@c -*-texinfo-*- @c This is part of the GNU Emacs Lisp Reference Manual. @c Copyright (C) 1990-1995, 1998-1999, 2001-2015 Free Software @c Foundation, Inc. @c See the file elisp.texi for copying conditions. @node Frames @chapter Frames @cindex frame A @dfn{frame} is a screen object that contains one or more Emacs windows (@pxref{Windows}). It is the kind of object called a ``window'' in the terminology of graphical environments; but we can't call it a ``window'' here, because Emacs uses that word in a different way. In Emacs Lisp, a @dfn{frame object} is a Lisp object that represents a frame on the screen. @xref{Frame Type}. A frame initially contains a single main window and/or a minibuffer window; you can subdivide the main window vertically or horizontally into smaller windows. @xref{Splitting Windows}. @cindex terminal A @dfn{terminal} is a display device capable of displaying one or more Emacs frames. In Emacs Lisp, a @dfn{terminal object} is a Lisp object that represents a terminal. @xref{Terminal Type}. @cindex text terminal @cindex graphical terminal @cindex graphical display There are two classes of terminals: @dfn{text terminals} and @dfn{graphical terminals}. Text terminals are non-graphics-capable displays, including @command{xterm} and other terminal emulators. On a text terminal, each Emacs frame occupies the terminal's entire screen; although you can create additional frames and switch between them, the terminal only shows one frame at a time. Graphical terminals, on the other hand, are managed by graphical display systems such as the X Window System, which allow Emacs to show multiple frames simultaneously on the same display. On GNU and Unix systems, you can create additional frames on any available terminal, within a single Emacs session, regardless of whether Emacs was started on a text or graphical terminal. Emacs can display on both graphical and text terminals simultaneously. This comes in handy, for instance, when you connect to the same session from several remote locations. @xref{Multiple Terminals}. @defun framep object This predicate returns a non-@code{nil} value if @var{object} is a frame, and @code{nil} otherwise. For a frame, the value indicates which kind of display the frame uses: @table @code @item t The frame is displayed on a text terminal. @item x The frame is displayed on an X graphical terminal. @item w32 The frame is displayed on a MS-Windows graphical terminal. @item ns The frame is displayed on a GNUstep or Macintosh Cocoa graphical terminal. @item pc The frame is displayed on an MS-DOS terminal. @end table @end defun @defun frame-terminal &optional frame This function returns the terminal object that displays @var{frame}. If @var{frame} is @code{nil} or unspecified, it defaults to the selected frame. @end defun @defun terminal-live-p object This predicate returns a non-@code{nil} value if @var{object} is a terminal that is live (i.e., not deleted), and @code{nil} otherwise. For live terminals, the return value indicates what kind of frames are displayed on that terminal; the list of possible values is the same as for @code{framep} above. @end defun @menu * Creating Frames:: Creating additional frames. * Multiple Terminals:: Displaying on several different devices. * Frame Parameters:: Controlling frame size, position, font, etc. * Terminal Parameters:: Parameters common for all frames on terminal. * Frame Titles:: Automatic updating of frame titles. * Deleting Frames:: Frames last until explicitly deleted. * Finding All Frames:: How to examine all existing frames. * Minibuffers and Frames:: How a frame finds the minibuffer to use. * Input Focus:: Specifying the selected frame. * Visibility of Frames:: Frames may be visible or invisible, or icons. * Raising and Lowering:: Raising a frame makes it hide other windows; lowering it makes the others hide it. * Frame Configurations:: Saving the state of all frames. * Mouse Tracking:: Getting events that say when the mouse moves. * Mouse Position:: Asking where the mouse is, or moving it. * Pop-Up Menus:: Displaying a menu for the user to select from. * Dialog Boxes:: Displaying a box to ask yes or no. * Pointer Shape:: Specifying the shape of the mouse pointer. * Window System Selections:: Transferring text to and from other X clients. * Drag and Drop:: Internals of Drag-and-Drop implementation. * Color Names:: Getting the definitions of color names. * Text Terminal Colors:: Defining colors for text terminals. * Resources:: Getting resource values from the server. * Display Feature Testing:: Determining the features of a terminal. @end menu @node Creating Frames @section Creating Frames @cindex frame creation To create a new frame, call the function @code{make-frame}. @deffn Command make-frame &optional alist This function creates and returns a new frame, displaying the current buffer. The @var{alist} argument is an alist that specifies frame parameters for the new frame. @xref{Frame Parameters}. If you specify the @code{terminal} parameter in @var{alist}, the new frame is created on that terminal. Otherwise, if you specify the @code{window-system} frame parameter in @var{alist}, that determines whether the frame should be displayed on a text terminal or a graphical terminal. @xref{Window Systems}. If neither is specified, the new frame is created in the same terminal as the selected frame. Any parameters not mentioned in @var{alist} default to the values in the alist @code{default-frame-alist} (@pxref{Initial Parameters}); parameters not specified there default from the X resources or its equivalent on your operating system (@pxref{X Resources,, X Resources, emacs, The GNU Emacs Manual}). After the frame is created, Emacs applies any parameters listed in @code{frame-inherited-parameters} (see below) and not present in the argument, taking the values from the frame that was selected when @code{make-frame} was called. Note that on multi-monitor displays (@pxref{Multiple Terminals}), the window manager might position the frame differently than specified by the positional parameters in @var{alist} (@pxref{Position Parameters}). For example, some window managers have a policy of displaying the frame on the monitor that contains the largest part of the window (a.k.a.