/* Execution of byte code produced by bytecomp.el.
Copyright (C) 1985-1988, 1993, 2000-2011 Free Software Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see . */
/*
hacked on by jwz@lucid.com 17-jun-91
o added a compile-time switch to turn on simple sanity checking;
o put back the obsolete byte-codes for error-detection;
o added a new instruction, unbind_all, which I will use for
tail-recursion elimination;
o made temp_output_buffer_show be called with the right number
of args;
o made the new bytecodes be called with args in the right order;
o added metering support.
by Hallvard:
o added relative jump instructions;
o all conditionals now only do QUIT if they jump.
*/
#include
#include
#include "lisp.h"
#include "buffer.h"
#include "character.h"
#include "syntax.h"
#include "window.h"
#ifdef CHECK_FRAME_FONT
#include "frame.h"
#include "xterm.h"
#endif
/*
* define BYTE_CODE_SAFE to enable some minor sanity checking (useful for
* debugging the byte compiler...)
*
* define BYTE_CODE_METER to enable generation of a byte-op usage histogram.
*/
/* #define BYTE_CODE_SAFE */
/* #define BYTE_CODE_METER */
#ifdef BYTE_CODE_METER
Lisp_Object Qbyte_code_meter;
#define METER_2(code1, code2) \
XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \
->contents[(code2)])
#define METER_1(code) METER_2 (0, (code))
#define METER_CODE(last_code, this_code) \
{ \
if (byte_metering_on) \
{ \
if (METER_1 (this_code) < MOST_POSITIVE_FIXNUM) \
METER_1 (this_code)++; \
if (last_code \
&& METER_2 (last_code, this_code) < MOST_POSITIVE_FIXNUM) \
METER_2 (last_code, this_code)++; \
} \
}
#endif /* BYTE_CODE_METER */
Lisp_Object Qbytecode;
/* Byte codes: */
#define Bstack_ref 0 /* Actually, Bstack_ref+0 is not implemented: use dup. */
#define Bvarref 010
#define Bvarset 020
#define Bvarbind 030
#define Bcall 040
#define Bunbind 050
#define Bnth 070
#define Bsymbolp 071
#define Bconsp 072
#define Bstringp 073
#define Blistp 074
#define Beq 075
#define Bmemq 076
#define Bnot 077
#define Bcar 0100
#define Bcdr 0101
#define Bcons 0102
#define Blist1 0103
#define Blist2 0104
#define Blist3 0105
#define Blist4 0106
#define Blength 0107
#define Baref 0110
#define Baset 0111
#define Bsymbol_value 0112
#define Bsymbol_function 0113
#define Bset 0114
#define Bfset 0115
#define Bget 0116
#define Bsubstring 0117
#define Bconcat2 0120
#define Bconcat3 0121
#define Bconcat4 0122
#define Bsub1 0123
#define Badd1 0124
#define Beqlsign 0125
#define Bgtr 0126
#define Blss 0127
#define Bleq 0130
#define Bgeq 0131
#define Bdiff 0132
#define Bnegate 0133
#define Bplus 0134
#define Bmax 0135
#define Bmin 0136
#define Bmult 0137
#define Bpoint 0140
/* Was Bmark in v17. */
#define Bsave_current_buffer 0141 /* Obsolete. */
#define Bgoto_char 0142
#define Binsert 0143
#define Bpoint_max 0144
#define Bpoint_min 0145
#define Bchar_after 0146
#define Bfollowing_char 0147
#define Bpreceding_char 0150
#define Bcurrent_column 0151
#define Bindent_to 0152
#ifdef BYTE_CODE_SAFE
#define Bscan_buffer 0153 /* No longer generated as of v18. */
#endif
#define Beolp 0154
#define Beobp 0155
#define Bbolp 0156
#define Bbobp 0157
#define Bcurrent_buffer 0160
#define Bset_buffer 0161
#define Bsave_current_buffer_1 0162 /* Replacing Bsave_current_buffer. */
#if 0
#define Bread_char 0162 /* No longer generated as of v19 */
#endif
#ifdef BYTE_CODE_SAFE
#define Bset_mark 0163 /* this loser is no longer generated as of v18 */
#endif
#define Binteractive_p 0164 /* Obsolete since Emacs-24.1. */
#define Bforward_char 0165
#define Bforward_word 0166
#define Bskip_chars_forward 0167
#define Bskip_chars_backward 0170
#define Bforward_line 0171
#define Bchar_syntax 0172
#define Bbuffer_substring 0173
#define Bdelete_region 0174
#define Bnarrow_to_region 0175
#define Bwiden 0176
#define Bend_of_line 0177
#define Bconstant2 0201
#define Bgoto 0202
#define Bgotoifnil 0203
#define Bgotoifnonnil 0204
#define Bgotoifnilelsepop 0205
#define Bgotoifnonnilelsepop 0206
#define Breturn 0207
#define Bdiscard 0210
#define Bdup 0211
#define Bsave_excursion 0212
