_COMPOSITION_NO_RULE_START; } break; case EMACS_invalid_code: *dst++ = c1; break; } continue; label_end_of_loop: /* We reach here because the source date ends not at character boundary. */ coding->carryover_size = src_end - src_base; bcopy (src_base, coding->carryover, coding->carryover_size); src = src_end; break; } /* If this is the last block of the text to be encoded, we must reset graphic planes and registers to the initial state. */ if (src >= src_end && coding->last_block) { ENCODE_RESET_PLANE_AND_REGISTER; if (coding->carryover_size > 0 && coding->carryover_size < (dst_end - dst)) { bcopy (coding->carryover, dst, coding->carryover_size); dst += coding->carryover_size; coding->carryover_size = 0; } } *consumed = src - source; return dst - destination; } /*** 4. SJIS and BIG5 handlers ***/ /* Although SJIS and BIG5 are not ISO's coding system, they are used quite widely. So, for the moment, Emacs supports them in the bare C code. But, in the future, they may be supported only by CCL. */ /* SJIS is a coding system encoding three character sets: ASCII, right half of JISX0201-Kana, and JISX0208. An ASCII character is encoded as is. A character of charset katakana-jisx0201 is encoded by "position-code + 0x80". A character of charset japanese-jisx0208 is encoded in 2-byte but two position-codes are divided and shifted so that it fit in the range below. --- CODE RANGE of SJIS --- (character set) (range) ASCII 0x00 .. 0x7F KATAKANA-JISX0201 0xA0 .. 0xDF JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xFF (2nd byte) 0x40 .. 0xFF ------------------------------- */ /* BIG5 is a coding system encoding two character sets: ASCII and Big5. An ASCII character is encoded as is. Big5 is a two-byte character set and is encoded in two-byte. --- CODE RANGE of BIG5 --- (character set) (range) ASCII 0x00 .. 0x7F Big5 (1st byte) 0xA1 .. 0xFE (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE -------------------------- Since the number of characters in Big5 is larger than maximum characters in Emacs' charset (96x96), it can't be handled as one charset. So, in Emacs, Big5 is divided into two: `charset-big5-1' and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former contains frequently used characters and the latter contains less frequently used characters. */ /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2 are the 1st and 2nd position-codes of Big5 in BIG5 coding system. C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal format. CHARSET is `charset_big5_1' or `charset_big5_2'. */ /* Number of Big5 characters which have the same code in 1st byte. */ #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40) #define DECODE_BIG5(b1, b2, charset, c1, c2) \ do { \ unsigned int temp \ = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \ if (b1 < 0xC9) \ charset = charset_big5_1; \ else \ { \ charset = charset_big5_2; \ temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \ } \ c1 = temp / (0xFF - 0xA1) + 0x21; \ c2 = temp % (0xFF - 0xA1) + 0x21; \ } while (0) #define ENCODE_BIG5(charset, c1, c2, b1, b2) \ do { \ unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \ if (charset == charset_big5_2) \ temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \ b1 = temp / BIG5_SAME_ROW + 0xA1; \ b2 = temp % BIG5_SAME_ROW; \ b2 += b2 < 0x3F ? 0x40 : 0x62; \ } while (0) #define DECODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \ do { \ int c_alt, charset_alt = (charset); \ if (!NILP (unification_table) \ && ((c_alt = unify_char (unification_table, \ -1, (charset), c1, c2)) >= 0)) \ SPLIT_CHAR (c_alt, charset_alt, c1, c2); \ if (charset_alt == CHARSET_ASCII || charset_alt < 0) \ DECODE_CHARACTER_ASCII (c1); \ else if (CHARSET_DIMENSION (charset_alt) == 1) \ DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \ else \ DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \ } while (0) #define ENCODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \ do { \ int c_alt, charset_alt; \ if (!NILP (unification_table) \ && ((c_alt = unify_char (unification_table, -1, charset, c1, c2)) \ >= 0)) \ SPLIT_CHAR (c_alt, charset_alt, c1, c2); \ else \ charset_alt = charset; \ if (charset_alt == charset_ascii) \ *dst++ = c1; \ else if (CHARSET_DIMENSION (charset_alt) == 1) \ { \ if (sjis_p && charset_alt == charset_katakana_jisx0201) \ *dst++ = c1; \ else \ *dst++ = charset_alt, *dst++ = c1; \ } \ else \ { \ c1 &= 0x7F, c2 &= 0x7F; \ if (sjis_p && charset_alt == charset_jisx0208) \ { \ unsigned char s1, s2; \ \ ENCODE_SJIS (c1, c2, s1, s2); \ *dst++ = s1, *dst++ = s2; \ } \ else if (!sjis_p \ && (charset_alt == charset_big5_1 \ || charset_alt == charset_big5_2)) \ { \ unsigned char b1, b2; \ \ ENCODE_BIG5 (charset_alt, c1, c2, b1, b2); \ *dst++ = b1, *dst++ = b2; \ } \ else \ *dst++ = charset_alt, *dst++ = c1, *dst++ = c2; \ } \ } while (0); /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions". Check if a text is encoded in SJIS. If it is, return CODING_CATEGORY_MASK_SJIS, else return 0. */ int detect_coding_sjis (src, src_end) unsigned char *src, *src_end; { unsigned char c; while (src < src_end) { c = *src++; if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) return 0; if ((c >= 0x80 && c < 0xA0) || c >= 0xE0) { if (src < src_end && *src++ < 0x40) return 0; } } return CODING_CATEGORY_MASK_SJIS; } /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions". Check if a text is encoded in BIG5. If it is, return CODING_CATEGORY_MASK_BIG5, else return 0. */ int detect_coding_big5 (src, src_end) unsigned char *src, *src_end; { unsigned char c; while (src < src_end) { c = *src++; if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) return 0; if (c >= 0xA1) { if (src >= src_end) break; c = *src++; if (c < 0x40 || (c >= 0x7F && c <= 0xA0)) return 0; } } return CODING_CATEGORY_MASK_BIG5; } /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */ int decode_coding_sjis_big5 (coding, source, destination, src_bytes, dst_bytes, consumed, sjis_p) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; int sjis_p; { unsigned char *src = source; unsigned char *src_end = source + src_bytes; unsigned char *dst = destination; unsigned char *dst_end = destination + dst_bytes; /* Since the maximum bytes produced by each loop is 4, we subtract 3 from DST_END to assure overflow checking is necessary only at the head of loop. */ unsigned char *adjusted_dst_end = dst_end - 3; Lisp_Object unification_table = coding->character_unification_table_for_decode; if (!NILP (Venable_character_unification) && NILP (unification_table)) unification_table = Vstandard_character_unification_table_for_decode; while (src < src_end && dst < adjusted_dst_end) { /* SRC_BASE remembers the start position in source in each loop. The loop will be exited when there's not enough source text to analyze two-byte character (within macro ONE_MORE_BYTE). In that case, SRC is reset to SRC_BASE before exiting. */ unsigned char *src_base = src; unsigned char c1 = *src++, c2, c3, c4; if (c1 == '\r') { if (coding->eol_type == CODING_EOL_CRLF) { ONE_MORE_BYTE (c2); if (c2 == '\n') *dst++ = c2; else /* To process C2 again, SRC is subtracted by 1. */ *dst++ = c1, src--; } else *dst++ = c1; } else if (c1 < 0x20) *dst++ = c1; else if (c1 < 0x80) DECODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2); else if (c1 < 0xA0 || c1 >= 0xE0) { /* SJIS -> JISX0208, BIG5 -> Big5 (only if 0xE0 <= c1 < 0xFF) */ if (sjis_p) { ONE_MORE_BYTE (c2); DECODE_SJIS (c1, c2, c3, c4); DECODE_SJIS_BIG5_CHARACTER (charset_jisx0208, c3, c4); } else if (c1 >= 0xE0 && c1 < 0xFF) { int charset; ONE_MORE_BYTE (c2); DECODE_BIG5 (c1, c2, charset, c3, c4); DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4); } else /* Invalid code */ *dst++ = c1; } else { /* SJIS -> JISX0201-Kana, BIG5 -> Big5 */ if (sjis_p) DECODE_SJIS_BIG5_CHARACTER (charset_katakana_jisx0201, c1, /* dummy */ c2); else { int charset; ONE_MORE_BYTE (c2); DECODE_BIG5 (c1, c2, charset, c3, c4); DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4); } } continue; label_end_of_loop: coding->carryover_size = src - src_base; bcopy (src_base, coding->carryover, coding->carryover_size); src = src_base; break; } *consumed = src - source; return dst - destination; } /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". This function can encode `charset_ascii', `charset_katakana_jisx0201', `charset_jisx0208', `charset_big5_1', and `charset_big5-2'. We are sure that all these charsets are registered as official charset (i.e. do not have extended leading-codes). Characters of other charsets are produced without any encoding. If SJIS_P is 1, encode SJIS text, else encode BIG5 text. */ int encode_coding_sjis_big5 (coding, source, destination, src_bytes, dst_bytes, consumed, sjis_p) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; int sjis_p; { unsigned char *src = source; unsigned