@: the @dfn{dominating} monitor). This function itself does not make the new frame the selected frame. @xref{Input Focus}. The previously selected frame remains selected. On graphical terminals, however, the windowing system may select the new frame for its own reasons. @end deffn @defvar before-make-frame-hook A normal hook run by @code{make-frame} before it creates the frame. @end defvar @defvar after-make-frame-functions An abnormal hook run by @code{make-frame} after it creates the frame. Each function in @code{after-make-frame-functions} receives one argument, the frame just created. @end defvar @defvar frame-inherited-parameters This variable specifies the list of frame parameters that a newly created frame inherits from the currently selected frame. For each parameter (a symbol) that is an element in the list and is not present in the argument to @code{make-frame}, the function sets the value of that parameter in the created frame to its value in the selected frame. @end defvar @node Multiple Terminals @section Multiple Terminals @cindex multiple terminals @cindex multi-tty @cindex multiple X displays @cindex displays, multiple Emacs represents each terminal as a @dfn{terminal object} data type (@pxref{Terminal Type}). On GNU and Unix systems, Emacs can use multiple terminals simultaneously in each session. On other systems, it can only use a single terminal. Each terminal object has the following attributes: @itemize @bullet @item The name of the device used by the terminal (e.g., @samp{:0.0} or @file{/dev/tty}). @item The terminal and keyboard coding systems used on the terminal. @xref{Terminal I/O Encoding}. @item The kind of display associated with the terminal. This is the symbol returned by the function @code{terminal-live-p} (i.e., @code{x}, @code{t}, @code{w32}, @code{ns}, or @code{pc}). @xref{Frames}. @item A list of terminal parameters. @xref{Terminal Parameters}. @end itemize There is no primitive for creating terminal objects. Emacs creates them as needed, such as when you call @code{make-frame-on-display} (described below). @defun terminal-name &optional terminal This function returns the file name of the device used by @var{terminal}. If @var{terminal} is omitted or @code{nil}, it defaults to the selected frame's terminal. @var{terminal} can also be a frame, meaning that frame's terminal. @end defun @defun terminal-list This function returns a list of all live terminal objects. @end defun @defun get-device-terminal device This function returns a terminal whose device name is given by @var{device}. If @var{device} is a string, it can be either the file name of a terminal device, or the name of an X display of the form @samp{@var{host}:@var{server}.@var{screen}}. If @var{device} is a frame, this function returns that frame's terminal; @code{nil} means the selected frame. Finally, if @var{device} is a terminal object that represents a live terminal, that terminal is returned. The function signals an error if its argument is none of the above. @end defun @defun delete-terminal &optional terminal force This function deletes all frames on @var{terminal} and frees the resources used by it. It runs the abnormal hook @code{delete-terminal-functions}, passing @var{terminal} as the argument to each function. If @var{terminal} is omitted or @code{nil}, it defaults to the selected frame's terminal. @var{terminal} can also be a frame, meaning that frame's terminal. Normally, this function signals an error if you attempt to delete the sole active terminal, but if @var{force} is non-@code{nil}, you are allowed to do so. Emacs automatically calls this function when the last frame on a terminal is deleted (@pxref{Deleting Frames}). @end defun @defvar delete-terminal-functions An abnormal hook run by @code{delete-terminal}. Each function receives one argument, the @var{terminal} argument passed to @code{delete-terminal}. Due to technical details, the functions may be called either just before the terminal is deleted, or just afterwards. @end defvar @cindex terminal-local variables A few Lisp variables are @dfn{terminal-local}; that is, they have a separate binding for each terminal. The binding in effect at any time is the one for the terminal that the currently selected frame belongs to. These variables include @code{default-minibuffer-frame}, @code{defining-kbd-macro}, @code{last-kbd-macro}, and @code{system-key-alist}. They are always terminal-local, and can never be buffer-local (@pxref{Buffer-Local Variables}). On GNU and Unix systems, each X display is a separate graphical terminal. When Emacs is started from within the X window system, it uses the X display specified by the @env{DISPLAY} environment variable, or by the @samp{--display} option (@pxref{Initial Options,,, emacs, The GNU Emacs Manual}). Emacs can connect to other X displays via the command @code{make-frame-on-display}. Each X display has its own selected frame and its own minibuffer windows; however, only one of those frames is ``@emph{the} selected frame'' at any given moment (@pxref{Input Focus}). Emacs can even connect to other text terminals, by interacting with the @command{emacsclient} program. @xref{Emacs Server,,, emacs, The GNU Emacs Manual}. @cindex X display names @cindex display name on X A single X server can handle more than one display. Each X display has a three-part name, @samp{@var{hostname}:@var{displaynumber}.@var{screennumber}}. The first part, @var{hostname}, specifies the name of the machine to which the display is physically connected. The second part, @var{displaynumber}, is a zero-based number that identifies one or more monitors connected to that machine that share a common keyboard and pointing device (mouse, tablet, etc.). The third part, @var{screennumber}, identifies a zero-based screen number (a separate monitor) that is part of a single monitor collection on that X server. When you use two or more screens belonging to one server, Emacs knows by the similarity in their names that they share a single keyboard. Systems that don't use the X window system, such as MS-Windows, don't support the notion of X displays, and have only one display on each host. The display name on these systems doesn't follow the above 3-part format; for example, the display name on MS-Windows systems is a constant string @samp{w32}, and exists for compatibility, so that you could pass it to functions that expect a display name. @deffn Command make-frame-on-display display &optional parameters This function creates and returns a new frame on @var{display}, taking the other frame parameters from the alist @var{parameters}. @var{display} should be the name of an X display (a string). Before creating the frame, this function ensures that Emacs is ``set up'' to display graphics. For instance, if Emacs has not processed X resources (e.g., if it was started on a text terminal), it does so at this time. In all other