#define Bsave_window_excursion 0213 /* Obsolete since Emacs-24.1. */
#define Bsave_restriction 0214
#define Bcatch 0215
#define Bunwind_protect 0216
#define Bcondition_case 0217
#define Btemp_output_buffer_setup 0220 /* Obsolete since Emacs-24.1. */
#define Btemp_output_buffer_show 0221 /* Obsolete since Emacs-24.1. */
#define Bunbind_all 0222 /* Obsolete. Never used. */
#define Bset_marker 0223
#define Bmatch_beginning 0224
#define Bmatch_end 0225
#define Bupcase 0226
#define Bdowncase 0227
#define Bstringeqlsign 0230
#define Bstringlss 0231
#define Bequal 0232
#define Bnthcdr 0233
#define Belt 0234
#define Bmember 0235
#define Bassq 0236
#define Bnreverse 0237
#define Bsetcar 0240
#define Bsetcdr 0241
#define Bcar_safe 0242
#define Bcdr_safe 0243
#define Bnconc 0244
#define Bquo 0245
#define Brem 0246
#define Bnumberp 0247
#define Bintegerp 0250
#define BRgoto 0252
#define BRgotoifnil 0253
#define BRgotoifnonnil 0254
#define BRgotoifnilelsepop 0255
#define BRgotoifnonnilelsepop 0256
#define BlistN 0257
#define BconcatN 0260
#define BinsertN 0261
/* Bstack_ref is code 0. */
#define Bstack_set 0262
#define Bstack_set2 0263
#define BdiscardN 0266
#define Bconstant 0300
/* Whether to maintain a `top' and `bottom' field in the stack frame. */
#define BYTE_MAINTAIN_TOP (BYTE_CODE_SAFE || BYTE_MARK_STACK)
/* Structure describing a value stack used during byte-code execution
in Fbyte_code. */
struct byte_stack
{
/* Program counter. This points into the byte_string below
and is relocated when that string is relocated. */
const unsigned char *pc;
/* Top and bottom of stack. The bottom points to an area of memory
allocated with alloca in Fbyte_code. */
#if BYTE_MAINTAIN_TOP
Lisp_Object *top, *bottom;
#endif
/* The string containing the byte-code, and its current address.
Storing this here protects it from GC because mark_byte_stack
marks it. */
Lisp_Object byte_string;
const unsigned char *byte_string_start;
/* The vector of constants used during byte-code execution. Storing
this here protects it from GC because mark_byte_stack marks it. */
Lisp_Object constants;
/* Next entry in byte_stack_list. */
struct byte_stack *next;
};
/* A list of currently active byte-code execution value stacks.
Fbyte_code adds an entry to the head of this list before it starts
processing byte-code, and it removed the entry again when it is
done. Signalling an error truncates the list analoguous to
gcprolist. */
struct byte_stack *byte_stack_list;
/* Mark objects on byte_stack_list. Called during GC. */
#if BYTE_MARK_STACK
void
mark_byte_stack (void)
{
struct byte_stack *stack;
Lisp_Object *obj;
for (stack = byte_stack_list; stack; stack = stack->next)
{
/* If STACK->top is null here, this means there's an opcode in
Fbyte_code that wasn't expected to GC, but did. To find out
which opcode this is, record the value of `stack', and walk
up the stack in a debugger, stopping in frames of Fbyte_code.
The culprit is found in the frame of Fbyte_code where the
address of its local variable `stack' is equal to the
recorded value of `stack' here. */
eassert (stack->top);
for (obj = stack->bottom; obj <= stack->top; ++obj)
mark_object (*obj);
mark_object (stack->byte_string);
mark_object (stack->constants);
}
}
#endif
/* Unmark objects in the stacks on byte_stack_list. Relocate program
counters. Called when GC has completed. */
void
unmark_byte_stack (void)
{
struct byte_stack *stack;
for (stack = byte_stack_list; stack; stack = stack->next)
{
if (stack->byte_string_start != SDATA (stack->byte_string))
{
int offset = stack->pc - stack->byte_string_start;
stack->byte_string_start = SDATA (stack->byte_string);
stack->pc = stack->byte_string_start + offset;
}
}
}
/* Fetch the next byte from the bytecode stream */
#define FETCH *stack.pc++
/* Fetch two bytes from the bytecode stream and make a 16-bit number
out of them */
#define FETCH2 (op = FETCH, op + (FETCH << 8))
/* Push x onto the execution stack. This used to be #define PUSH(x)
(*++stackp = (x)) This oddity is necessary because Alliant can't be
bothered to compile the preincrement operator properly, as of 4/91.