char *src_end = source + src_bytes; unsigned char *dst = destination; unsigned char *dst_end = destination + dst_bytes; /* Since the maximum bytes produced by each loop is 2, we subtract 1 from DST_END to assure overflow checking is necessary only at the head of loop. */ unsigned char *adjusted_dst_end = dst_end - 1; Lisp_Object unification_table = coding->character_unification_table_for_encode; if (!NILP (Venable_character_unification) && NILP (unification_table)) unification_table = Vstandard_character_unification_table_for_encode; while (src < src_end && dst < adjusted_dst_end) { /* SRC_BASE remembers the start position in source in each loop. The loop will be exited when there's not enough source text to analyze multi-byte codes (within macros ONE_MORE_BYTE and TWO_MORE_BYTES). In that case, SRC is reset to SRC_BASE before exiting. */ unsigned char *src_base = src; unsigned char c1 = *src++, c2, c3, c4; if (coding->composing) { if (c1 == 0xA0) { ONE_MORE_BYTE (c1); c1 &= 0x7F; } else if (c1 >= 0xA0) c1 -= 0x20; else coding->composing = 0; } switch (emacs_code_class[c1]) { case EMACS_ascii_code: ENCODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2); break; case EMACS_control_code: *dst++ = c1; break; case EMACS_carriage_return_code: if (!coding->selective) { *dst++ = c1; break; } /* fall down to treat '\r' as '\n' ... */ case EMACS_linefeed_code: if (coding->eol_type == CODING_EOL_LF || coding->eol_type == CODING_EOL_UNDECIDED) *dst++ = '\n'; else if (coding->eol_type == CODING_EOL_CRLF) *dst++ = '\r', *dst++ = '\n'; else *dst++ = '\r'; break; case EMACS_leading_code_2: ONE_MORE_BYTE (c2); ENCODE_SJIS_BIG5_CHARACTER (c1, c2, /* dummy */ c3); break; case EMACS_leading_code_3: TWO_MORE_BYTES (c2, c3); ENCODE_SJIS_BIG5_CHARACTER (c1, c2, c3); break; case EMACS_leading_code_4: THREE_MORE_BYTES (c2, c3, c4); ENCODE_SJIS_BIG5_CHARACTER (c2, c3, c4); break; case EMACS_leading_code_composition: coding->composing = 1; break; default: /* i.e. case EMACS_invalid_code: */ *dst++ = c1; } continue; label_end_of_loop: coding->carryover_size = src_end - src_base; bcopy (src_base, coding->carryover, coding->carryover_size); src = src_end; break; } *consumed = src - source; return dst - destination; } /*** 5. End-of-line handlers ***/ /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". This function is called only when `coding->eol_type' is CODING_EOL_CRLF or CODING_EOL_CR. */ decode_eol (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { unsigned char *src = source; unsigned char *src_end = source + src_bytes; unsigned char *dst = destination; unsigned char *dst_end = destination + dst_bytes; int produced; switch (coding->eol_type) { case CODING_EOL_CRLF: { /* Since the maximum bytes produced by each loop is 2, we subtract 1 from DST_END to assure overflow checking is necessary only at the head of loop. */ unsigned char *adjusted_dst_end = dst_end - 1; while (src < src_end && dst < adjusted_dst_end) { unsigned char *src_base = src; unsigned char c = *src++; if (c == '\r') { ONE_MORE_BYTE (c); if (c != '\n') *dst++ = '\r'; *dst++ = c; } else *dst++ = c; continue; label_end_of_loop: coding->carryover_size = src - src_base; bcopy (src_base, coding->carryover, coding->carryover_size); src = src_base; break; } *consumed = src - source; produced = dst - destination; break; } case CODING_EOL_CR: produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes; bcopy (source, destination, produced); dst_end = destination + produced; while (dst < dst_end) if (*dst++ == '\r') dst[-1] = '\n'; *consumed = produced; break; default: /* i.e. case: CODING_EOL_LF */ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes; bcopy (source, destination, produced); *consumed = produced; break; } return produced; } /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode format of end-of-line according to `coding->eol_type'. If `coding->selective' is 1, code '\r' in source text also means end-of-line. */ encode_eol (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { unsigned char *src = source; unsigned char *dst = destination; int produced; if (src_bytes <= 0) return 0; switch (coding->eol_type) { case CODING_EOL_LF: case CODING_EOL_UNDECIDED: produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes; bcopy (source, destination, produced); if (coding->selective) { int i = produced; while (i--) if (*dst++ == '\r') dst[-1] = '\n'; } *consumed = produced; case CODING_EOL_CRLF: { unsigned char c; unsigned char *src_end = source + src_bytes; unsigned char *dst_end = destination + dst_bytes; /* Since the maximum bytes produced by each loop is 2, we subtract 1 from DST_END to assure overflow checking is necessary only at the head of loop. */ unsigned char *adjusted_dst_end = dst_end - 1; while (src < src_end && dst < adjusted_dst_end) { c = *src++; if (c == '\n' || (c == '\r' && coding->selective)) *dst++ = '\r', *dst++ = '\n'; else *dst++ = c; } produced = dst - destination; *consumed = src - source; break; } default: /* i.e. case CODING_EOL_CR: */ produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes; bcopy (source, destination, produced); { int i = produced; while (i--) if (*dst++ == '\n') dst[-1] = '\r'; } *consumed = produced; } return produced; } /*** 6. C library functions ***/ /* In Emacs Lisp, coding system is represented by a Lisp symbol which has a property `coding-system'. The value of this property is a vector of length 5 (called as coding-vector). Among elements of this vector, the first (element[0]) and the fifth (element[4]) carry important information for decoding/encoding. Before decoding/encoding, this information should be set in fields of a structure of type `coding_system'. A value of property `coding-system' can be a symbol of another subsidiary coding-system. In that case, Emacs gets coding-vector from that symbol. `element[0]' contains information to be set in `coding->type'. The value and its meaning is as follows: 0 -- coding_type_emacs_mule 1 -- coding_type_sjis 2 -- coding_type_iso2022 3 -- coding_type_big5 4 -- coding_type_ccl encoder/decoder written in CCL nil -- coding_type_no_conversion t -- coding_type_undecided (automatic conversion on decoding, no-conversion on encoding) `element[4]' contains information to be set in `coding->flags' and `coding->spec'. The meaning varies by `coding->type'. If `coding->type' is `coding_type_iso2022', element[4] is a vector of length 32 (of which the first 13 sub-elements are used now). Meanings of these sub-elements are: sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022' If the value is an integer of valid charset, the charset is assumed to be designated to graphic register N initially. If the value is minus, it is a minus value of charset which reserves graphic register N, which means that the charset is not designated initially but should be designated to graphic register N just before encoding a character in that charset. If the value is nil, graphic register N is never used on encoding. sub-element[N] where N is 4 through 11: to be set in `coding->flags' Each value takes t or nil. See the section ISO2022 of `coding.h' for more information. If `coding->type' is `coding_type_big5', element[4] is t to denote BIG5-ETen or nil to denote BIG5-HKU. If `coding->type' takes the other value, element[4] is ignored. Emacs Lisp's coding system also carries information about format of end-of-line in a value of property `eol-type'. If the value is integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2 means CODING_EOL_CR. If it is not integer, it should be a vector of subsidiary coding systems of which property `eol-type' has one of above values. */ /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING is setup so that no conversion is necessary and return -1, else return 0. */ int setup_coding_system (coding_system, coding) Lisp_Object coding_system; struct coding_system *coding; { Lisp_Object type, eol_type; /* At first, set several fields to default values. */ coding->require_flushing = 0; coding->last_block = 0; coding->selective = 0; coding->composing = 0; coding->direction = 0; coding->carryover_size = 0; coding->post_read_conversion = coding->pre_write_conversion = Qnil; coding->character_unification_table_for_decode = Qnil; coding->character_unification_table_for_encode = Qnil; Vlast_coding_system_used = coding->symbol = coding_system; eol_type = Qnil; /* Get value of property `coding-system' until we get a vector. While doing that, also get values of properties `post-read-conversion', `pre-write-conversion', `character-unification-table-for-decode', `character-unification-table-for-encode' and `eol-type'. */ while (!NILP (coding_system) && SYMBOLP (coding_system)) { if (NILP (coding->post_read_conversion)) coding->post_read_conversion = Fget (coding_system, Qpost_read_conversion); if (NILP (coding->pre_write_conversion)) coding->pre_write_conversion = Fget (coding_system, Qpre_write_conversion); if (!inhibit_eol_conversion && NILP (eol_type)) eol_type = Fget (coding_system, Qeol_type); if (NILP (coding->character_unification_table_for_decode)) coding->character_unification_table_for_decode = Fget (coding_system, Qcharacter_unification_table_for_decode); if (NILP (coding->character_unification_table_for_encode)) coding->character_unification_table_for_encode = Fget (coding_system, Qcharacter_unification_table_for_encode); coding_system = Fget (coding_system, Qcoding_system); } while (!NILP (coding->character_unification_table_for_decode) && SYMBOLP (coding->character_unification_table_for_decode)) coding->character_unification_table_for_decode = Fget (coding->character_unification_table_for_decode, Qcharacter_unification_table_for_decode); if (!NILP (coding->character_unification_table_for_decode) && !CHAR_TABLE_P (coding->character_unification_table_for_decode)) coding->character_unification_table_for_decode = Qnil; while (!NILP (coding->character_unification_table_for_encode) && SYMBOLP (coding->character_unification_table_for_encode)) coding->character_unification_table_for_encode = Fget (coding->character_unification_table_for_encode, Qcharacter_unification_table_for_encode); if (!NILP (coding->character_unification_table_for_encode) && !CHAR_TABLE_P (coding->character_unification_table_for_encode)) coding->character_unification_table_for_encode = Qnil; if (!VECTORP (coding_system) || XVECTOR (coding_system)->size != 5) goto label_invalid_coding_system; if (VECTORP (eol_type)) coding->eol_type = CODING_EOL_UNDECIDED; else if (XFASTINT (eol_type) == 1) coding->eol_type = CODING_EOL_CRLF; else if (XFASTINT (eol_type) == 2) coding->eol_type = CODING_EOL_CR; else coding->eol_type = CODING_EOL_LF; type = XVECTOR (coding_system)->contents[0]; switch (XFASTINT (type)) { case 0: coding->type = coding_type_emacs_mule; break; case 1: coding->type = coding_type_sjis; break; case 2: coding->type = coding_type_iso2022; { Lisp_Object val; Lisp_Object *flags; int i, charset, default_reg_bits = 0; val = XVECTOR (coding_system)->contents[4]; if (!VECTORP (val) || XVECTOR (val)->size != 32) goto label_invalid_coding_system; flags = XVECTOR (val)->contents; coding->flags = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM) | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL) | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL) | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS) | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT) | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT) | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN) | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS) | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION) | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL) | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL) | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE) | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA) ); /* Invoke graphic register 0 to plane 0. */ CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */ CODING_SPEC_ISO_INVOCATION (coding, 1) = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1); /* Not single shifting at first. */ CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; /* Beginning of buffer should also be regarded as bol. */ CODING_SPEC_ISO_BOL (coding) = 1; /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations. FLAGS[REG] can be one of below: integer CHARSET: CHARSET occupies register I, t: designate nothing to REG initially, but can be used by any charsets, list of integer, nil, or t: designate the first element (if integer) to REG initially, the remaining elements (if integer) is designated to REG on request, if an element is t, REG can be used by any charset, nil: REG is never used. */ for (charset = 0; charset <= MAX_CHARSET; charset++) CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION; bzero (CODING_SPEC_ISO_EXPECTED_CHARSETS (coding), MAX_CHARSET + 1); for (i = 0; i < 4; i++) { if (INTEGERP (flags[i]) && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)) || (charset = get_charset_id (flags[i])) >= 0) { CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset; CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i; CODING_SPEC_ISO_EXPECTED_CHARSETS (coding)[charset] = 1; } else if (EQ (flags[i], Qt)) { CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1; default_reg_bits |= 1 << i; } else if (CONSP (flags[i])) { Lisp_Object tail = flags[i]; if (INTEGERP (XCONS (tail)->car) && (charset = XINT (XCONS (tail)->car), CHARSET_VALID_P (charset)) || (charset = get_charset_id (XCONS (tail)->car)) >= 0) { CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset; CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i; CODING_SPEC_ISO_EXPECTED_CHARSETS (coding)[charset] = 1; } else CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1; tail = XCONS (tail)->cdr; while (CONSP (tail)) { if (INTEGERP (XCONS (tail)->car) && (charset = XINT (XCONS (tail)->car), CHARSET_VALID_P (charset)) || (charset = get_charset_id (XCONS (tail)->car)) >= 0) { CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i; CODING_SPEC_ISO_EXPECTED_CHARSETS (coding)[charset] = 1; } else if (EQ (XCONS (tail)->car, Qt)) default_reg_bits |= 1 << i; tail = XCONS (tail)->cdr; } } else CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1; CODING_SPEC_ISO_DESIGNATION (coding, i) = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i); } if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)) { /* REG 1 can be used only by locking shift in 7-bit env. */ if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) default_reg_bits &= ~2; if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)) /* Without any shifting, only REG 0 and 1 can be used. */ default_reg_bits &= 3; } for (charset = 0; charset <= MAX_CHARSET; charset++) if (CHARSET_VALID_P (charset) && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)) { /* We have not yet decided where to designate CHARSET. */ int reg_bits = default_reg_bits; if (CHARSET_CHARS (charset) == 96) /* A charset of CHARS96 can't be designated to REG 0. */ reg_bits &= ~1; if (reg_bits) /* There exist some default graphic register. */ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = (reg_bits & 1 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3))); else /* We anyway have to designate CHARSET to somewhere. */ CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = (CHARSET_CHARS (charset) == 94 ? 0 : ((coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT || ! coding->flags & CODING_FLAG_ISO_SEVEN_BITS) ? 1 : (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT ? 2 : 0))); } } coding->require_flushing = 1; break; case 3: coding->type = coding_type_big5; coding->flags = (NILP (XVECTOR (coding_system)->contents[4]) ? CODING_FLAG_BIG5_HKU : CODING_FLAG_BIG5_ETEN); break; case 4: coding->type = coding_type_ccl; { Lisp_Object val = XVECTOR (coding_system)->contents[4]; if (CONSP (val) && VECTORP (XCONS (val)->car) && VECTORP (XCONS (val)->cdr)) { setup_ccl_program (&(coding->spec.ccl.decoder), XCONS (val)->car); setup_ccl_program (&(coding->spec.ccl.encoder), XCONS (val)->cdr); } else goto label_invalid_coding_system; } coding->require_flushing = 1; break; case 5: coding->type = coding_type_raw_text; break; default: if (EQ (type, Qt)) coding->type = coding_type_undecided; else coding->type = coding_type_no_conversion; break; } return 0; label_invalid_coding_system: coding->type = coding_type_no_conversion; coding->eol_type = CODING_EOL_LF; coding->symbol = coding->pre_write_conversion = coding->post_read_conversion = Qnil; return -1; } /* Emacs has a mechanism to automatically detect a coding system if it is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But, it's impossible to distinguish some coding systems accurately because they use the same range of codes. So, at first, coding systems are categorized into 7, those are: o coding-category-emacs-mule The category for a coding system which has the same code range as Emacs' internal format. Assigned the coding-system (Lisp symbol) `emacs-mule' by default. o coding-category-sjis The category for a coding system which has the same code range as SJIS. Assigned the coding-system (Lisp symbol) `japanese-shift-jis' by default. o coding-category-iso-7 The category for a coding system which has the same code range as ISO2022 of 7-bit environment. This doesn't use any locking shift and single shift functions. Assigned the coding-system (Lisp symbol) `iso-2022-7bit' by default. o coding-category-iso-8-1 The category for a coding system which has the same code range as ISO2022 of 8-bit environment and graphic plane 1 used only for DIMENSION1 charset. This doesn't use any locking shift and single