respects, this function behaves like @code{make-frame} (@pxref{Creating Frames}). @end deffn @defun x-display-list This function returns a list that indicates which X displays Emacs has a connection to. The elements of the list are strings, and each one is a display name. @end defun @defun x-open-connection display &optional xrm-string must-succeed This function opens a connection to the X display @var{display}, without creating a frame on that display. Normally, Emacs Lisp programs need not call this function, as @code{make-frame-on-display} calls it automatically. The only reason for calling it is to check whether communication can be established with a given X display. The optional argument @var{xrm-string}, if not @code{nil}, is a string of resource names and values, in the same format used in the @file{.Xresources} file. @xref{X Resources,, X Resources, emacs, The GNU Emacs Manual}. These values apply to all Emacs frames created on this display, overriding the resource values recorded in the X server. Here's an example of what this string might look like: @example "*BorderWidth: 3\n*InternalBorder: 2\n" @end example If @var{must-succeed} is non-@code{nil}, failure to open the connection terminates Emacs. Otherwise, it is an ordinary Lisp error. @end defun @defun x-close-connection display This function closes the connection to display @var{display}. Before you can do this, you must first delete all the frames that were open on that display (@pxref{Deleting Frames}). @end defun @cindex multi-monitor On some ``multi-monitor'' setups, a single X display outputs to more than one physical monitor. You can use the functions @code{display-monitor-attributes-list} and @code{frame-monitor-attributes} to obtain information about such setups. @defun display-monitor-attributes-list &optional display This function returns a list of physical monitor attributes on @var{display}, which can be a display name (a string), a terminal, or a frame; if omitted or @code{nil}, it defaults to the selected frame's display. Each element of the list is an association list, representing the attributes of a physical monitor. The first element corresponds to the primary monitor. The attribute keys and values are: @table @samp @item geometry Position of the top-left corner of the monitor's screen and its size, in pixels, as @samp{(@var{x} @var{y} @var{width} @var{height})}. Note that, if the monitor is not the primary monitor, some of the coordinates might be negative. @item workarea Position of the top-left corner and size of the work area (``usable'' space) in pixels as @samp{(@var{x} @var{y} @var{width} @var{height})}. This may be different from @samp{geometry} in that space occupied by various window manager features (docks, taskbars, etc.) may be excluded from the work area. Whether or not such features actually subtract from the work area depends on the platform and environment. Again, if the monitor is not the primary monitor, some of the coordinates might be negative. @item mm-size Width and height in millimeters as @samp{(@var{width} @var{height})} @item frames List of frames that this physical monitor dominates (see below). @item name Name of the physical monitor as @var{string}. @item source Source of the multi-monitor information as @var{string}; e.g., @samp{XRandr} or @samp{Xinerama}. @end table @var{x}, @var{y}, @var{width}, and @var{height} are integers. @samp{name} and @samp{source} may be absent. A frame is @dfn{dominated} by a physical monitor when either the largest area of the frame resides in that monitor, or (if the frame does not intersect any physical monitors) that monitor is the closest to the frame. Every (non-tooltip) frame (whether visible or not) in a graphical display is dominated by exactly one physical monitor at a time, though the frame can span multiple (or no) physical monitors. Here's an example of the data produced by this function on a 2-monitor display: @lisp (display-monitor-attributes-list) @result{} (((geometry 0 0 1920 1080) ;; @r{Left-hand, primary monitor} (workarea 0 0 1920 1050) ;; @r{A taskbar occupies some of the height} (mm-size 677 381) (name . "DISPLAY1") (frames # #)) ((geometry 1920 0 1680 1050) ;; @r{Right-hand monitor} (workarea 1920 0 1680 1050) ;; @r{Whole screen can be used} (mm-size 593 370) (name . "DISPLAY2") (frames))) @end lisp @end defun @defun frame-monitor-attributes &optional frame This function returns the attributes of the physical monitor dominating (see above) @var{frame}, which defaults to the selected frame. @end defun @node Frame Parameters @section Frame Parameters @cindex frame parameters A frame has many parameters that control its appearance and behavior. Just what parameters a frame has depends on what display mechanism it uses. Frame parameters exist mostly for the sake of graphical displays. Most frame parameters have no effect when applied to a frame on a text terminal; only the @code{height}, @code{width}, @code{name}, @code{title}, @code{menu-bar-lines}, @code{buffer-list} and @code{buffer-predicate} parameters do something special. If the terminal supports colors, the parameters @code{foreground-color}, @code{background-color}, @code{background-mode} and @code{display-type} are also meaningful. If the terminal supports frame transparency, the parameter @code{alpha} is also meaningful. @menu * Parameter Access:: How to change a frame's parameters. * Initial Parameters:: Specifying frame parameters when you make a frame. * Window Frame Parameters:: List of frame parameters for window systems. * Size and Position:: Changing the size and position of a frame. * Geometry:: Parsing geometry specifications. @end menu @node Parameter Access @subsection Access to Frame Parameters These functions let you read and change the parameter values of a frame. @defun frame-parameter frame parameter This function returns the value of the parameter @var{parameter} (a symbol) of @var{frame}. If @var{frame} is @code{nil}, it returns the selected frame's parameter. If @var{frame} has no setting for @var{parameter}, this function returns @code{nil}. @end defun @defun frame-parameters &optional frame The function @code{frame-parameters} returns an alist listing all the parameters of @var{frame} and their values. If @var{frame} is @code{nil} or omitted, this returns the selected frame's parameters @end defun @defun modify-frame-parameters frame alist This function alters the parameters of frame @var{frame} based on the elements of @var{alist}. Each element of @var{alist} has the form @code{(@var{parm} . @var{value})}, where @var{parm} is a symbol