-JimB */
#define PUSH(x) (top++, *top = (x))
/* Pop a value off the execution stack. */
#define POP (*top--)
/* Discard n values from the execution stack. */
#define DISCARD(n) (top -= (n))
/* Get the value which is at the top of the execution stack, but don't
pop it. */
#define TOP (*top)
/* Actions that must be performed before and after calling a function
that might GC. */
#if !BYTE_MAINTAIN_TOP
#define BEFORE_POTENTIAL_GC() ((void)0)
#define AFTER_POTENTIAL_GC() ((void)0)
#else
#define BEFORE_POTENTIAL_GC() stack.top = top
#define AFTER_POTENTIAL_GC() stack.top = NULL
#endif
/* Garbage collect if we have consed enough since the last time.
We do this at every branch, to avoid loops that never GC. */
#define MAYBE_GC() \
do { \
if (consing_since_gc > gc_cons_threshold \
&& consing_since_gc > gc_relative_threshold) \
{ \
BEFORE_POTENTIAL_GC (); \
Fgarbage_collect (); \
AFTER_POTENTIAL_GC (); \
} \
} while (0)
/* Check for jumping out of range. */
#ifdef BYTE_CODE_SAFE
#define CHECK_RANGE(ARG) \
if (ARG >= bytestr_length) abort ()
#else /* not BYTE_CODE_SAFE */
#define CHECK_RANGE(ARG)
#endif /* not BYTE_CODE_SAFE */
/* A version of the QUIT macro which makes sure that the stack top is
set before signaling `quit'. */
#define BYTE_CODE_QUIT \
do { \
if (!NILP (Vquit_flag) && NILP (Vinhibit_quit)) \
{ \
Lisp_Object flag = Vquit_flag; \
Vquit_flag = Qnil; \
BEFORE_POTENTIAL_GC (); \
if (EQ (Vthrow_on_input, flag)) \
Fthrow (Vthrow_on_input, Qt); \
Fsignal (Qquit, Qnil); \
AFTER_POTENTIAL_GC (); \
} \
ELSE_PENDING_SIGNALS \
} while (0)
DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0,
doc: /* Function used internally in byte-compiled code.
The first argument, BYTESTR, is a string of byte code;
the second, VECTOR, a vector of constants;
the third, MAXDEPTH, the maximum stack depth used in this function.
If the third argument is incorrect, Emacs may crash. */)
(Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth)
{
return exec_byte_code (bytestr, vector, maxdepth, Qnil, 0, NULL);
}
/* Execute the byte-code in BYTESTR. VECTOR is the constant vector, and
MAXDEPTH is the maximum stack depth used (if MAXDEPTH is incorrect,
emacs may crash!). If ARGS_TEMPLATE is non-nil, it should be a lisp
argument list (including &rest, &optional, etc.), and ARGS, of size
NARGS, should be a vector of the actual arguments. The arguments in
ARGS are pushed on the stack according to ARGS_TEMPLATE before
executing BYTESTR. */
Lisp_Object
exec_byte_code (Lisp_Object bytestr, Lisp_Object vector, Lisp_Object maxdepth,
Lisp_Object args_template, ptrdiff_t nargs, Lisp_Object *args)
{
int count = SPECPDL_INDEX ();
#ifdef BYTE_CODE_METER
int this_op = 0;
int prev_op;
#endif
int op;
/* Lisp_Object v1, v2; */
Lisp_Object *vectorp;
#ifdef BYTE_CODE_SAFE
ptrdiff_t const_length;
Lisp_Object *stacke;
int bytestr_length;
#endif
struct byte_stack stack;
Lisp_Object *top;
Lisp_Object result;
#if 0 /* CHECK_FRAME_FONT */
{
struct frame *f = SELECTED_FRAME ();
if (FRAME_X_P (f)
&& FRAME_FONT (f)->direction != 0
&& FRAME_FONT (f)->direction != 1)
abort ();
}
#endif
CHECK_STRING (bytestr);
CHECK_VECTOR (vector);
CHECK_NATNUM (maxdepth);
#ifdef BYTE_CODE_SAFE
const_length = ASIZE (vector);
#endif
if (STRING_MULTIBYTE (bytestr))
/* BYTESTR must have been produced by Emacs 20.2 or the earlier
because they produced a raw 8-bit string for byte-code and now
such a byte-code string is loaded as multibyte while raw 8-bit
characters converted to multibyte form. Thus, now we must
convert them back to the originally intended unibyte form. */
bytestr = Fstring_as_unibyte (bytestr);
#ifdef BYTE_CODE_SAFE
bytestr_length = SBYTES (bytestr);
#endif
vectorp = XVECTOR (vector)->contents;
stack.byte_string = bytestr;
stack.pc = stack.byte_string_start = SDATA (bytestr);
stack.constants = vector;
if (min (PTRDIFF_MAX, SIZE_MAX) / sizeof (Lisp_Object) < XFASTINT (maxdepth))
memory_full (SIZE_MAX);
top = (Lisp_Object *) alloca (XFASTINT (maxdepth)
* sizeof (Lisp_Object));
#if BYTE_MAINTAIN_TOP
stack.bottom = top;
stack.top = NULL;
#endif
top -= 1;
stack.next = byte_stack_list;
byte_stack_list = &stack;
#ifdef BYTE_CODE_SAFE