shift functions. Assigned the coding-system (Lisp symbol) `iso-latin-1' by default. o coding-category-iso-8-2 The category for a coding system which has the same code range as ISO2022 of 8-bit environment and graphic plane 1 used only for DIMENSION2 charset. This doesn't use any locking shift and single shift functions. Assigned the coding-system (Lisp symbol) `japanese-iso-8bit' by default. o coding-category-iso-7-else The category for a coding system which has the same code range as ISO2022 of 7-bit environemnt but uses locking shift or single shift functions. Assigned the coding-system (Lisp symbol) `iso-2022-7bit-lock' by default. o coding-category-iso-8-else The category for a coding system which has the same code range as ISO2022 of 8-bit environemnt but uses locking shift or single shift functions. Assigned the coding-system (Lisp symbol) `iso-2022-8bit-ss2' by default. o coding-category-big5 The category for a coding system which has the same code range as BIG5. Assigned the coding-system (Lisp symbol) `cn-big5' by default. o coding-category-binary The category for a coding system not categorized in any of the above. Assigned the coding-system (Lisp symbol) `no-conversion' by default. Each of them is a Lisp symbol and the value is an actual `coding-system's (this is also a Lisp symbol) assigned by a user. What Emacs does actually is to detect a category of coding system. Then, it uses a `coding-system' assigned to it. If Emacs can't decide only one possible category, it selects a category of the highest priority. Priorities of categories are also specified by a user in a Lisp variable `coding-category-list'. */ /* Detect how a text of length SRC_BYTES pointed by SRC is encoded. If it detects possible coding systems, return an integer in which appropriate flag bits are set. Flag bits are defined by macros CODING_CATEGORY_MASK_XXX in `coding.h'. */ int detect_coding_mask (src, src_bytes) unsigned char *src; int src_bytes; { register unsigned char c; unsigned char *src_end = src + src_bytes; int mask; /* At first, skip all ASCII characters and control characters except for three ISO2022 specific control characters. */ label_loop_detect_coding: while (src < src_end) { c = *src; if (c >= 0x80 || (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)) break; src++; } if (src >= src_end) /* We found nothing other than ASCII. There's nothing to do. */ return CODING_CATEGORY_MASK_ANY; /* The text seems to be encoded in some multilingual coding system. Now, try to find in which coding system the text is encoded. */ if (c < 0x80) { /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */ /* C is an ISO2022 specific control code of C0. */ mask = detect_coding_iso2022 (src, src_end); src++; if (mask == 0) /* No valid ISO2022 code follows C. Try again. */ goto label_loop_detect_coding; mask |= CODING_CATEGORY_MASK_RAW_TEXT; } else if (c < 0xA0) { /* If C is a special latin extra code, or is an ISO2022 specific control code of C1 (SS2 or SS3), or is an ISO2022 control-sequence-introducer (CSI), we should also consider the possibility of ISO2022 codings. */ if ((VECTORP (Vlatin_extra_code_table) && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c])) || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3) || (c == ISO_CODE_CSI && (src < src_end && (*src == ']' || (src + 1 < src_end && src[1] == ']' && (*src == '0' || *src == '1' || *src == '2')))))) mask = (detect_coding_iso2022 (src, src_end) | detect_coding_sjis (src, src_end) | detect_coding_emacs_mule (src, src_end) | CODING_CATEGORY_MASK_RAW_TEXT); else /* C is the first byte of SJIS character code, or a leading-code of Emacs' internal format (emacs-mule). */ mask = (detect_coding_sjis (src, src_end) | detect_coding_emacs_mule (src, src_end) | CODING_CATEGORY_MASK_RAW_TEXT); } else /* C is a character of ISO2022 in graphic plane right, or a SJIS's 1-byte character code (i.e. JISX0201), or the first byte of BIG5's 2-byte code. */ mask = (detect_coding_iso2022 (src, src_end) | detect_coding_sjis (src, src_end) | detect_coding_big5 (src, src_end) | CODING_CATEGORY_MASK_RAW_TEXT); return mask; } /* Detect how a text of length SRC_BYTES pointed by SRC is encoded. The information of the detected coding system is set in CODING. */ void detect_coding (coding, src, src_bytes) struct coding_system *coding; unsigned char *src; int src_bytes; { int mask = detect_coding_mask (src, src_bytes); int idx; Lisp_Object val = Vcoding_category_list; if (mask == CODING_CATEGORY_MASK_ANY) /* We found nothing other than ASCII. There's nothing to do. */ return; /* We found some plausible coding systems. Let's use a coding system of the highest priority. */ if (CONSP (val)) while (!NILP (val)) { idx = XFASTINT (Fget (XCONS (val)->car, Qcoding_category_index)); if ((idx < CODING_CATEGORY_IDX_MAX) && (mask & (1 << idx))) break; val = XCONS (val)->cdr; } else val = Qnil; if (NILP (val)) { /* For unknown reason, `Vcoding_category_list' contains none of found categories. Let's use any of them. */ for (idx = 0; idx < CODING_CATEGORY_IDX_MAX; idx++) if (mask & (1 << idx)) break; } setup_coding_system (XSYMBOL (coding_category_table[idx])->value, coding); } /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF, CODING_EOL_CR, and CODING_EOL_UNDECIDED. */ #define MAX_EOL_CHECK_COUNT 3 int detect_eol_type (src, src_bytes) unsigned char *src; int src_bytes; { unsigned char *src_end = src + src_bytes; unsigned char c; int total = 0; /* How many end-of-lines are found so far. */ int eol_type = CODING_EOL_UNDECIDED; int this_eol_type; while (src < src_end && total < MAX_EOL_CHECK_COUNT) { c = *src++; if (c == '\n' || c == '\r') { total++; if (c == '\n') this_eol_type = CODING_EOL_LF; else if (src >= src_end || *src != '\n') this_eol_type = CODING_EOL_CR; else this_eol_type = CODING_EOL_CRLF, src++; if (eol_type == CODING_EOL_UNDECIDED) /* This is the first end-of-line. */ eol_type = this_eol_type; else if (eol_type != this_eol_type) /* The found type is different from what found before. Let's notice the caller about this inconsistency. */ return CODING_EOL_INCONSISTENT; } } return eol_type; } /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC is encoded. If it detects an appropriate format of end-of-line, it sets the information in *CODING. */ void detect_eol (coding, src, src_bytes) struct coding_system *coding; unsigned char *src; int src_bytes; { Lisp_Object val, coding_system; int eol_type = detect_eol_type (src, src_bytes); if (eol_type == CODING_EOL_UNDECIDED) /* We found no end-of-line in the source text. */ return; if (eol_type == CODING_EOL_INCONSISTENT) { #if 0 /* This code is suppressed until we find a better way to distinguish raw text file and binary file. */ /* If we have already detected that the coding is raw-text, the coding should actually be no-conversion. */ if (coding->type == coding_type_raw_text) { setup_coding_system (Qno_conversion, coding); return; } /* Else, let's decode only text code anyway. */ #endif /* 0 */ eol_type = CODING_EOL_LF; } coding_system = coding->symbol; while (!NILP (coding_system) && NILP (val = Fget (coding_system, Qeol_type))) coding_system = Fget (coding_system, Qcoding_system); if (VECTORP (val) && XVECTOR (val)->size == 3) setup_coding_system (XVECTOR (val)->contents[eol_type], coding); } /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before decoding, it may detect coding system and format of end-of-line if those are not yet decided. */ int decode_coding (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { int produced; if (src_bytes <= 0) { *consumed = 0; return 0; } if (coding->type == coding_type_undecided) detect_coding (coding, source, src_bytes); if (coding->eol_type == CODING_EOL_UNDECIDED) detect_eol (coding, source, src_bytes); coding->carryover_size = 0; switch (coding->type) { case coding_type_no_conversion: label_no_conversion: produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes; bcopy (source, destination, produced); *consumed = produced; break; case coding_type_emacs_mule: case coding_type_undecided: case coding_type_raw_text: if (coding->eol_type == CODING_EOL_LF || coding->eol_type == CODING_EOL_UNDECIDED) goto label_no_conversion; produced = decode_eol (coding, source, destination, src_bytes, dst_bytes, consumed); break; case coding_type_sjis: produced = decode_coding_sjis_big5 (coding, source, destination, src_bytes, dst_bytes, consumed, 1); break; case coding_type_iso2022: produced = decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes, consumed); break; case coding_type_big5: produced = decode_coding_sjis_big5 (coding, source, destination, src_bytes, dst_bytes, consumed, 0); break; case coding_type_ccl: produced = ccl_driver (&coding->spec.ccl.decoder, source, destination, src_bytes, dst_bytes, consumed); break; } return produced; } /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". */ int encode_coding (coding, source, destination, src_bytes, dst_bytes, consumed) struct coding_system *coding; unsigned char *source, *destination; int src_bytes, dst_bytes; int *consumed; { int produced; switch (coding->type) { case coding_type_no_conversion: label_no_conversion: produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes; if (produced > 0) { bcopy (source, destination, produced); if (coding->selective) { unsigned char *p = destination, *pend = destination + produced; while (p < pend) if (*p++ == '\015') p[-1] = '\n'; } } *consumed = produced; break; case coding_type_emacs_mule: case coding_type_undecided: case coding_type_raw_text: if (coding->eol_type == CODING_EOL_LF || coding->eol_type == CODING_EOL_UNDECIDED) goto label_no_conversion; produced = encode_eol (coding, source, destination, src_bytes, dst_bytes, consumed); break; case coding_type_sjis: produced = encode_coding_sjis_big5 (coding, source, destination, src_bytes, dst_bytes, consumed, 1); break; case coding_type_iso2022: produced = encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes, consumed); break; case coding_type_big5: produced = encode_coding_sjis_big5 (coding, source, destination, src_bytes, dst_bytes, consumed, 0); break; case coding_type_ccl: produced = ccl_driver (&coding->spec.ccl.encoder, source, destination, src_bytes, dst_bytes, consumed); break; } return produced; } #define CONVERSION_BUFFER_EXTRA_ROOM 256 /* Return maximum size (bytes) of a buffer enough for decoding SRC_BYTES of text encoded in CODING. */ int decoding_buffer_size (coding, src_bytes) struct coding_system *coding; int src_bytes; { int magnification; if (coding->type == coding_type_iso2022) magnification = 3; else if (coding->type == coding_type_ccl) magnification = coding->spec.ccl.decoder.buf_magnification; else magnification = 2; return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM); } /* Return maximum size (bytes) of a buffer enough for encoding SRC_BYTES of text to CODING. */ int encoding_buffer_size (coding, src_bytes) struct coding_system *coding; int src_bytes; { int magnification; if (coding->type == coding_type_ccl) magnification = coding->spec.ccl.encoder.buf_magnification; else magnification = 3; return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM); } #ifndef MINIMUM_CONVERSION_BUFFER_SIZE #define MINIMUM_CONVERSION_BUFFER_SIZE 1024 #endif char *conversion_buffer; int conversion_buffer_size; /* Return a pointer to a SIZE bytes of buffer to be used for encoding or decoding. Sufficient memory is allocated automatically. If we run out of memory, return NULL. */ char * get_conversion_buffer (size) int size; { if (size > conversion_buffer_size) { char *buf; int real_size = conversion_buffer_size * 2; while (real_size < size) real_size *= 2; buf = (char *) xmalloc (real_size); xfree (conversion_buffer); conversion_buffer = buf; conversion_buffer_size = real_size; } return conversion_buffer; } #ifdef emacs /*** 7. Emacs Lisp library functions ***/ DEFUN ("coding-system-spec", Fcoding_system_spec, Scoding_system_spec, 1, 1, 0, "Return coding-spec of CODING-SYSTEM.\n\ If CODING-SYSTEM is not a valid coding-system, return nil.") (obj) Lisp_Object obj; { while (SYMBOLP (obj) && !NILP (obj)) obj = Fget (obj, Qcoding_system); return ((NILP (obj) || !VECTORP (obj) || XVECTOR (obj)->size != 5) ? Qnil : obj); } DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0, "Return t if OBJECT is nil or a coding-system.\n\ See document of make-coding-system for coding-system object.") (obj) Lisp_Object obj; { return ((NILP (obj) || !NILP (Fcoding_system_spec (obj))) ? Qt : Qnil); } DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system, Sread_non_nil_coding_system, 1, 1, 0, "Read a coding system from the minibuffer, prompting with string PROMPT.") (prompt) Lisp_Object prompt; { Lisp_Object val; do { val = Fcompleting_read (prompt, Vobarray, Qcoding_system_spec, Qt, Qnil, Qnil, Qnil, Qnil); } while (XSTRING (val)->size == 0); return (Fintern (val, Qnil)); } DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0, "Read a coding system from the minibuffer, prompting with string PROMPT.\n\ If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.") (prompt, default_coding_system) Lisp_Object prompt, default_coding_system; { Lisp_Object val; if (SYMBOLP (default_coding_system)) XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name); val = Fcompleting_read (prompt, Vobarray, Qcoding_system_p, Qt, Qnil, Qcoding_system_history, default_coding_system, Qnil); return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil)); } DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system, 1, 1, 0, "Check validity of CODING-SYSTEM.\n\ If valid, return CODING-SYSTEM, else `coding-system-error' is signaled.\n\ CODING-SYSTEM is valid if it is a symbol and has \"coding-system\" property.\n\ The value of property should be a vector of length 5.") (coding_system) Lisp_Object coding_system; { CHECK_SYMBOL (coding_system, 0); if (!NILP (Fcoding_system_p (coding_system))) return coding_system; while (1) Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil)); } DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region, 2, 2, 0, "Detect coding system of the text in the region between START and END.\n\ Return a list of possible coding systems ordered by priority.\n\ If only ASCII characters are found, it returns `undecided'\n\ or its subsidiary coding system according to a detected end-of-line format.") (b, e) Lisp_Object b, e; { int coding_mask, eol_type; Lisp_Object val; int beg, end; validate_region (&b, &e); beg = XINT (b), end = XINT (e); if (beg < GPT && end >= GPT) move_gap (end); coding_mask = detect_coding_mask (POS_ADDR (beg), end - beg); eol_type = detect_eol_type (POS_ADDR (beg), end - beg); if (coding_mask == CODING_CATEGORY_MASK_ANY) { val = Qundecided; if (eol_type != CODING_EOL_UNDECIDED && eol_type != CODING_EOL_INCONSISTENT) { Lisp_Object val2; val2 = Fget (Qundecided, Qeol_type); if (VECTORP (val2)) val = XVECTOR (val2)->contents[eol_type]; } } else { Lisp_Object val2; /* At first, gather possible coding-systems in VAL in a reverse order. */ val = Qnil; for (val2 = Vcoding_category_list; !NILP (val2); val2 = XCONS (val2)->cdr) { int idx = XFASTINT (Fget (XCONS (val2)->car, Qcoding_category_index)); if (coding_mask & (1 << idx)) { #if 0 /* This code is suppressed until we find a better way to distinguish raw text file and binary file. */ if (idx == CODING_CATEGORY_IDX_RAW_TEXT && eol_type == CODING_EOL_INCONSISTENT) val = Fcons (Qno_conversion, val); else #endif /* 0 */ val = Fcons (Fsymbol_value (XCONS (val2)->car), val); } } /* Then, change the order of the list, while getting subsidiary coding-systems. */ val2 = val; val = Qnil; if (eol_type == CODING_EOL_INCONSISTENT) eol_type == CODING_EOL_UNDECIDED; for (; !NILP (val2); val2 = XCONS (val2)->cdr) { if (eol_type == CODING_EOL_UNDECIDED) val = Fcons (XCONS (val2)->car, val); else { Lisp_Object val3; val3 = Fget (XCONS (val2)->car, Qeol_type); if (VECTORP (val3)) val = Fcons (XVECTOR (val3)->contents[eol_type], val); else val = Fcons (XCONS (val2)->car, val); } } } return val; } /* Scan text in the region between *BEGP and *ENDP, skip characters which we never have to encode to (iff ENCODEP is 1) or decode from coding system CODING at the head and tail, then set BEGP and ENDP to the addresses of start and end of the text we actually convert. */ void shrink_conversion_area (begp, endp, coding, encodep) unsigned char **begp, **endp; struct coding_system *coding; int encodep; { register unsigned char *beg_addr = *begp, *end_addr = *endp; if (coding->eol_type != CODING_EOL_LF && coding->eol_type != CODING_EOL_UNDECIDED) /* Since we anyway have to convert end-of-line format, it is not worth skipping at most 100 bytes or so. */ return; if (encodep) /* for encoding */ { switch (coding->type) { case coding_type_no_conversion: case coding_type_emacs_mule: case coding_type_undecided: case coding_type_raw_text: /* We need no conversion. */ *begp = *endp; return; case coding_type_ccl: /* We can't skip any data. */ return; case coding_type_iso2022: if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL) { unsigned char *bol = beg_addr; while (beg_addr < end_addr && *beg_addr < 0x80) { beg_addr++; if (*(beg_addr - 1) == '\n') bol = beg_addr; } beg_addr = bol; goto label_skip_tail; } /* fall down ... */ default: /* We can skip all ASCII characters at the head and tail. */ while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++; label_skip_tail: while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--; break; } } else /* for decoding */ { switch (coding->type) { case coding_type_no_conversion: /* We need no conversion. */ *begp = *endp; return; case coding_type_emacs_mule: case coding_type_raw_text: if (coding->eol_type == CODING_EOL_LF) { /* We need no conversion. */ *begp = *endp; return; } /* We can skip all but carriage-return. */ while (beg_addr < end_addr && *beg_addr != '\r') beg_addr++; while (beg_addr < end_addr && *(end_addr - 1) != '\r') end_addr--; break; case coding_type_sjis: case coding_type_big5: /* We can skip all ASCII characters at the head. */ while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++; /* We can skip all ASCII characters at the tail except for the second byte of SJIS or BIG5 code. */ while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--; if (end_addr != *endp) end_addr++; break; case coding_type_ccl: /* We can't skip any data. */ return; default: /* i.e. case coding_type_iso2022: */ { unsigned char c; /* We can skip all ASCII characters except for a few control codes at the head. */ while (beg_addr < end_addr && (c = *beg_addr) < 0x80 && c != ISO_CODE_CR && c != ISO_CODE_SO && c != ISO_CODE_SI && c != ISO_CODE_ESC) beg_addr++; } break; } } *begp = beg_addr; *endp = end_addr; return; } /* Encode to (iff ENCODEP is 1) or decode form coding system CODING a text between B and E. B and E are buffer position. */ Lisp_Object code_convert_region (b, e, coding, encodep) Lisp_Object b, e; struct coding_system *coding; int encodep; { int beg, end, len, consumed, produced; char *buf; unsigned char *begp, *endp; int pos = PT; validate_region (&b, &e); beg = XINT (b), end = XINT (e); if (beg < GPT && end >= GPT) move_gap (end); if (encodep && !NILP (coding->pre_write_conversion)) { /* We must call a pre-conversion function which may put a new text to be converted in a new buffer. */ struct buffer *old = current_buffer, *new; TEMP_SET_PT (beg); call2 (coding->pre_write_conversion, b, e); if (old != current_buffer) { /* Replace the original text by the text just generated. */ len = ZV - BEGV; new = current_buffer; set_buffer_internal (old); del_range (beg, end); insert_from_buffer (new, 1, len, 0); end = beg + len; } } /* We may be able to shrink the conversion region. */ begp = POS_ADDR (beg); endp = begp + (end - beg); shrink_conversion_area (&begp, &endp, coding, encodep); if (begp == endp) /* We need no conversion. */ len = end - beg; else { beg += begp - POS_ADDR (beg); end = beg + (endp - begp); if (encodep) len = encoding_buffer_size (coding, end - beg); else len = decoding_buffer_size (coding, end - beg); buf = get_conversion_buffer (len); coding->last_block = 1; produced = (encodep ? encode_coding (coding, POS_ADDR (beg), buf, end - beg, len, &consumed) : decode_coding (coding, POS_ADDR (beg), buf, end - beg, len, &consumed)); len = produced + (beg - XINT (b)) + (XINT (e) - end); TEMP_SET_PT (beg); insert (buf, produced); del_range (PT, PT + end - beg); if (pos >= end) pos = PT + (pos - end); else if (pos > beg) pos = beg; TEMP_SET_PT (pos); } if (!encodep && !NILP (coding->post_read_conversion)) { /* We must call a post-conversion function which may alter the text just converted. */ Lisp_Object insval; beg = XINT (b); TEMP_SET_PT (beg); insval = call1 (coding->post_read_conversion, make_number (len)); CHECK_NUMBER (insval, 0); len = XINT (insval); } return make_number (len); } Lisp_Object code_convert_string (str, coding, encodep, nocopy) Lisp_Object str, nocopy; struct coding_system *coding; int encodep; { int len, consumed, produced; char *buf; unsigned char *begp, *endp; int head_skip, tail_skip; struct gcpro gcpro1; if (encodep && !NILP (coding->pre_write_conversion) || !encodep && !NILP (coding->post_read_conversion)) { /* Since we have to call Lisp functions which assume target text is in a buffer, after setting a temporary buffer, call code_convert_region. */ int count = specpdl_ptr - specpdl; int len = XSTRING (str)->size; Lisp_Object result; struct buffer *old = current_buffer; record_unwind_protect (Fset_buffer, Fcurrent_buffer ()); temp_output_buffer_setup (" *code-converting-work*"); set_buffer_internal (XBUFFER (Vstandard_output)); insert_from_string (str, 0, len, 0); code_convert_region (make_number (BEGV), make_number (ZV), coding, encodep); result = make_buffer_string (BEGV, ZV, 0); set_buffer_internal (old); return unbind_to (count, result); } /* We may be able to shrink the conversion region. */ begp = XSTRING (str)->data; endp = begp + XSTRING (str)->size; shrink_conversion_area (&begp, &endp, coding, encodep); if (begp == endp) /* We need no conversion. */ return (NILP (nocopy) ? Fcopy_sequence (str) : str); head_skip = begp - XSTRING (str)->data; tail_skip = XSTRING (str)->size - head_skip - (endp - begp); GCPRO1 (str); if (encodep) len = encoding_buffer_size (coding, endp - begp); else len = decoding_buffer_size (coding, endp - begp); buf = get_conversion_buffer (len + head_skip + tail_skip); bcopy (XSTRING (str)->data, buf, head_skip); coding->last_block = 1; produced = (encodep ? encode_coding (coding, XSTRING (str)->data + head_skip, buf + head_skip, endp - begp, len, &consumed) : decode_coding (coding, XSTRING (str)->data + head_skip, buf + head_skip, endp - begp, len, &consumed)); bcopy (XSTRING (str)->data + head_skip + (endp - begp), buf + head_skip + produced, tail_skip); UNGCPRO; return make_string (buf, head_skip + produced + tail_skip); } DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region, 3, 3, "r\nzCoding system: ", "Decode current region by specified coding system.\n\ When called from a program, takes three arguments:\n\ START, END, and CODING-SYSTEM. START END are buffer positions.\n\ Return length of decoded text.") (b, e, coding_system) Lisp_Object b, e, coding_system; { struct coding_system coding; CHECK_NUMBER_COERCE_MARKER (b, 0); CHECK_NUMBER_COERCE_MARKER (e, 1); CHECK_SYMBOL (coding_system, 2); if (NILP (coding_system)) return make_number (XFASTINT (e) - XFASTINT (b)); if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0) error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data); return code_convert_region (b, e, &coding, 0); } DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region, 3, 3, "r\nzCoding system: ", "Encode current region by specified coding system.\n\ When called from a program, takes three arguments:\n\ START, END, and CODING-SYSTEM. START END are buffer positions.\n\ Return length of encoded text.") (b, e, coding_system) Lisp_Object b, e, coding_system; { struct coding_system coding; CHECK_NUMBER_COERCE_MARKER (b, 0); CHECK_NUMBER_COERCE_MARKER (e, 1); CHECK_SYMBOL (coding_system, 2); if (NILP (coding_system)) return make_number (XFASTINT (e) - XFASTINT (b)); if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0) error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data); return code_convert_region (b, e, &coding, 1); } DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string, 2, 3, 0, "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\ Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\ if the decoding operation is trivial.") (string, coding_system, nocopy) Lisp_Object string, coding_system, nocopy; { struct coding_system coding; CHECK_STRING (string, 0); CHECK_SYMBOL (coding_system, 1); if (NILP (coding_system)) return (NILP (nocopy) ? Fcopy_sequence (string) : string); if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0) error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data); return code_convert_string (string, &coding, 0, nocopy); } DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string, 2, 3, 0, "Encode STRING to CODING-SYSTEM, and return the result.\n\ Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\ if the encoding operation is trivial.") (string, coding_system, nocopy) Lisp_Object string, coding_system, nocopy; { struct coding_system coding; CHECK_STRING (string, 0); CHECK_SYMBOL (coding_system, 1); if (NILP (coding_system)) return (NILP (nocopy) ? Fcopy_sequence (string) : string); if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0) error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data); return code_convert_string (string, &coding, 1, nocopy); } DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0, "Decode a JISX0208 character of shift-jis encoding.\n\ CODE is the character code in SJIS.\n\ Return the corresponding character.") (code) Lisp_Object code; { unsigned char c1, c2, s1, s2; Lisp_Object val; CHECK_NUMBER (code, 0); s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF; DECODE_SJIS (s1, s2, c1, c2); XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset_jisx0208, c1, c2)); return val; } DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0, "Encode a JISX0208 character CHAR to SJIS coding-system.\n\ Return the corresponding character code in SJIS.") (ch) Lisp_Object ch; { int charset, c1, c2, s1, s2; Lisp_Object val; CHECK_NUMBER (ch, 0); SPLIT_CHAR (XFASTINT (ch), charset, c1, c2); if (charset == charset_jisx0208) { ENCODE_SJIS (c1, c2, s1, s2); XSETFASTINT (val, (s1 << 8) | s2); } else XSETFASTINT (val, 0); return val; } DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0, "Decode a Big5 character CODE of BIG5 coding-system.