naming a parameter. If you don't mention a parameter in @var{alist}, its value doesn't change. If @var{frame} is @code{nil}, it defaults to the selected frame. @end defun @defun set-frame-parameter frame parm value This function sets the frame parameter @var{parm} to the specified @var{value}. If @var{frame} is @code{nil}, it defaults to the selected frame. @end defun @defun modify-all-frames-parameters alist This function alters the frame parameters of all existing frames according to @var{alist}, then modifies @code{default-frame-alist} (and, if necessary, @code{initial-frame-alist}) to apply the same parameter values to frames that will be created henceforth. @end defun @node Initial Parameters @subsection Initial Frame Parameters @cindex parameters of initial frame You can specify the parameters for the initial startup frame by setting @code{initial-frame-alist} in your init file (@pxref{Init File}). @defopt initial-frame-alist This variable's value is an alist of parameter values used when creating the initial frame. You can set this variable to specify the appearance of the initial frame without altering subsequent frames. Each element has the form: @example (@var{parameter} . @var{value}) @end example Emacs creates the initial frame before it reads your init file. After reading that file, Emacs checks @code{initial-frame-alist}, and applies the parameter settings in the altered value to the already created initial frame. If these settings affect the frame geometry and appearance, you'll see the frame appear with the wrong ones and then change to the specified ones. If that bothers you, you can specify the same geometry and appearance with X resources; those do take effect before the frame is created. @xref{X Resources,, X Resources, emacs, The GNU Emacs Manual}. X resource settings typically apply to all frames. If you want to specify some X resources solely for the sake of the initial frame, and you don't want them to apply to subsequent frames, here's how to achieve this. Specify parameters in @code{default-frame-alist} to override the X resources for subsequent frames; then, to prevent these from affecting the initial frame, specify the same parameters in @code{initial-frame-alist} with values that match the X resources. @end defopt @cindex minibuffer-only frame If these parameters include @code{(minibuffer . nil)}, that indicates that the initial frame should have no minibuffer. In this case, Emacs creates a separate @dfn{minibuffer-only frame} as well. @defopt minibuffer-frame-alist This variable's value is an alist of parameter values used when creating an initial minibuffer-only frame (i.e., the minibuffer-only frame that Emacs creates if @code{initial-frame-alist} specifies a frame with no minibuffer). @end defopt @defopt default-frame-alist This is an alist specifying default values of frame parameters for all Emacs frames---the first frame, and subsequent frames. When using the X Window System, you can get the same results by means of X resources in many cases. Setting this variable does not affect existing frames. Furthermore, functions that display a buffer in a separate frame may override the default parameters by supplying their own parameters. @end defopt If you invoke Emacs with command-line options that specify frame appearance, those options take effect by adding elements to either @code{initial-frame-alist} or @code{default-frame-alist}. Options which affect just the initial frame, such as @samp{--geometry} and @samp{--maximized}, add to @code{initial-frame-alist}; the others add to @code{default-frame-alist}. @pxref{Emacs Invocation,, Command Line Arguments for Emacs Invocation, emacs, The GNU Emacs Manual}. @node Window Frame Parameters @subsection Window Frame Parameters @cindex frame parameters for windowed displays Just what parameters a frame has depends on what display mechanism it uses. This section describes the parameters that have special meanings on some or all kinds of terminals. Of these, @code{name}, @code{title}, @code{height}, @code{width}, @code{buffer-list} and @code{buffer-predicate} provide meaningful information in terminal frames, and @code{tty-color-mode} is meaningful only for frames on text terminals. @menu * Basic Parameters:: Parameters that are fundamental. * Position Parameters:: The position of the frame on the screen. * Size Parameters:: Frame's size. * Layout Parameters:: Size of parts of the frame, and enabling or disabling some parts. * Buffer Parameters:: Which buffers have been or should be shown. * Management Parameters:: Communicating with the window manager. * Cursor Parameters:: Controlling the cursor appearance. * Font and Color Parameters:: Fonts and colors for the frame text. @end menu @node Basic Parameters @subsubsection Basic Parameters These frame parameters give the most basic information about the frame. @code{title} and @code{name} are meaningful on all terminals. @table @code @vindex display, a frame parameter @item display The display on which to open this frame. It should be a string of the form @samp{@var{host}:@var{dpy}.@var{screen}}, just like the @env{DISPLAY} environment variable. @xref{Multiple Terminals}, for more details about display names. @vindex display-type, a frame parameter @item display-type This parameter describes the range of possible colors that can be used in this frame. Its value is @code{color}, @code{grayscale} or @code{mono}. @vindex title, a frame parameter @item title If a frame has a non-@code{nil} title, it appears in the window system's title bar at the top of the frame, and also in the mode line of windows in that frame if @code{mode-line-frame-identification} uses @samp{%F} (@pxref{%-Constructs}). This is normally the case when Emacs is not using a window system, and can only display one frame at a time. @xref{Frame Titles}. @vindex name, a frame parameter @item name The name of the frame. The frame name serves as a default for the frame title, if the @code{title} parameter is unspecified or @code{nil}. If you don't specify a name, Emacs sets the frame name automatically (@pxref{Frame Titles}). If you specify the frame name explicitly when you create the frame, the name is also used (instead of the name of the Emacs executable) when looking up X resources for the frame. @item explicit-name If the frame name was specified explicitly when the frame was created, this parameter will be that name. If the frame wasn't explicitly named, this parameter will be @code{nil}. @end table @node Position Parameters @subsubsection Position Parameters @cindex window position