stacke = stack.bottom - 1 + XFASTINT (maxdepth);
#endif
if (INTEGERP (args_template))
{
ptrdiff_t at = XINT (args_template);
int rest = at & 128;
int mandatory = at & 127;
ptrdiff_t nonrest = at >> 8;
eassert (mandatory <= nonrest);
if (nargs <= nonrest)
{
ptrdiff_t i;
for (i = 0 ; i < nargs; i++, args++)
PUSH (*args);
if (nargs < mandatory)
/* Too few arguments. */
Fsignal (Qwrong_number_of_arguments,
Fcons (Fcons (make_number (mandatory),
rest ? Qand_rest : make_number (nonrest)),
Fcons (make_number (nargs), Qnil)));
else
{
for (; i < nonrest; i++)
PUSH (Qnil);
if (rest)
PUSH (Qnil);
}
}
else if (rest)
{
ptrdiff_t i;
for (i = 0 ; i < nonrest; i++, args++)
PUSH (*args);
PUSH (Flist (nargs - nonrest, args));
}
else
/* Too many arguments. */
Fsignal (Qwrong_number_of_arguments,
Fcons (Fcons (make_number (mandatory),
make_number (nonrest)),
Fcons (make_number (nargs), Qnil)));
}
else if (! NILP (args_template))
/* We should push some arguments on the stack. */
{
error ("Unknown args template!");
}
while (1)
{
#ifdef BYTE_CODE_SAFE
if (top > stacke)
abort ();
else if (top < stack.bottom - 1)
abort ();
#endif
#ifdef BYTE_CODE_METER
prev_op = this_op;
this_op = op = FETCH;
METER_CODE (prev_op, op);
#else
op = FETCH;
#endif
switch (op)
{
case Bvarref + 7:
op = FETCH2;
goto varref;
case Bvarref:
case Bvarref + 1:
case Bvarref + 2:
case Bvarref + 3:
case Bvarref + 4:
case Bvarref + 5:
op = op - Bvarref;
goto varref;
/* This seems to be the most frequently executed byte-code
among the Bvarref's, so avoid a goto here. */
case Bvarref+6:
op = FETCH;
varref:
{
Lisp_Object v1, v2;
v1 = vectorp[op];
if (SYMBOLP (v1))
{
if (XSYMBOL (v1)->redirect != SYMBOL_PLAINVAL
|| (v2 = SYMBOL_VAL (XSYMBOL (v1)),
EQ (v2, Qunbound)))
{
BEFORE_POTENTIAL_GC ();
v2 = Fsymbol_value (v1);
AFTER_POTENTIAL_GC ();
}
}
else
{
BEFORE_POTENTIAL_GC ();
v2 = Fsymbol_value (v1);
AFTER_POTENTIAL_GC ();
}
PUSH (v2);
break;
}
case Bgotoifnil:
{
Lisp_Object v1;
MAYBE_GC ();
op = FETCH2;
v1 = POP;
if (NILP (v1))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
break;
}
case Bcar:
{
Lisp_Object v1;
v1 = TOP;
if (CONSP (v1))
TOP = XCAR (v1);
else if (NILP (v1))
TOP = Qnil;
else
{
BEFORE_POTENTIAL_GC ();
wrong_type_argument (Qlistp, v1);
AFTER_POTENTIAL_GC ();
}
break;
}
case Beq:
{
Lisp_Object v1;
v1 = POP;
TOP = EQ (v1, TOP) ? Qt : Qnil;
break;
}
case Bmemq:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fmemq (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bcdr:
{
Lisp_Object v1;
v1 = TOP;
if (CONSP (v1))
TOP = XCDR (v1);
else if (NILP (v1))
TOP = Qnil;
else
{
BEFORE_POTENTIAL_GC ();
wrong_type_argument (Qlistp, v1);
AFTER_POTENTIAL_GC ();
}
break;
break;
}
case Bvarset:
case Bvarset+1:
case Bvarset+2:
case Bvarset+3:
case Bvarset+4:
case Bvarset+5:
op -= Bvarset;
goto varset;
case Bvarset+7:
op = FETCH2;
goto varset;
case Bvarset+6:
op = FETCH;
varset:
{
Lisp_Object sym, val;
sym = vectorp[op];
val = TOP;
/* Inline the most common case. */
if (SYMBOLP (sym)
&& !EQ (val, Qunbound)
&& !XSYMBOL (sym)->redirect
&& !SYMBOL_CONSTANT_P (sym))
XSYMBOL (sym)->val.value = val;
else
{
BEFORE_POTENTIAL_GC ();
set_internal (sym, val, Qnil, 0);
AFTER_POTENTIAL_GC ();
}
}
(void) POP;
break;
case Bdup:
{
Lisp_Object v1;
v1 = TOP;
PUSH (v1);
break;
}
/* ------------------ */
case Bvarbind+6:
op = FETCH;
goto varbind;
case Bvarbind+7:
op = FETCH2;
goto varbind;
case Bvarbind:
case Bvarbind+1:
case Bvarbind+2:
case Bvarbind+3:
case Bvarbind+4:
case Bvarbind+5:
op -= Bvarbind;
varbind:
/* Specbind can signal and thus GC. */
BEFORE_POTENTIAL_GC ();
specbind (vectorp[op], POP);
AFTER_POTENTIAL_GC ();
break;
case Bcall+6:
op = FETCH;
goto docall;
case Bcall+7:
op = FETCH2;
goto docall;
case Bcall:
case Bcall+1:
case Bcall+2:
case Bcall+3:
case Bcall+4:
case Bcall+5:
op -= Bcall;
docall:
{
BEFORE_POTENTIAL_GC ();
DISCARD (op);
#ifdef BYTE_CODE_METER
if (byte_metering_on && SYMBOLP (TOP))
{
Lisp_Object v1, v2;
v1 = TOP;
v2 = Fget (v1, Qbyte_code_meter);
if (INTEGERP (v2)
&& XINT (v2) < MOST_POSITIVE_FIXNUM)
{
XSETINT (v2, XINT (v2) + 1);
Fput (v1, Qbyte_code_meter, v2);
}
}
#endif
TOP = Ffuncall (op + 1, &TOP);
AFTER_POTENTIAL_GC ();
