/* Execution of byte code produced by bytecomp.el. Copyright (C) 1985, 1986, 1987, 1988, 1993, 2000 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. hacked on by jwz@lucid.com 17-jun-91 o added a compile-time switch to turn on simple sanity checking; o put back the obsolete byte-codes for error-detection; o added a new instruction, unbind_all, which I will use for tail-recursion elimination; o made temp_output_buffer_show be called with the right number of args; o made the new bytecodes be called with args in the right order; o added metering support. by Hallvard: o added relative jump instructions; o all conditionals now only do QUIT if they jump. */ #include #include "lisp.h" #include "buffer.h" #include "charset.h" #include "syntax.h" /* * define BYTE_CODE_SAFE to enable some minor sanity checking (useful for * debugging the byte compiler...) * * define BYTE_CODE_METER to enable generation of a byte-op usage histogram. */ /* #define BYTE_CODE_SAFE */ /* #define BYTE_CODE_METER */ #ifdef BYTE_CODE_METER Lisp_Object Vbyte_code_meter, Qbyte_code_meter; int byte_metering_on; #define METER_2(code1, code2) \ XFASTINT (XVECTOR (XVECTOR (Vbyte_code_meter)->contents[(code1)]) \ ->contents[(code2)]) #define METER_1(code) METER_2 (0, (code)) #define METER_CODE(last_code, this_code) \ { \ if (byte_metering_on) \ { \ if (METER_1 (this_code) != ((1<next) { if (!stack->top) abort (); for (obj = stack->bottom; obj <= stack->top; ++obj) if (!XMARKBIT (*obj)) { mark_object (obj); XMARK (*obj); } if (!XMARKBIT (stack->byte_string)) { mark_object (&stack->byte_string); XMARK (stack->byte_string); } if (!XMARKBIT (stack->constants)) { mark_object (&stack->constants); XMARK (stack->constants); } } } /* Unmark objects in the stacks on byte_stack_list. Relocate program counters. Called when GC has completed. */ void unmark_byte_stack () { struct byte_stack *stack; Lisp_Object *obj; for (stack = byte_stack_list; stack; stack = stack->next) { for (obj = stack->bottom; obj <= stack->top; ++obj) XUNMARK (*obj); XUNMARK (stack->byte_string); XUNMARK (stack->constants); if (stack->byte_string_start != XSTRING (stack->byte_string)->data) { int offset = stack->pc - stack->byte_string_start; stack->byte_string_start = XSTRING (stack->byte_string)->data; stack->pc = stack->byte_string_start + offset; } } } /* Fetch the next byte from the bytecode stream */ #define FETCH *stack.pc++ /* Fetch two bytes from the bytecode stream and make a 16-bit number out of them */ #define FETCH2 (op = FETCH, op + (FETCH << 8)) /* Push x onto the execution stack. This used to be #define PUSH(x) (*++stackp = (x)) This oddity is necessary because Alliant can't be bothered to compile the preincrement operator properly, as of 4/91. -JimB */ #define PUSH(x) (top++, *top = (x)) /* Pop a value off the execution stack. */ #define POP (*top--) /* Discard n values from the execution stack. */ #define DISCARD(n) (top -= (n)) /* Get the value which is at the top of the execution stack, but don't pop it. */ #define TOP (*top) /* Actions that must be performed before and after calling a function that might GC. */ #define BEFORE_POTENTIAL_GC() stack.top = top #define AFTER_POTENTIAL_GC() stack.top = NULL /* Garbage collect if we have consed enough since the last time. We do this at every branch, to avoid loops that never GC. */ #define MAYBE_GC() \ if (consing_since_gc > gc_cons_threshold) \ { \ BEFORE_POTENTIAL_GC (); \ Fgarbage_collect (); \ AFTER_POTENTIAL_GC (); \ } \ else /* Check for jumping out of range. */ #ifdef BYTE_CODE_SAFE #define CHECK_RANGE(ARG) \ if (ARG >= bytestr_length) abort () #else /* not BYTE_CODE_SAFE */ #define CHECK_RANGE(ARG) #endif /* not BYTE_CODE_SAFE */ DEFUN ("byte-code", Fbyte_code, Sbyte_code, 3, 3, 0, "Function used internally in byte-compiled code.