on display @cindex frame position Position parameters' values are normally measured in pixels, but on text terminals they count characters or lines instead. @table @code @vindex left, a frame parameter @item left The position, in pixels, of the left (or right) edge of the frame with respect to the left (or right) edge of the screen. The value may be: @table @asis @item an integer A positive integer relates the left edge of the frame to the left edge of the screen. A negative integer relates the right frame edge to the right screen edge. @item @code{(+ @var{pos})} This specifies the position of the left frame edge relative to the left screen edge. The integer @var{pos} may be positive or negative; a negative value specifies a position outside the screen or on a monitor other than the primary one (for multi-monitor displays). @item @code{(- @var{pos})} This specifies the position of the right frame edge relative to the right screen edge. The integer @var{pos} may be positive or negative; a negative value specifies a position outside the screen or on a monitor other than the primary one (for multi-monitor displays). @end table Some window managers ignore program-specified positions. If you want to be sure the position you specify is not ignored, specify a non-@code{nil} value for the @code{user-position} parameter as well. @vindex top, a frame parameter @item top The screen position of the top (or bottom) edge, in pixels, with respect to the top (or bottom) edge of the screen. It works just like @code{left}, except vertically instead of horizontally. @vindex icon-left, a frame parameter @item icon-left The screen position of the left edge of the frame's icon, in pixels, counting from the left edge of the screen. This takes effect when the frame is iconified, if the window manager supports this feature. If you specify a value for this parameter, then you must also specify a value for @code{icon-top} and vice versa. @vindex icon-top, a frame parameter @item icon-top The screen position of the top edge of the frame's icon, in pixels, counting from the top edge of the screen. This takes effect when the frame is iconified, if the window manager supports this feature. @vindex user-position, a frame parameter @item user-position When you create a frame and specify its screen position with the @code{left} and @code{top} parameters, use this parameter to say whether the specified position was user-specified (explicitly requested in some way by a human user) or merely program-specified (chosen by a program). A non-@code{nil} value says the position was user-specified. @cindex window positions and window managers Window managers generally heed user-specified positions, and some heed program-specified positions too. But many ignore program-specified positions, placing the window in a default fashion or letting the user place it with the mouse. Some window managers, including @code{twm}, let the user specify whether to obey program-specified positions or ignore them. When you call @code{make-frame}, you should specify a non-@code{nil} value for this parameter if the values of the @code{left} and @code{top} parameters represent the user's stated preference; otherwise, use @code{nil}. @end table @node Size Parameters @subsubsection Size Parameters @cindex window size on display Frame parameters specify frame sizes in character units. On graphical displays, the @code{default} face determines the actual pixel sizes of these character units (@pxref{Face Attributes}). @table @code @vindex height, a frame parameter @item height The height of the frame's text area (@pxref{Size and Position}), in characters. @vindex width, a frame parameter @item width The width of the frame's text area (@pxref{Size and Position}), in characters. @vindex user-size, a frame parameter @item user-size This does for the size parameters @code{height} and @code{width} what the @code{user-position} parameter (@pxref{Position Parameters, user-position}) does for the position parameters @code{top} and @code{left}. @cindex full-screen frames @vindex fullscreen, a frame parameter @item fullscreen Specify that width, height or both shall be maximized. The value @code{fullwidth} specifies that width shall be as wide as possible. The value @code{fullheight} specifies that height shall be as tall as possible. The value @code{fullboth} specifies that both the width and the height shall be set to the size of the screen. The value @code{maximized} specifies that the frame shall be maximized. The difference between @code{maximized} and @code{fullboth} is that the former can still be resized by dragging window manager decorations with the mouse, while the latter really covers the whole screen and does not allow resizing by mouse dragging. With some window managers you may have to customize the variable @code{frame-resize-pixelwise} (@pxref{Size and Position}) to a non-@code{nil} value in order to make a frame appear ``maximized'' or ``fullscreen''. @end table @node Layout Parameters @subsubsection Layout Parameters @cindex layout parameters of frames @cindex frame layout parameters These frame parameters enable or disable various parts of the frame, or control their sizes. @table @code @vindex border-width, a frame parameter @item border-width The width in pixels of the frame's border. @vindex internal-border-width, a frame parameter @item internal-border-width The distance in pixels between text (or fringe) and the frame's border. @vindex vertical-scroll-bars, a frame parameter @item vertical-scroll-bars Whether the frame has scroll bars for vertical scrolling, and which side of the frame they should be on. The possible values are @code{left}, @code{right}, and @code{nil} for no scroll bars. @vindex horizontal-scroll-bars, a frame parameter @item horizontal-scroll-bars Whether the frame has scroll bars for horizontal scrolling (@code{t} and @code{bottom} mean yes, @code{nil} means no). @vindex scroll-bar-width, a frame parameter @item scroll-bar-width The width of vertical scroll bars, in pixels, or @code{nil} meaning to use the default width. @vindex scroll-bar-height, a frame parameter @item scroll-bar-height The height of horizontal scroll bars, in pixels, or @code{nil} meaning to use the default height. @vindex left-fringe, a frame parameter @vindex right-fringe, a frame parameter @item left-fringe @itemx right-fringe The default width of the left and right fringes of windows in this frame (@pxref{Fringes}). If either of these is zero, that effectively removes the corresponding fringe. When you use @code{frame-parameter} to