break;
}
case Bunbind+6:
op = FETCH;
goto dounbind;
case Bunbind+7:
op = FETCH2;
goto dounbind;
case Bunbind:
case Bunbind+1:
case Bunbind+2:
case Bunbind+3:
case Bunbind+4:
case Bunbind+5:
op -= Bunbind;
dounbind:
BEFORE_POTENTIAL_GC ();
unbind_to (SPECPDL_INDEX () - op, Qnil);
AFTER_POTENTIAL_GC ();
break;
case Bunbind_all: /* Obsolete. Never used. */
/* To unbind back to the beginning of this frame. Not used yet,
but will be needed for tail-recursion elimination. */
BEFORE_POTENTIAL_GC ();
unbind_to (count, Qnil);
AFTER_POTENTIAL_GC ();
break;
case Bgoto:
MAYBE_GC ();
BYTE_CODE_QUIT;
op = FETCH2; /* pc = FETCH2 loses since FETCH2 contains pc++ */
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
break;
case Bgotoifnonnil:
{
Lisp_Object v1;
MAYBE_GC ();
op = FETCH2;
v1 = POP;
if (!NILP (v1))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
break;
}
case Bgotoifnilelsepop:
MAYBE_GC ();
op = FETCH2;
if (NILP (TOP))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
else DISCARD (1);
break;
case Bgotoifnonnilelsepop:
MAYBE_GC ();
op = FETCH2;
if (!NILP (TOP))
{
BYTE_CODE_QUIT;
CHECK_RANGE (op);
stack.pc = stack.byte_string_start + op;
}
else DISCARD (1);
break;
case BRgoto:
MAYBE_GC ();
BYTE_CODE_QUIT;
stack.pc += (int) *stack.pc - 127;
break;
case BRgotoifnil:
{
Lisp_Object v1;
MAYBE_GC ();
v1 = POP;
if (NILP (v1))
{
BYTE_CODE_QUIT;
stack.pc += (int) *stack.pc - 128;
}
stack.pc++;
break;
}
case BRgotoifnonnil:
{
Lisp_Object v1;
MAYBE_GC ();
v1 = POP;
if (!NILP (v1))
{
BYTE_CODE_QUIT;
stack.pc += (int) *stack.pc - 128;
}
stack.pc++;
break;
}
case BRgotoifnilelsepop:
MAYBE_GC ();
op = *stack.pc++;
if (NILP (TOP))
{
BYTE_CODE_QUIT;
stack.pc += op - 128;
}
else DISCARD (1);
break;
case BRgotoifnonnilelsepop:
MAYBE_GC ();
op = *stack.pc++;
if (!NILP (TOP))
{
BYTE_CODE_QUIT;
stack.pc += op - 128;
}
else DISCARD (1);
break;
case Breturn:
result = POP;
goto exit;
case Bdiscard:
DISCARD (1);
break;
case Bconstant2:
PUSH (vectorp[FETCH2]);
break;
case Bsave_excursion:
record_unwind_protect (save_excursion_restore,
save_excursion_save ());
break;
case Bsave_current_buffer: /* Obsolete since ??. */
case Bsave_current_buffer_1:
record_unwind_protect (set_buffer_if_live, Fcurrent_buffer ());
break;
case Bsave_window_excursion: /* Obsolete since 24.1. */
{
register int count1 = SPECPDL_INDEX ();
record_unwind_protect (Fset_window_configuration,
Fcurrent_window_configuration (Qnil));
BEFORE_POTENTIAL_GC ();
TOP = Fprogn (TOP);
unbind_to (count1, TOP);
AFTER_POTENTIAL_GC ();
break;
}
case Bsave_restriction:
record_unwind_protect (save_restriction_restore,
save_restriction_save ());
break;
case Bcatch: /* FIXME: ill-suited for lexbind. */
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = internal_catch (TOP, eval_sub, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bunwind_protect: /* FIXME: avoid closure for lexbind. */
record_unwind_protect (Fprogn, POP);
break;
case Bcondition_case: /* FIXME: ill-suited for lexbind. */
{
Lisp_Object handlers, body;
handlers = POP;
body = POP;
BEFORE_POTENTIAL_GC ();
TOP = internal_lisp_condition_case (TOP, body, handlers);
AFTER_POTENTIAL_GC ();
break;
}
case Btemp_output_buffer_setup: /* Obsolete since 24.1. */
BEFORE_POTENTIAL_GC ();
CHECK_STRING (TOP);
temp_output_buffer_setup (SSDATA (TOP));
AFTER_POTENTIAL_GC ();
TOP = Vstandard_output;
break;
case Btemp_output_buffer_show: /* Obsolete since 24.1. */
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
temp_output_buffer_show (TOP);
TOP = v1;
/* pop binding of standard-output */
unbind_to (SPECPDL_INDEX () - 1, Qnil);
AFTER_POTENTIAL_GC ();
break;
}
case Bnth:
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v1 = POP;
v2 = TOP;
CHECK_NUMBER (v2);
op = XINT (v2);
immediate_quit = 1;
while (--op >= 0 && CONSP (v1))
v1 = XCDR (v1);
immediate_quit = 0;
TOP = CAR (v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bsymbolp:
TOP = SYMBOLP (TOP) ? Qt : Qnil;
break;
case Bconsp:
TOP = CONSP (TOP) ? Qt : Qnil;
break;
case Bstringp:
TOP = STRINGP (TOP) ? Qt : Qnil;
break;
case Blistp:
TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil;
break;
case Bnot:
TOP = NILP (TOP) ? Qt : Qnil;