\n\ The first argument, BYTESTR, is a string of byte code;\n\ the second, VECTOR, a vector of constants;\n\ the third, MAXDEPTH, the maximum stack depth used in this function.\n\ If the third argument is incorrect, Emacs may crash.") (bytestr, vector, maxdepth) Lisp_Object bytestr, vector, maxdepth; { int count = specpdl_ptr - specpdl; #ifdef BYTE_CODE_METER int this_op = 0; int prev_op; #endif int op; /* Lisp_Object v1, v2; */ Lisp_Object *vectorp; #ifdef BYTE_CODE_SAFE int const_length = XVECTOR (vector)->size; Lisp_Object *stacke; #endif int bytestr_length; struct byte_stack stack; Lisp_Object *top; Lisp_Object result; CHECK_STRING (bytestr, 0); if (!VECTORP (vector)) vector = wrong_type_argument (Qvectorp, vector); CHECK_NUMBER (maxdepth, 2); if (STRING_MULTIBYTE (bytestr)) /* BYTESTR must have been produced by Emacs 20.2 or the earlier because they produced a raw 8-bit string for byte-code and now such a byte-code string is loaded as multibyte while raw 8-bit characters converted to multibyte form. Thus, now we must convert them back to the original unibyte form. */ bytestr = Fstring_as_unibyte (bytestr); bytestr_length = STRING_BYTES (XSTRING (bytestr)); vectorp = XVECTOR (vector)->contents; stack.byte_string = bytestr; stack.pc = stack.byte_string_start = XSTRING (bytestr)->data; stack.constants = vector; stack.bottom = (Lisp_Object *) alloca (XFASTINT (maxdepth) * sizeof (Lisp_Object)); top = stack.bottom - 1; stack.top = NULL; stack.next = byte_stack_list; byte_stack_list = &stack; #ifdef BYTE_CODE_SAFE stacke = stack.bottom - 1 + XFASTINT (maxdepth); #endif while (1) { #ifdef BYTE_CODE_SAFE if (top > stacke) abort (); else if (top < stack.bottom - 1) abort (); #endif #ifdef BYTE_CODE_METER prev_op = this_op; this_op = op = FETCH; METER_CODE (prev_op, op); #else op = FETCH; #endif switch (op) { case Bvarref + 7: op = FETCH2; goto varref; case Bvarref: case Bvarref + 1: case Bvarref + 2: case Bvarref + 3: case Bvarref + 4: case Bvarref + 5: op = op - Bvarref; goto varref; /* This seems to be the most frequently executed byte-code among the Bvarref's, so avoid a goto here. */ case Bvarref+6: op = FETCH; varref: { Lisp_Object v1, v2; v1 = vectorp[op]; if (SYMBOLP (v1)) { v2 = XSYMBOL (v1)->value; if (MISCP (v2) || EQ (v2, Qunbound)) { BEFORE_POTENTIAL_GC (); v2 = Fsymbol_value (v1); AFTER_POTENTIAL_GC (); } } else { BEFORE_POTENTIAL_GC (); v2 = Fsymbol_value (v1); AFTER_POTENTIAL_GC (); } PUSH (v2); break; } case Bgotoifnil: MAYBE_GC (); op = FETCH2; if (NILP (POP)) { QUIT; CHECK_RANGE (op); stack.pc = stack.byte_string_start + op; } break; case Bcar: { Lisp_Object v1; v1 = TOP; if (CONSP (v1)) TOP = XCAR (v1); else if (NILP (v1)) TOP = Qnil; else { BEFORE_POTENTIAL_GC (); Fcar (wrong_type_argument (Qlistp, v1)); AFTER_POTENTIAL_GC (); } break; } case Beq: { Lisp_Object v1; v1 = POP; TOP = EQ (v1, TOP) ? Qt : Qnil; break; } case Bmemq: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fmemq (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bcdr: { Lisp_Object v1; v1 = TOP; if (CONSP (v1)) TOP = XCDR (v1); else if (NILP (v1)) TOP = Qnil; else { BEFORE_POTENTIAL_GC (); Fcdr (wrong_type_argument (Qlistp, v1)); AFTER_POTENTIAL_GC (); } break; } case Bvarset: case Bvarset+1: case Bvarset+2: case Bvarset+3: case Bvarset+4: case Bvarset+5: op -= Bvarset; goto varset; case Bvarset+7: op = FETCH2; goto varset; case Bvarset+6: op = FETCH; varset: { Lisp_Object sym, val; sym = vectorp[op]; val = TOP; /* Inline the most common case. */ if (SYMBOLP (sym) && !EQ (val, Qunbound) && !MISCP (XSYMBOL (sym)->value) /* I think this should either be checked in the byte compiler, or there should be a flag indicating that a symbol might be constant in Lisp_Symbol, instead of checking this here over and over again. --gerd. */ && !EQ (sym, Qnil) && !EQ (sym, Qt) && !