query the value of either of these two frame parameters, the return value is always an integer. When using @code{set-frame-parameter}, passing a @code{nil} value imposes an actual default value of 8 pixels. @vindex right-divider-width, a frame parameter @item right-divider-width The width (thickness) reserved for the right divider (@pxref{Window Dividers}) of any window on the frame, in pixels. A value of zero means to not draw right dividers. @vindex bottom-divider-width, a frame parameter @item bottom-divider-width The width (thickness) reserved for the bottom divider (@pxref{Window Dividers}) of any window on the frame, in pixels. A value of zero means to not draw bottom dividers. @vindex menu-bar-lines frame parameter @item menu-bar-lines The number of lines to allocate at the top of the frame for a menu bar. The default is 1 if Menu Bar mode is enabled, and 0 otherwise. @xref{Menu Bars,,,emacs, The GNU Emacs Manual}. @vindex tool-bar-lines frame parameter @item tool-bar-lines The number of lines to use for the tool bar. The default is 1 if Tool Bar mode is enabled, and 0 otherwise. @xref{Tool Bars,,,emacs, The GNU Emacs Manual}. @vindex tool-bar-position frame parameter @item tool-bar-position The position of the tool bar. Currently only for the GTK tool bar. Value can be one of @code{top}, @code{bottom} @code{left}, @code{right}. The default is @code{top}. @vindex line-spacing, a frame parameter @item line-spacing Additional space to leave below each text line, in pixels (a positive integer). @xref{Line Height}, for more information. @end table @node Buffer Parameters @subsubsection Buffer Parameters @cindex frame, which buffers to display @cindex buffers to display on frame These frame parameters, meaningful on all kinds of terminals, deal with which buffers have been, or should, be displayed in the frame. @table @code @vindex minibuffer, a frame parameter @item minibuffer Whether this frame has its own minibuffer. The value @code{t} means yes, @code{nil} means no, @code{only} means this frame is just a minibuffer. If the value is a minibuffer window (in some other frame), the frame uses that minibuffer. This frame parameter takes effect when the frame is created, and can not be changed afterwards. @vindex buffer-predicate, a frame parameter @item buffer-predicate The buffer-predicate function for this frame. The function @code{other-buffer} uses this predicate (from the selected frame) to decide which buffers it should consider, if the predicate is not @code{nil}. It calls the predicate with one argument, a buffer, once for each buffer; if the predicate returns a non-@code{nil} value, it considers that buffer. @vindex buffer-list, a frame parameter @item buffer-list A list of buffers that have been selected in this frame, ordered most-recently-selected first. @vindex unsplittable, a frame parameter @item unsplittable If non-@code{nil}, this frame's window is never split automatically. @end table @node Management Parameters @subsubsection Window Management Parameters @cindex window manager interaction, and frame parameters The following frame parameters control various aspects of the frame's interaction with the window manager. They have no effect on text terminals. @table @code @vindex visibility, a frame parameter @item visibility The state of visibility of the frame. There are three possibilities: @code{nil} for invisible, @code{t} for visible, and @code{icon} for iconified. @xref{Visibility of Frames}. @vindex auto-raise, a frame parameter @item auto-raise If non-@code{nil}, Emacs automatically raises the frame when it is selected. Some window managers do not allow this. @vindex auto-lower, a frame parameter @item auto-lower If non-@code{nil}, Emacs automatically lowers the frame when it is deselected. Some window managers do not allow this. @vindex icon-type, a frame parameter @item icon-type The type of icon to use for this frame. If the value is a string, that specifies a file containing a bitmap to use; @code{nil} specifies no icon (in which case the window manager decides what to show); any other non-@code{nil} value specifies the default Emacs icon. @vindex icon-name, a frame parameter @item icon-name The name to use in the icon for this frame, when and if the icon appears. If this is @code{nil}, the frame's title is used. @vindex window-id, a frame parameter @item window-id The ID number which the graphical display uses for this frame. Emacs assigns this parameter when the frame is created; changing the parameter has no effect on the actual ID number. @vindex outer-window-id, a frame parameter @item outer-window-id The ID number of the outermost window-system window in which the frame exists. As with @code{window-id}, changing this parameter has no actual effect. @vindex wait-for-wm, a frame parameter @item wait-for-wm If non-@code{nil}, tell Xt to wait for the window manager to confirm geometry changes. Some window managers, including versions of Fvwm2 and KDE, fail to confirm, so Xt hangs. Set this to @code{nil} to prevent hanging with those window managers. @vindex sticky, a frame parameter @item sticky If non-@code{nil}, the frame is visible on all virtual desktops on systems with virtual desktops. @ignore @vindex parent-id, a frame parameter @item parent-id @c ??? Not yet working. The X window number of the window that should be the parent of this one. Specifying this lets you create an Emacs window inside some other application's window. (It is not certain this will be implemented; try it and see if it works.) @end ignore @end table @node Cursor Parameters @subsubsection Cursor Parameters @cindex cursor, and frame parameters This frame parameter controls the way the cursor looks. @table @code @vindex cursor-type, a frame parameter @item cursor-type How to display the cursor. Legitimate values are: @table @code @item box Display a filled box. (This is the default.) @item hollow Display a hollow box. @item nil Don't display a cursor. @item bar Display a vertical bar between characters. @item (bar . @var{width}) Display a vertical bar @var{width} pixels wide between characters. @item hbar Display a horizontal bar. @item (hbar . @var{height}) Display a horizontal bar @var{height} pixels high. @end table @end table @vindex cursor-type The @code{cursor-type} frame parameter may be overridden by the variables @code{cursor-type} and @code{cursor-in-non-selected-windows}: @defvar cursor-type This buffer-local variable controls how the cursor looks in a selected window showing the buffer. If its value is @code{t}, that means to use the cursor specified