\n\ CODE is the character code in BIG5.\n\ Return the corresponding character.") (code) Lisp_Object code; { int charset; unsigned char b1, b2, c1, c2; Lisp_Object val; CHECK_NUMBER (code, 0); b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF; DECODE_BIG5 (b1, b2, charset, c1, c2); XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset, c1, c2)); return val; } DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0, "Encode the Big5 character CHAR to BIG5 coding-system.\n\ Return the corresponding character code in Big5.") (ch) Lisp_Object ch; { int charset, c1, c2, b1, b2; Lisp_Object val; CHECK_NUMBER (ch, 0); SPLIT_CHAR (XFASTINT (ch), charset, c1, c2); if (charset == charset_big5_1 || charset == charset_big5_2) { ENCODE_BIG5 (charset, c1, c2, b1, b2); XSETFASTINT (val, (b1 << 8) | b2); } else XSETFASTINT (val, 0); return val; } DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal, Sset_terminal_coding_system_internal, 1, 1, 0, "") (coding_system) Lisp_Object coding_system; { CHECK_SYMBOL (coding_system, 0); setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding); /* We had better not send unexpected characters to terminal. */ terminal_coding.flags |= CODING_FLAG_ISO_SAFE; return Qnil; } DEFUN ("set-safe-terminal-coding-system-internal", Fset_safe_terminal_coding_system_internal, Sset_safe_terminal_coding_system_internal, 1, 1, 0, "") (coding_system) Lisp_Object coding_system; { CHECK_SYMBOL (coding_system, 0); setup_coding_system (Fcheck_coding_system (coding_system), &safe_terminal_coding); return Qnil; } DEFUN ("terminal-coding-system", Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0, "Return coding-system of your terminal.") () { return terminal_coding.symbol; } DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal, Sset_keyboard_coding_system_internal, 1, 1, 0, "") (coding_system) Lisp_Object coding_system; { CHECK_SYMBOL (coding_system, 0); setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding); return Qnil; } DEFUN ("keyboard-coding-system", Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0, "Return coding-system of what is sent from terminal keyboard.") () { return keyboard_coding.symbol; } DEFUN ("find-operation-coding-system", Ffind_operation_coding_system, Sfind_operation_coding_system, 1, MANY, 0, "Choose a coding system for an operation based on the target name.\n\ The value names a pair of coding systems: (DECODING-SYSTEM ENCODING-SYSTEM).\n\ DECODING-SYSTEM is the coding system to use for decoding\n\ \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\ for encoding (in case OPERATION does encoding).\n\ \n\ The first argument OPERATION specifies an I/O primitive:\n\ For file I/O, `insert-file-contents' or `write-region'.\n\ For process I/O, `call-process', `call-process-region', or `start-process'.\n\ For network I/O, `open-network-stream'.\n\ \n\ The remaining arguments should be the same arguments that were passed\n\ to the primitive. Depending on which primitive, one of those arguments\n\ is selected as the TARGET. For example, if OPERATION does file I/O,\n\ whichever argument specifies the file name is TARGET.\n\ \n\ TARGET has a meaning which depends on OPERATION:\n\ For file I/O, TARGET is a file name.\n\ For process I/O, TARGET is a process name.\n\ For network I/O, TARGET is a service name or a port number\n\ \n\ This function looks up what specified for TARGET in,\n\ `file-coding-system-alist', `process-coding-system-alist',\n\ or `network-coding-system-alist' depending on OPERATION.\n\ They may specify a coding system, a cons of coding systems,\n\ or a function symbol to call.\n\ In the last case, we call the function with one argument,\n\ which is a list of all the arguments given to this function.") (nargs, args) int nargs; Lisp_Object *args; { Lisp_Object operation, target_idx, target, val; register Lisp_Object chain; if (nargs < 2) error ("Too few arguments"); operation = args[0]; if (!SYMBOLP (operation) || !INTEGERP (target_idx = Fget (operation, Qtarget_idx))) error ("Invalid first arguement"); if (nargs < 1 + XINT (target_idx)) error ("Too few arguments for operation: %s", XSYMBOL (operation)->name->data); target = args[XINT (target_idx) + 1]; if (!(STRINGP (target) || (EQ (operation, Qopen_network_stream) && INTEGERP (target)))) error ("Invalid %dth argument", XINT (target_idx) + 1); chain = ((EQ (operation, Qinsert_file_contents) || EQ (operation, Qwrite_region)) ? Vfile_coding_system_alist : (EQ (operation, Qopen_network_stream) ? Vnetwork_coding_system_alist : Vprocess_coding_system_alist)); if (NILP (chain)) return Qnil; for (; CONSP (chain); chain = XCONS (chain)->cdr) { Lisp_Object elt; elt = XCONS (chain)->car; if (CONSP (elt) && ((STRINGP (target) && STRINGP (XCONS (elt)->car) && fast_string_match (XCONS (elt)->car, target) >= 0) || (INTEGERP (target) && EQ (target, XCONS (elt)->car)))) { val = XCONS (elt)->cdr; /* Here, if VAL is both a valid coding system and a valid function symbol, we return VAL as a coding system. */ if (CONSP (val)) return val; if (! SYMBOLP (val)) return Qnil; if (! NILP (Fcoding_system_p (val))) return Fcons (val, val); if (! NILP (Ffboundp (val))) { val = call1 (val, Flist (nargs, args)); if (CONSP (val)) return val; if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val))) return Fcons (val, val); } return Qnil; } } return Qnil; } #endif /* emacs */ /*** 8. Post-amble ***/ init_coding_once () { int i; /* Emacs' internal format specific initialize routine. */ for (i = 0; i <= 0x20; i++) emacs_code_class[i] = EMACS_control_code; emacs_code_class[0x0A] = EMACS_linefeed_code; emacs_code_class[0x0D] = EMACS_carriage_return_code; for (i = 0x21 ; i < 0x7F; i++) emacs_code_class[i] = EMACS_ascii_code; emacs_code_class[0x7F] = EMACS_control_code; emacs_code_class[0x80] = EMACS_leading_code_composition; for (i = 0x81; i < 0xFF; i++) emacs_code_class[i] = EMACS_invalid_code; emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3; emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3; emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4; emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4; /* ISO2022 specific initialize routine. */ for (i = 0; i < 0x20; i++) iso_code_class[i] = ISO_control_code; for (i = 0x21; i < 0x7F; i++) iso_code_class[i] = ISO_graphic_plane_0; for (i = 0x80; i < 0xA0; i++) iso_code_class[i] = ISO_control_code; for (i = 0xA1; i < 0xFF; i++) iso_code_class[i] = ISO_graphic_plane_1; iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F; iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF; iso_code_class[ISO_CODE_CR] = ISO_carriage_return; iso_code_class[ISO_CODE_SO] = ISO_shift_out; iso_code_class[ISO_CODE_SI] = ISO_shift_in; iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7; iso_code_class[ISO_CODE_ESC] = ISO_escape; iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2; iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3; iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer; conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE; conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE); setup_coding_system (Qnil, &keyboard_coding); setup_coding_system (Qnil, &terminal_coding); setup_coding_system (Qnil, &safe_terminal_coding); #if defined (MSDOS) || defined (WINDOWSNT) system_eol_type = CODING_EOL_CRLF; #else system_eol_type = CODING_EOL_LF; #endif } #ifdef emacs syms_of_coding () { Qtarget_idx = intern ("target-idx"); staticpro (&Qtarget_idx); Qcoding_system_history = intern ("coding-system-history"); staticpro (&Qcoding_system_history); Fset (Qcoding_system_history, Qnil); /* Target FILENAME is the first argument. */ Fput (Qinsert_file_contents, Qtarget_idx, make_number (0)); /* Target FILENAME is the third argument. */ Fput (Qwrite_region, Qtarget_idx, make_number (2)); Qcall_process = intern ("call-process"); staticpro (&Qcall_process); /* Target PROGRAM is the first argument. */ Fput (Qcall_process, Qtarget_idx, make_number (0)); Qcall_process_region = intern ("call-process-region"); staticpro (&Qcall_process_region); /* Target PROGRAM is the third argument. */ Fput (Qcall_process_region, Qtarget_idx, make_number (2)); Qstart_process = intern ("start-process"); staticpro (&Qstart_process); /* Target PROGRAM is the third argument. */ Fput (Qstart_process, Qtarget_idx, make_number (2)); Qopen_network_stream = intern ("open-network-stream"); staticpro (&Qopen_network_stream); /* Target SERVICE is the fourth argument. */ Fput (Qopen_network_stream, Qtarget_idx, make_number (3)); Qcoding_system = intern ("coding-system"); staticpro (&Qcoding_system); Qeol_type = intern ("eol-type"); staticpro (&Qeol_type); Qbuffer_file_coding_system = intern ("buffer-file-coding-system"); staticpro (&Qbuffer_file_coding_system); Qpost_read_conversion = intern ("post-read-conversion"); staticpro (&Qpost_read_conversion); Qpre_write_conversion = intern ("pre-write-conversion"); staticpro (&Qpre_write_conversion); Qno_conversion = intern ("no-conversion"); staticpro (&Qno_conversion); Qundecided = intern ("undecided"); staticpro (&Qundecided); Qcoding_system_spec = intern ("coding-system-spec"); staticpro (&Qcoding_system_spec); Qcoding_system_p = intern ("coding-system-p"); staticpro (&Qcoding_system_p); Qcoding_system_error = intern ("coding-system-error"); staticpro (&Qcoding_system_error); Fput (Qcoding_system_error, Qerror_conditions, Fcons (Qcoding_system_error, Fcons (Qerror, Qnil))); Fput (Qcoding_system_error, Qerror_message, build_string ("Invalid coding system")); Qcoding_category_index = intern ("coding-category-index"); staticpro (&Qcoding_category_index); { int i; for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++) { coding_category_table[i] = intern (coding_category_name[i]); staticpro (&coding_category_table[i]); Fput (coding_category_table[i], Qcoding_category_index, make_number (i)); } } Qcharacter_unification_table = intern ("character-unification-table"); staticpro (&Qcharacter_unification_table); Fput (Qcharacter_unification_table, Qchar_table_extra_slots, make_number (0)); Qcharacter_unification_table_for_decode = intern ("character-unification-table-for-decode"); staticpro (&Qcharacter_unification_table_for_decode); Qcharacter_unification_table_for_encode = intern ("character-unification-table-for-encode"); staticpro (&Qcharacter_unification_table_for_encode); Qemacs_mule = intern ("emacs-mule"); staticpro (&Qemacs_mule); defsubr (&Scoding_system_spec); defsubr (&Scoding_system_p); defsubr (&Sread_coding_system); defsubr (&Sread_non_nil_coding_system); defsubr (&Scheck_coding_system); defsubr (&Sdetect_coding_region); defsubr (&Sdecode_coding_region); defsubr (&Sencode_coding_region); defsubr (&Sdecode_coding_string); defsubr (&Sencode_coding_string); defsubr (&Sdecode_sjis_char); defsubr (&Sencode_sjis_char); defsubr (&Sdecode_big5_char); defsubr (&Sencode_big5_char); defsubr (&Sset_terminal_coding_system_internal); defsubr (&Sset_safe_terminal_coding_system_internal); defsubr (&Sterminal_coding_system); defsubr (&Sset_keyboard_coding_system_internal); defsubr (&Skeyboard_coding_system); defsubr (&Sfind_operation_coding_system); DEFVAR_LISP ("coding-category-list", &Vcoding_category_list, "List of coding-categories (symbols) ordered by priority."); { int i; Vcoding_category_list = Qnil; for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--) Vcoding_category_list = Fcons (coding_category_table[i], Vcoding_category_list); } DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read, "Specify the coding system for read operations.\n\ It is useful to bind this variable with `let', but do not set it globally.\n\ If the value is a coding system, it is used for decoding on read operation.\n\ If not, an appropriate element is used from one of the coding system alists:\n\ There are three such tables, `file-coding-system-alist',\n\ `process-coding-system-alist', and `network-coding-system-alist'."); Vcoding_system_for_read = Qnil; DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write, "Specify the coding system for write operations.\n\ It is useful to bind this variable with `let', but do not set it globally.\n\ If the value is a coding system, it is used for encoding on write operation.\n\ If not, an appropriate element is used from one of the coding system alists:\n\ There are three such tables, `file-coding-system-alist',\n\ `process-coding-system-alist', and `network-coding-system-alist'."); Vcoding_system_for_write = Qnil; DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used, "Coding system used in the latest file or process I/O."); Vlast_coding_system_used = Qnil; DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion, "*Non-nil inhibit code conversion of end-of-line format in any cases."); inhibit_eol_conversion = 0; DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist, "Alist to decide a coding system to use for a file I/O operation.\n\ The format is ((PATTERN . VAL) ...),\n\ where PATTERN is a regular expression matching a file name,\n\ VAL is a coding system, a cons of coding systems, or a function symbol.\n\ If VAL is a coding system, it is used for both decoding and encoding\n\ the file contents.\n\ If VAL is a cons of coding systems, the car part is used for decoding,\n\ and the cdr part is used for encoding.\n\ If VAL is a function symbol, the function must return a coding system\n\ or a cons of coding systems which are used as above.\n\ \n\ See also the function `find-operation-coding-system'."); Vfile_coding_system_alist = Qnil; DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist, "Alist to decide a coding system to use for a process I/O operation.\n\ The format is ((PATTERN . VAL) ...),\n\ where PATTERN is a regular expression matching a program name,\n\ VAL is a coding system, a cons of coding systems, or a function symbol.\n\ If VAL is a coding system, it is used for both decoding what received\n\ from the program and encoding what sent to the program.\n\ If VAL is a cons of coding systems, the car part is used for decoding,\n\ and the cdr part is used for encoding.\n\ If VAL is a function symbol, the function must return a coding system\n\ or a cons of coding systems which are used as above.\n\ \n\ See also the function `find-operation-coding-system'."); Vprocess_coding_system_alist = Qnil; DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist, "Alist to decide a coding system to use for a network I/O operation.\n\ The format is ((PATTERN . VAL) ...),\n\ where PATTERN is a regular expression matching a network service name\n\ or is a port number to connect to,\n\ VAL is a coding system, a cons of coding systems, or a function symbol.\n\ If VAL is a coding system, it is used for both decoding what received\n\ from the network stream and encoding what sent to the network stream.\n\ If VAL is a cons of coding systems, the car part is used for decoding,\n\ and the cdr part is used for encoding.\n\ If VAL is a function symbol, the function must return a coding system\n\ or a cons of coding systems which are used as above.\n\ \n\ See also the function `find-operation-coding-system'."); Vnetwork_coding_system_alist = Qnil; DEFVAR_INT ("eol-mnemonic-unix", &eol_mnemonic_unix, "Mnemonic character indicating UNIX-like end-of-line format (i.e. LF) ."); eol_mnemonic_unix = ':'; DEFVAR_INT ("eol-mnemonic-dos", &eol_mnemonic_dos, "Mnemonic character indicating DOS-like end-of-line format (i.e. CRLF)."); eol_mnemonic_dos = '\\'; DEFVAR_INT ("eol-mnemonic-mac", &eol_mnemonic_mac, "Mnemonic character indicating MAC-like end-of-line format (i.e. CR)."); eol_mnemonic_mac = '/'; DEFVAR_INT ("eol-mnemonic-undecided", &eol_mnemonic_undecided, "Mnemonic character indicating end-of-line format is not yet decided."); eol_mnemonic_undecided = ':'; DEFVAR_LISP ("enable-character-unification", &Venable_character_unification, "Non-nil means ISO 2022 encoder/decoder do character unification."); Venable_character_unification = Qt; DEFVAR_LISP ("standard-character-unification-table-for-decode", &Vstandard_character_unification_table_for_decode, "Table for unifying characters when reading."); Vstandard_character_unification_table_for_decode = Qnil; DEFVAR_LISP ("standard-character-unification-table-for-encode", &Vstandard_character_unification_table_for_encode, "Table for unifying characters when writing."); Vstandard_character_unification_table_for_encode = Qnil; DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist, "Alist of charsets vs revision numbers.\n\ While encoding, if a charset (car part of an element) is found,\n\ designate it with the escape sequence identifing revision (cdr part of the element)."); Vcharset_revision_alist = Qnil; DEFVAR_LISP ("default-process-coding-system", &Vdefault_process_coding_system, "Cons of coding systems used for process I/O by default.\n\ The car part is used for decoding a process output,\n\ the cdr part is used for encoding a text to be sent to a process."); Vdefault_process_coding_system = Qnil; DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table, "Table of extra Latin codes in the range 128..159 (inclusive).\n\ This is a vector of length 256.\n\ If Nth element is non-nil, the existence of code N in a file\n\ \(or output of subprocess) doesn't prevent it to be detected as\n\ a coding system of ISO 2022 variant which has a flag\n\ `accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\ or reading output of a subprocess.\n\ Only 128th through 159th elements has a meaning."); Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil); } #endif /* emacs */