break;
case Bcons:
{
Lisp_Object v1;
v1 = POP;
TOP = Fcons (TOP, v1);
break;
}
case Blist1:
TOP = Fcons (TOP, Qnil);
break;
case Blist2:
{
Lisp_Object v1;
v1 = POP;
TOP = Fcons (TOP, Fcons (v1, Qnil));
break;
}
case Blist3:
DISCARD (2);
TOP = Flist (3, &TOP);
break;
case Blist4:
DISCARD (3);
TOP = Flist (4, &TOP);
break;
case BlistN:
op = FETCH;
DISCARD (op - 1);
TOP = Flist (op, &TOP);
break;
case Blength:
BEFORE_POTENTIAL_GC ();
TOP = Flength (TOP);
AFTER_POTENTIAL_GC ();
break;
case Baref:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Faref (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Baset:
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v2 = POP; v1 = POP;
TOP = Faset (TOP, v1, v2);
AFTER_POTENTIAL_GC ();
break;
}
case Bsymbol_value:
BEFORE_POTENTIAL_GC ();
TOP = Fsymbol_value (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bsymbol_function:
BEFORE_POTENTIAL_GC ();
TOP = Fsymbol_function (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bset:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fset (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bfset:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Ffset (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bget:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fget (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bsubstring:
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v2 = POP; v1 = POP;
TOP = Fsubstring (TOP, v1, v2);
AFTER_POTENTIAL_GC ();
break;
}
case Bconcat2:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fconcat (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bconcat3:
BEFORE_POTENTIAL_GC ();
DISCARD (2);
TOP = Fconcat (3, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bconcat4:
BEFORE_POTENTIAL_GC ();
DISCARD (3);
TOP = Fconcat (4, &TOP);
AFTER_POTENTIAL_GC ();
break;
case BconcatN:
op = FETCH;
BEFORE_POTENTIAL_GC ();
DISCARD (op - 1);
TOP = Fconcat (op, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bsub1:
{
Lisp_Object v1;
v1 = TOP;
if (INTEGERP (v1))
{
XSETINT (v1, XINT (v1) - 1);
TOP = v1;
}
else
{
BEFORE_POTENTIAL_GC ();
TOP = Fsub1 (v1);
AFTER_POTENTIAL_GC ();
}
break;
}
case Badd1:
{
Lisp_Object v1;
v1 = TOP;
if (INTEGERP (v1))
{
XSETINT (v1, XINT (v1) + 1);
TOP = v1;
}
else
{
BEFORE_POTENTIAL_GC ();
TOP = Fadd1 (v1);
AFTER_POTENTIAL_GC ();
}
break;
}
case Beqlsign:
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v2 = POP; v1 = TOP;
CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1);
CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2);
AFTER_POTENTIAL_GC ();
if (FLOATP (v1) || FLOATP (v2))
{
double f1, f2;
f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1));
f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2));
TOP = (f1 == f2 ? Qt : Qnil);
}
else
TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil);
break;
}
case Bgtr:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fgtr (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Blss:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Flss (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bleq:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fleq (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bgeq:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fgeq (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bdiff:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fminus (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bnegate:
{
Lisp_Object v1;
v1 = TOP;
if (INTEGERP (v1))
{
XSETINT (v1, - XINT (v1));
TOP = v1;
}
else
{
BEFORE_POTENTIAL_GC ();
TOP = Fminus (1, &TOP);
AFTER_POTENTIAL_GC ();
}
break;
}
case Bplus:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fplus (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bmax:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fmax (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bmin:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fmin (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bmult:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Ftimes (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bquo:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fquo (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Brem:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Frem (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bpoint:
{
Lisp_Object v1;
XSETFASTINT (v1, PT);
PUSH (v1);
break;
}
case Bgoto_char:
BEFORE_POTENTIAL_GC ();
TOP = Fgoto_char (TOP);
AFTER_POTENTIAL_GC ();
break;
case Binsert:
BEFORE_POTENTIAL_GC ();
TOP = Finsert (1, &TOP);
AFTER_POTENTIAL_GC ();
break;
case BinsertN:
op = FETCH;
BEFORE_POTENTIAL_GC ();
DISCARD (op - 1);
TOP = Finsert (op, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bpoint_max:
{
Lisp_Object v1;
XSETFASTINT (v1, ZV);
PUSH (v1);
break;
}
case Bpoint_min:
{
Lisp_Object v1;
XSETFASTINT (v1, BEGV);
PUSH (v1);
break;
}
case Bchar_after:
BEFORE_POTENTIAL_GC ();
TOP = Fchar_after (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bfollowing_char:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = Ffollowing_char ();
AFTER_POTENTIAL_GC ();
PUSH (v1);
break;
}
case Bpreceding_char:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = Fprevious_char ();
AFTER_POTENTIAL_GC ();
PUSH (v1);
break;
}
case Bcurrent_column:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
XSETFASTINT (v1, current_column ());
AFTER_POTENTIAL_GC ();
PUSH (v1);
break;
}
case Bindent_to:
BEFORE_POTENTIAL_GC ();
TOP = Findent_to (TOP, Qnil);
AFTER_POTENTIAL_GC ();
break;
case Beolp:
PUSH (Feolp ());
break;
case Beobp:
PUSH (Feobp ());
break;
case Bbolp:
PUSH (Fbolp ());
break;
case Bbobp:
PUSH (Fbobp ());
break;
case Bcurrent_buffer:
PUSH (Fcurrent_buffer ());
break;
case Bset_buffer:
BEFORE_POTENTIAL_GC ();
TOP = Fset_buffer (TOP);
AFTER_POTENTIAL_GC ();
break;
case Binteractive_p: /* Obsolete since 24.1. */
PUSH (Finteractive_p ());
break;
case Bforward_char:
BEFORE_POTENTIAL_GC ();
TOP = Fforward_char (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bforward_word:
BEFORE_POTENTIAL_GC ();
TOP = Fforward_word (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bskip_chars_forward:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fskip_chars_forward (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bskip_chars_backward:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fskip_chars_backward (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bforward_line:
BEFORE_POTENTIAL_GC ();
TOP = Fforward_line (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bchar_syntax:
{
int c;
BEFORE_POTENTIAL_GC ();
CHECK_CHARACTER (TOP);
AFTER_POTENTIAL_GC ();
c = XFASTINT (TOP);
if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
MAKE_CHAR_MULTIBYTE (c);
XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (c)]);
}
break;
case Bbuffer_substring:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fbuffer_substring (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bdelete_region:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fdelete_region (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bnarrow_to_region:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fnarrow_to_region (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bwiden:
BEFORE_POTENTIAL_GC ();
PUSH (Fwiden ());
AFTER_POTENTIAL_GC ();
break;
case Bend_of_line:
BEFORE_POTENTIAL_GC ();
TOP = Fend_of_line (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bset_marker:
{
Lisp_Object v1, v2;
BEFORE_POTENTIAL_GC ();
v1 = POP;
v2 = POP;
TOP = Fset_marker (TOP, v2, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bmatch_beginning:
BEFORE_POTENTIAL_GC ();
TOP = Fmatch_beginning (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bmatch_end:
BEFORE_POTENTIAL_GC ();
TOP = Fmatch_end (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bupcase:
BEFORE_POTENTIAL_GC ();
TOP = Fupcase (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bdowncase:
BEFORE_POTENTIAL_GC ();
TOP = Fdowncase (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bstringeqlsign:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fstring_equal (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bstringlss:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fstring_lessp (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bequal:
{
Lisp_Object v1;
v1 = POP;
TOP = Fequal (TOP, v1);
break;
}
case Bnthcdr:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fnthcdr (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Belt:
{
Lisp_Object v1, v2;
if (CONSP (TOP))
{
/* Exchange args and then do nth. */
BEFORE_POTENTIAL_GC ();
v2 = POP;
v1 = TOP;
CHECK_NUMBER (v2);
AFTER_POTENTIAL_GC ();
op = XINT (v2);
immediate_quit = 1;
while (--op >= 0 && CONSP (v1))
v1 = XCDR (v1);
immediate_quit = 0;
TOP = CAR (v1);
}
else
{
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Felt (TOP, v1);
AFTER_POTENTIAL_GC ();
}
break;
}
case Bmember:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fmember (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bassq:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fassq (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bnreverse:
BEFORE_POTENTIAL_GC ();
TOP = Fnreverse (TOP);
AFTER_POTENTIAL_GC ();
break;
case Bsetcar:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fsetcar (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bsetcdr:
{
Lisp_Object v1;
BEFORE_POTENTIAL_GC ();
v1 = POP;
TOP = Fsetcdr (TOP, v1);
AFTER_POTENTIAL_GC ();
break;
}
case Bcar_safe:
{
Lisp_Object v1;
v1 = TOP;
TOP = CAR_SAFE (v1);
break;
}
case Bcdr_safe:
{
Lisp_Object v1;
v1 = TOP;
TOP = CDR_SAFE (v1);
break;
}
case Bnconc:
BEFORE_POTENTIAL_GC ();
DISCARD (1);
TOP = Fnconc (2, &TOP);
AFTER_POTENTIAL_GC ();
break;
case Bnumberp:
TOP = (NUMBERP (TOP) ? Qt : Qnil);
break;
case Bintegerp:
TOP = INTEGERP (TOP) ? Qt : Qnil;
break;
#ifdef BYTE_CODE_SAFE
case Bset_mark:
BEFORE_POTENTIAL_GC ();
error ("set-mark is an obsolete bytecode");
AFTER_POTENTIAL_GC ();
break;
case Bscan_buffer:
BEFORE_POTENTIAL_GC ();
error ("scan-buffer is an obsolete bytecode");
AFTER_POTENTIAL_GC ();
break;
#endif
case 0:
/* Actually this is Bstack_ref with offset 0, but we use Bdup
for that instead. */
/* case Bstack_ref: */
abort ();
/* Handy byte-codes for lexical binding. */
case Bstack_ref+1:
case Bstack_ref+2:
case Bstack_ref+3:
case Bstack_ref+4:
case Bstack_ref+5:
{
Lisp_Object *ptr = top - (op - Bstack_ref);
PUSH (*ptr);
break;
}
case Bstack_ref+6:
{
Lisp_Object *ptr = top - (FETCH);
PUSH (*ptr);
break;
}
case Bstack_ref+7:
{
Lisp_Object *ptr = top - (FETCH2);
PUSH (*ptr);
break;
}
case Bstack_set:
/* stack-set-0 = discard; stack-set-1 = discard-1-preserve-tos. */
{
Lisp_Object *ptr = top - (FETCH);
*ptr = POP;
break;
}
case Bstack_set2:
{
Lisp_Object *ptr = top - (FETCH2);
*ptr = POP;
break;
}
case BdiscardN:
op = FETCH;
if (op & 0x80)
{
op &= 0x7F;
top[-op] = TOP;
}
DISCARD (op);
break;
case 255:
default:
#ifdef BYTE_CODE_SAFE
if (op < Bconstant)
{
abort ();
}
if ((op -= Bconstant) >= const_length)
{
abort ();
}
PUSH (vectorp[op]);
#else
PUSH (vectorp[op - Bconstant]);
#endif
}
}
exit:
byte_stack_list = byte_stack_list->next;
/* Binds and unbinds are supposed to be compiled balanced. */
if (SPECPDL_INDEX () != count)
#ifdef BYTE_CODE_SAFE
error ("binding stack not balanced (serious byte compiler bug)");
#else
abort ();
#endif
return result;
}
void
syms_of_bytecode (void)
{
DEFSYM (Qbytecode, "byte-code");
defsubr (&Sbyte_code);
#ifdef BYTE_CODE_METER
DEFVAR_LISP ("byte-code-meter", Vbyte_code_meter,
doc: /* A vector of vectors which holds a histogram of byte-code usage.
\(aref (aref byte-code-meter 0) CODE) indicates how many times the byte
opcode CODE has been executed.
\(aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,
indicates how many times the byte opcodes CODE1 and CODE2 have been
executed in succession. */);
DEFVAR_BOOL ("byte-metering-on", byte_metering_on,
doc: /* If non-nil, keep profiling information on byte code usage.
The variable byte-code-meter indicates how often each byte opcode is used.
If a symbol has a property named `byte-code-meter' whose value is an
integer, it is incremented each time that symbol's function is called. */);
byte_metering_on = 0;
Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0));
DEFSYM (Qbyte_code_meter, "byte-code-meter");
{
int i = 256;
while (i--)
XVECTOR (Vbyte_code_meter)->contents[i] =
Fmake_vector (make_number (256), make_number (0));
}
#endif
}