by the @code{cursor-type} frame parameter. Otherwise, the value should be one of the cursor types listed above, and it overrides the @code{cursor-type} frame parameter. @end defvar @defopt cursor-in-non-selected-windows This buffer-local variable controls how the cursor looks in a window that is not selected. It supports the same values as the @code{cursor-type} frame parameter; also, @code{nil} means don't display a cursor in nonselected windows, and @code{t} (the default) means use a standard modification of the usual cursor type (solid box becomes hollow box, and bar becomes a narrower bar). @end defopt @defopt blink-cursor-alist This variable specifies how to blink the cursor. Each element has the form @code{(@var{on-state} . @var{off-state})}. Whenever the cursor type equals @var{on-state} (comparing using @code{equal}), the corresponding @var{off-state} specifies what the cursor looks like when it blinks ``off''. Both @var{on-state} and @var{off-state} should be suitable values for the @code{cursor-type} frame parameter. There are various defaults for how to blink each type of cursor, if the type is not mentioned as an @var{on-state} here. Changes in this variable do not take effect immediately, only when you specify the @code{cursor-type} frame parameter. @end defopt @node Font and Color Parameters @subsubsection Font and Color Parameters @cindex font and color, frame parameters These frame parameters control the use of fonts and colors. @table @code @vindex font-backend, a frame parameter @item font-backend A list of symbols, specifying the @dfn{font backends} to use for drawing fonts in the frame, in order of priority. On X, there are currently two available font backends: @code{x} (the X core font driver) and @code{xft} (the Xft font driver). On MS-Windows, there are currently two available font backends: @code{gdi} and @code{uniscribe} (@pxref{Windows Fonts,,, emacs, The GNU Emacs Manual}). On other systems, there is only one available font backend, so it does not make sense to modify this frame parameter. @vindex background-mode, a frame parameter @item background-mode This parameter is either @code{dark} or @code{light}, according to whether the background color is a light one or a dark one. @vindex tty-color-mode, a frame parameter @item tty-color-mode @cindex standard colors for character terminals This parameter overrides the terminal's color support as given by the system's terminal capabilities database in that this parameter's value specifies the color mode to use on a text terminal. The value can be either a symbol or a number. A number specifies the number of colors to use (and, indirectly, what commands to issue to produce each color). For example, @code{(tty-color-mode . 8)} specifies use of the ANSI escape sequences for 8 standard text colors. A value of -1 turns off color support. If the parameter's value is a symbol, it specifies a number through the value of @code{tty-color-mode-alist}, and the associated number is used instead. @vindex screen-gamma, a frame parameter @item screen-gamma @cindex gamma correction If this is a number, Emacs performs ``gamma correction'' which adjusts the brightness of all colors. The value should be the screen gamma of your display. Usual PC monitors have a screen gamma of 2.2, so color values in Emacs, and in X windows generally, are calibrated to display properly on a monitor with that gamma value. If you specify 2.2 for @code{screen-gamma}, that means no correction is needed. Other values request correction, designed to make the corrected colors appear on your screen the way they would have appeared without correction on an ordinary monitor with a gamma value of 2.2. If your monitor displays colors too light, you should specify a @code{screen-gamma} value smaller than 2.2. This requests correction that makes colors darker. A screen gamma value of 1.5 may give good results for LCD color displays. @vindex alpha, a frame parameter @item alpha @cindex opacity, frame @cindex transparency, frame @vindex frame-alpha-lower-limit This parameter specifies the opacity of the frame, on graphical displays that support variable opacity. It should be an integer between 0 and 100, where 0 means completely transparent and 100 means completely opaque. It can also have a @code{nil} value, which tells Emacs not to set the frame opacity (leaving it to the window manager). To prevent the frame from disappearing completely from view, the variable @code{frame-alpha-lower-limit} defines a lower opacity limit. If the value of the frame parameter is less than the value of this variable, Emacs uses the latter. By default, @code{frame-alpha-lower-limit} is 20. The @code{alpha} frame parameter can also be a cons cell @code{(@samp{active} . @samp{inactive})}, where @samp{active} is the opacity of the frame when it is selected, and @samp{inactive} is the opacity when it is not selected. @end table The following frame parameters are semi-obsolete in that they are automatically equivalent to particular face attributes of particular faces (@pxref{Standard Faces,,, emacs, The Emacs Manual}): @table @code @vindex font, a frame parameter @item font The name of the font for displaying text in the frame. This is a string, either a valid font name for your system or the name of an Emacs fontset (@pxref{Fontsets}). It is equivalent to the @code{font} attribute of the @code{default} face. @vindex foreground-color, a frame parameter @item foreground-color The color to use for the image of a character. It is equivalent to the @code{:foreground} attribute of the @code{default} face. @vindex background-color, a frame parameter @item background-color The color to use for the background of characters. It is equivalent to the @code{:background} attribute of the @code{default} face. @vindex mouse-color, a frame parameter @item mouse-color The color for the mouse pointer. It is equivalent to the @code{:background} attribute of the @code{mouse} face. @vindex cursor-color, a frame parameter @item cursor-color The color for the cursor that shows point. It is equivalent to the @code{:background} attribute of the @code{cursor} face. @vindex border-color, a frame parameter @item border-color The color for the border of the frame. It is equivalent to the @code{:background} attribute of the @code{border} face. @vindex scroll-bar-foreground, a frame parameter @item scroll-bar-foreground If non-@code{nil}, the color for the foreground of scroll bars. It is equivalent to the @code{:foreground} attribute of the @code{scroll-bar} face. @vindex scroll-bar-background, a frame