(XSYMBOL (sym)->name->data[0] == ':' && EQ (XSYMBOL (sym)->obarray, initial_obarray) && !EQ (val, sym))) XSYMBOL (sym)->value = val; else { BEFORE_POTENTIAL_GC (); set_internal (sym, val, current_buffer, 0); AFTER_POTENTIAL_GC (); } } POP; break; case Bdup: { Lisp_Object v1; v1 = TOP; PUSH (v1); break; } /* ------------------ */ case Bvarbind+6: op = FETCH; goto varbind; case Bvarbind+7: op = FETCH2; goto varbind; case Bvarbind: case Bvarbind+1: case Bvarbind+2: case Bvarbind+3: case Bvarbind+4: case Bvarbind+5: op -= Bvarbind; varbind: specbind (vectorp[op], POP); break; case Bcall+6: op = FETCH; goto docall; case Bcall+7: op = FETCH2; goto docall; case Bcall: case Bcall+1: case Bcall+2: case Bcall+3: case Bcall+4: case Bcall+5: op -= Bcall; docall: { BEFORE_POTENTIAL_GC (); DISCARD (op); #ifdef BYTE_CODE_METER if (byte_metering_on && SYMBOLP (TOP)) { Lisp_Object v1, v2; v1 = TOP; v2 = Fget (v1, Qbyte_code_meter); if (INTEGERP (v2) && XINT (v2) != ((1<symbol = Qnil; break; case Bcondition_case: { Lisp_Object v1; v1 = POP; v1 = Fcons (POP, v1); BEFORE_POTENTIAL_GC (); TOP = Fcondition_case (Fcons (TOP, v1)); AFTER_POTENTIAL_GC (); break; } case Btemp_output_buffer_setup: BEFORE_POTENTIAL_GC (); temp_output_buffer_setup (XSTRING (TOP)->data); AFTER_POTENTIAL_GC (); TOP = Vstandard_output; break; case Btemp_output_buffer_show: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; temp_output_buffer_show (TOP); TOP = v1; /* pop binding of standard-output */ unbind_to (specpdl_ptr - specpdl - 1, Qnil); AFTER_POTENTIAL_GC (); break; } case Bnth: { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v1 = POP; v2 = TOP; CHECK_NUMBER (v2, 0); AFTER_POTENTIAL_GC (); op = XINT (v2); immediate_quit = 1; while (--op >= 0) { if (CONSP (v1)) v1 = XCDR (v1); else if (!NILP (v1)) { immediate_quit = 0; BEFORE_POTENTIAL_GC (); v1 = wrong_type_argument (Qlistp, v1); AFTER_POTENTIAL_GC (); immediate_quit = 1; op++; } } immediate_quit = 0; if (CONSP (v1)) TOP = XCAR (v1); else if (NILP (v1)) TOP = Qnil; else { BEFORE_POTENTIAL_GC (); Fcar (wrong_type_argument (Qlistp, v1)); AFTER_POTENTIAL_GC (); } break; } case Bsymbolp: TOP = SYMBOLP (TOP) ? Qt : Qnil; break; case Bconsp: TOP = CONSP (TOP) ? Qt : Qnil; break; case Bstringp: TOP = STRINGP (TOP) ? Qt : Qnil; break; case Blistp: TOP = CONSP (TOP) || NILP (TOP) ? Qt : Qnil; break; case Bnot: TOP = NILP (TOP) ? Qt : Qnil; break; case Bcons: { Lisp_Object v1; v1 = POP; TOP = Fcons (TOP, v1); break; } case Blist1: TOP = Fcons (TOP, Qnil); break; case Blist2: { Lisp_Object v1; v1 = POP; TOP = Fcons (TOP, Fcons (v1, Qnil)); break; } case Blist3: DISCARD (2); TOP = Flist (3, &TOP); break; case Blist4: DISCARD (3); TOP = Flist (4, &TOP); break; case BlistN: op = FETCH; DISCARD (op - 1); TOP = Flist (op, &TOP); break; case Blength: BEFORE_POTENTIAL_GC (); TOP = Flength (TOP); AFTER_POTENTIAL_GC (); break; case Baref: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Faref (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Baset: { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v2 = POP; v1 = POP; TOP = Faset (TOP, v1, v2); AFTER_POTENTIAL_GC (); break; } case Bsymbol_value: BEFORE_POTENTIAL_GC (); TOP = Fsymbol_value (TOP); AFTER_POTENTIAL_GC (); break; case Bsymbol_function: BEFORE_POTENTIAL_GC (); TOP = Fsymbol_function (TOP); AFTER_POTENTIAL_GC (); break; case Bset: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fset (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bfset: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Ffset (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bget: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fget (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bsubstring: { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v2 = POP; v1 = POP; TOP = Fsubstring (TOP, v1, v2); AFTER_POTENTIAL_GC (); break; } case Bconcat2: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fconcat (2, &TOP); AFTER_POTENTIAL_GC (); break; case Bconcat3: BEFORE_POTENTIAL_GC (); DISCARD (2); TOP = Fconcat (3, &TOP); AFTER_POTENTIAL_GC (); break; case Bconcat4: BEFORE_POTENTIAL_GC (); DISCARD (3); TOP = Fconcat (4, &TOP); AFTER_POTENTIAL_GC (); break; case BconcatN: op = FETCH; BEFORE_POTENTIAL_GC (); DISCARD (op - 1); TOP = Fconcat (op, &TOP); AFTER_POTENTIAL_GC (); break; case Bsub1: { Lisp_Object v1; v1 = TOP; if (INTEGERP (v1)) { XSETINT (v1, XINT (v1) - 1); TOP = v1; } else TOP = Fsub1 (v1); break; } case Badd1: { Lisp_Object v1; v1 = TOP; if (INTEGERP (v1)) { XSETINT (v1, XINT (v1) + 1); TOP = v1; } else { BEFORE_POTENTIAL_GC (); TOP = Fadd1 (v1); AFTER_POTENTIAL_GC (); } break; } case Beqlsign: { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v2 = POP; v1 = TOP; CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v1, 0); CHECK_NUMBER_OR_FLOAT_COERCE_MARKER (v2, 0); AFTER_POTENTIAL_GC (); if (FLOATP (v1) || FLOATP (v2)) { double f1, f2; f1 = (FLOATP (v1) ? XFLOAT_DATA (v1) : XINT (v1)); f2 = (FLOATP (v2) ? XFLOAT_DATA (v2) : XINT (v2)); TOP = (f1 == f2 ? Qt : Qnil); } else TOP = (XINT (v1) == XINT (v2) ? Qt : Qnil); break; } case Bgtr: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fgtr (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Blss: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Flss (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bleq: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fleq (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bgeq: { Lisp_Object v1; v1 = POP; TOP = Fgeq (TOP, v1); break; } case Bdiff: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fminus (2, &TOP); AFTER_POTENTIAL_GC (); break; case Bnegate: { Lisp_Object v1; v1 = TOP; if (INTEGERP (v1)) { XSETINT (v1, - XINT (v1)); TOP = v1; } else { BEFORE_POTENTIAL_GC (); TOP = Fminus (1, &TOP); AFTER_POTENTIAL_GC (); } break; } case Bplus: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fplus (2, &TOP); AFTER_POTENTIAL_GC (); break; case Bmax: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fmax (2, &TOP); AFTER_POTENTIAL_GC (); break; case Bmin: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fmin (2, &TOP); AFTER_POTENTIAL_GC (); break; case Bmult: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Ftimes (2, &TOP); AFTER_POTENTIAL_GC (); break; case Bquo: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fquo (2, &TOP); AFTER_POTENTIAL_GC (); break; case Brem: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Frem (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bpoint: { Lisp_Object v1; XSETFASTINT (v1, PT); PUSH (v1); break; } case Bgoto_char: BEFORE_POTENTIAL_GC (); TOP = Fgoto_char (TOP); AFTER_POTENTIAL_GC (); break; case Binsert: BEFORE_POTENTIAL_GC (); TOP = Finsert (1, &TOP); AFTER_POTENTIAL_GC (); break; case BinsertN: op = FETCH; BEFORE_POTENTIAL_GC (); DISCARD (op - 1); TOP = Finsert (op, &TOP); AFTER_POTENTIAL_GC (); break; case Bpoint_max: { Lisp_Object v1; XSETFASTINT (v1, ZV); PUSH (v1); break; } case Bpoint_min: { Lisp_Object v1; XSETFASTINT (v1, BEGV); PUSH (v1); break; } case Bchar_after: BEFORE_POTENTIAL_GC (); TOP = Fchar_after (TOP); AFTER_POTENTIAL_GC (); break; case Bfollowing_char: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = Ffollowing_char (); AFTER_POTENTIAL_GC (); PUSH (v1); break; } case Bpreceding_char: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = Fprevious_char (); AFTER_POTENTIAL_GC (); PUSH (v1); break; } case Bcurrent_column: { Lisp_Object v1; XSETFASTINT (v1, current_column ()); PUSH (v1); break; } case Bindent_to: BEFORE_POTENTIAL_GC (); TOP = Findent_to (TOP, Qnil); AFTER_POTENTIAL_GC (); break; case Beolp: PUSH (Feolp ()); break; case Beobp: PUSH (Feobp ()); break; case Bbolp: PUSH (Fbolp ()); break; case Bbobp: PUSH (Fbobp ()); break; case Bcurrent_buffer: PUSH (Fcurrent_buffer ()); break; case Bset_buffer: BEFORE_POTENTIAL_GC (); TOP = Fset_buffer (TOP); AFTER_POTENTIAL_GC (); break; case Binteractive_p: PUSH (Finteractive_p ()); break; case Bforward_char: BEFORE_POTENTIAL_GC (); TOP = Fforward_char (TOP); AFTER_POTENTIAL_GC (); break; case Bforward_word: BEFORE_POTENTIAL_GC (); TOP = Fforward_word (TOP); AFTER_POTENTIAL_GC (); break; case Bskip_chars_forward: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fskip_chars_forward (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bskip_chars_backward: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fskip_chars_backward (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bforward_line: BEFORE_POTENTIAL_GC (); TOP = Fforward_line (TOP); AFTER_POTENTIAL_GC (); break; case Bchar_syntax: BEFORE_POTENTIAL_GC (); CHECK_NUMBER (TOP, 0); AFTER_POTENTIAL_GC (); XSETFASTINT (TOP, syntax_code_spec[(int) SYNTAX (XINT (TOP))]); break; case Bbuffer_substring: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fbuffer_substring (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bdelete_region: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fdelete_region (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bnarrow_to_region: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fnarrow_to_region (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bwiden: BEFORE_POTENTIAL_GC (); PUSH (Fwiden ()); AFTER_POTENTIAL_GC (); break; case Bend_of_line: BEFORE_POTENTIAL_GC (); TOP = Fend_of_line (TOP); AFTER_POTENTIAL_GC (); break; case Bset_marker: { Lisp_Object v1, v2; BEFORE_POTENTIAL_GC (); v1 = POP; v2 = POP; TOP = Fset_marker (TOP, v2, v1); AFTER_POTENTIAL_GC (); break; } case Bmatch_beginning: BEFORE_POTENTIAL_GC (); TOP = Fmatch_beginning (TOP); AFTER_POTENTIAL_GC (); break; case Bmatch_end: BEFORE_POTENTIAL_GC (); TOP = Fmatch_end (TOP); AFTER_POTENTIAL_GC (); break; case Bupcase: BEFORE_POTENTIAL_GC (); TOP = Fupcase (TOP); AFTER_POTENTIAL_GC (); break; case Bdowncase: BEFORE_POTENTIAL_GC (); TOP = Fdowncase (TOP); AFTER_POTENTIAL_GC (); break; case Bstringeqlsign: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fstring_equal (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bstringlss: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fstring_lessp (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bequal: { Lisp_Object v1; v1 = POP; TOP = Fequal (TOP, v1); break; } case Bnthcdr: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fnthcdr (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Belt: { Lisp_Object v1, v2; if (CONSP (TOP)) { /* Exchange args and then do nth. */ BEFORE_POTENTIAL_GC (); v2 = POP; v1 = TOP; CHECK_NUMBER (v2, 0); AFTER_POTENTIAL_GC (); op = XINT (v2); immediate_quit = 1; while (--op >= 0) { if (CONSP (v1)) v1 = XCDR (v1); else if (!NILP (v1)) { immediate_quit = 0; BEFORE_POTENTIAL_GC (); v1 = wrong_type_argument (Qlistp, v1); AFTER_POTENTIAL_GC (); immediate_quit = 1; op++; } } immediate_quit = 0; if (CONSP (v1)) TOP = XCAR (v1); else if (NILP (v1)) TOP = Qnil; else { BEFORE_POTENTIAL_GC (); Fcar (wrong_type_argument (Qlistp, v1)); AFTER_POTENTIAL_GC (); } } else { BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Felt (TOP, v1); AFTER_POTENTIAL_GC (); } break; } case Bmember: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fmember (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bassq: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fassq (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bnreverse: BEFORE_POTENTIAL_GC (); TOP = Fnreverse (TOP); AFTER_POTENTIAL_GC (); break; case Bsetcar: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fsetcar (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bsetcdr: { Lisp_Object v1; BEFORE_POTENTIAL_GC (); v1 = POP; TOP = Fsetcdr (TOP, v1); AFTER_POTENTIAL_GC (); break; } case Bcar_safe: { Lisp_Object v1; v1 = TOP; if (CONSP (v1)) TOP = XCAR (v1); else TOP = Qnil; break; } case Bcdr_safe: { Lisp_Object v1; v1 = TOP; if (CONSP (v1)) TOP = XCDR (v1); else TOP = Qnil; break; } case Bnconc: BEFORE_POTENTIAL_GC (); DISCARD (1); TOP = Fnconc (2, &TOP); AFTER_POTENTIAL_GC (); break; case Bnumberp: TOP = (NUMBERP (TOP) ? Qt : Qnil); break; case Bintegerp: TOP = INTEGERP (TOP) ? Qt : Qnil; break; #ifdef BYTE_CODE_SAFE case Bset_mark: BEFORE_POTENTIAL_GC (); error ("set-mark is an obsolete bytecode"); AFTER_POTENTIAL_GC (); break; case Bscan_buffer: BEFORE_POTENTIAL_GC (); error ("scan-buffer is an obsolete bytecode"); AFTER_POTENTIAL_GC (); break; #endif case 0: abort (); case 255: default: #ifdef BYTE_CODE_SAFE if (op < Bconstant) { abort (); } if ((op -= Bconstant) >= const_length) { abort (); } PUSH (vectorp[op]); #else PUSH (vectorp[op - Bconstant]); #endif } } exit: byte_stack_list = byte_stack_list->next; /* Binds and unbinds are supposed to be compiled balanced. */ if (specpdl_ptr - specpdl != count) #ifdef BYTE_CODE_SAFE error ("binding stack not balanced (serious byte compiler bug)"); #else abort (); #endif return result; } void syms_of_bytecode () { Qbytecode = intern ("byte-code"); staticpro (&Qbytecode); defsubr (&Sbyte_code); #ifdef BYTE_CODE_METER DEFVAR_LISP ("byte-code-meter", &Vbyte_code_meter, "A vector of vectors which holds a histogram of byte-code usage.\n\ (aref (aref byte-code-meter 0) CODE) indicates how many times the byte\n\ opcode CODE has been executed.\n\ (aref (aref byte-code-meter CODE1) CODE2), where CODE1 is not 0,\n\ indicates how many times the byte opcodes CODE1 and CODE2 have been\n\ executed in succession."); DEFVAR_BOOL ("byte-metering-on", &byte_metering_on, "If non-nil, keep profiling information on byte code usage.\n\ The variable byte-code-meter indicates how often each byte opcode is used.\n\ If a symbol has a property named `byte-code-meter' whose value is an\n\ integer, it is incremented each time that symbol's function is called."); byte_metering_on = 0; Vbyte_code_meter = Fmake_vector (make_number (256), make_number (0)); Qbyte_code_meter = intern ("byte-code-meter"); staticpro (&Qbyte_code_meter); { int i = 256; while (i--) XVECTOR (Vbyte_code_meter)->contents[i] = Fmake_vector (make_number (256), make_number (0)); } #endif }