parameter @item scroll-bar-background If non-@code{nil}, the color for the background of scroll bars. It is equivalent to the @code{:background} attribute of the @code{scroll-bar} face. @end table @node Size and Position @subsection Frame Size and Position @cindex size of frame @cindex screen size @cindex frame size @cindex resize frame You can read or change the size and position of a frame using the frame parameters @code{left}, @code{top}, @code{height}, and @code{width}. Whatever geometry parameters you don't specify are chosen by the window manager in its usual fashion. Here are some special features for working with sizes and positions. Most of the functions described below use a @var{frame} argument which has to specify a live frame. If omitted or @code{nil}, it specifies the selected frame, see @ref{Input Focus}. @defun set-frame-position frame left top This function sets the position of the top left corner of @var{frame} to @var{left} and @var{top}. These arguments are measured in pixels, and normally count from the top left corner of the screen to the top left corner of the rectangle allotted to the frame by the window manager. Negative parameter values position the bottom edge of that rectangle up from the bottom edge of the screen, or the right rectangle edge to the left of the right edge of the screen. It would probably be better if the values were always counted from the left and top, so that negative arguments would position the frame partly off the top or left edge of the screen, but it seems inadvisable to change that now. @end defun @cindex frame default font @cindex default font of a frame Each frame has a @dfn{default font} which specifies the canonical height and width of a character on that frame. The default font is used when retrieving or changing the size of a frame in terms of columns or lines. It is also used when resizing (@pxref{Window Sizes}) or splitting (@pxref{Splitting Windows}) windows. @defun frame-char-height &optional frame @defunx frame-char-width &optional frame These functions return the canonical height and width of a character in @var{frame}, measured in pixels. Together, these values establish the size of the default font on @var{frame}. The values depend on the choice of font for @var{frame}, see @ref{Font and Color Parameters}. @end defun The default font can be also set directly with the following function: @deffn Command set-frame-font font &optional keep-size frames This sets the default font to @var{font}. When called interactively, it prompts for the name of a font, and uses that font on the selected frame. When called from Lisp, @var{font} should be a font name (a string), a font object, font entity, or a font spec. If the optional argument @var{keep-size} is @code{nil}, this keeps the number of frame lines and columns fixed. (If non-@code{nil}, the option @code{frame-inhibit-implied-resize} described below will override this.) If @var{keep-size} is non-@code{nil} (or with a prefix argument), it tries to keep the size of the display area of the current frame fixed by adjusting the number of lines and columns. If the optional argument @var{frames} is @code{nil}, this applies the font to the selected frame only. If @var{frames} is non-@code{nil}, it should be a list of frames to act upon, or @code{t} meaning all existing graphical frames. @end deffn @cindex frame display area @cindex display area of a frame The @dfn{display area} of a frame is a rectangular area within the area allotted to the frame by the window manager. The display area neither includes the title bar (@pxref{Frame Titles}) nor any other decorations provided by the window manager (like an external border used for resizing frames via mouse dragging). The actual height of the display area depends on the window-system and toolkit in use. With GTK+, the display area does not include any tool bar or menu bar. With the Motif or Lucid toolkits and with Windows, the display area includes the tool bar but not the menu bar. In a graphical version with no toolkit, it includes both the tool bar and menu bar. On a text terminal, the display area includes the menu bar. @defun frame-pixel-height &optional frame @defunx frame-pixel-width &optional frame These functions return the height and width of the display area of @var{frame}, measured in pixels. For a text terminal, the results are in characters rather than pixels. @end defun @cindex frame text area @cindex text area of a frame The @dfn{text area} of a frame is a concept implicitly used by all functions that change a frame's height or width. It is a rectangle located within the display area. Its size is obtained from that of the display area by subtracting the sizes of any tool or menu bars that are part of the display area, any internal borders, one vertical and one horizontal scroll bar, and one left and one right fringe as specified for this frame, see @ref{Layout Parameters}. @defun frame-text-height &optional frame @defunx frame-text-width &optional frame These functions return the height and width of the text area of @var{frame}, measured in pixels. For a text terminal, the results are in characters rather than pixels. The value returned by @code{frame-text-height} differs from that returned by @code{frame-pixel-height} by not including the heights of any tool bar or menu bar, the height of one horizontal scroll bar and the widths of the internal border. The value returned by @code{frame-text-width} differs from that returned by @code{frame-pixel-width} by not including the width of one vertical scroll bar, the widths of one left and one right fringe and the widths of the internal border. @end defun @defun frame-height &optional frame @defunx frame-width &optional frame These functions return the height and width of the text area of @var{frame}, measured in units of the default font height and width of @var{frame}. These functions are plain shorthands for writing @code{(frame-parameter frame 'height)} and @code{(frame-parameter frame 'width)}. If the text area of @var{frame} measured in pixles is not a multiple of its default font size, the values returned by this functions are rounded down to the number of characters of the default font that fully fit into the text area. @end defun @defopt frame-resize-pixelwise If this option is @code{nil}, a frame's size is usually rounded to a multiple of the current values of that frame's @code{frame-char-height} and @code{frame-char-width}. If this is non-@code{nil}, no rounding occurs, hence frame sizes can increase/decrease by one pixel. Setting this causes the next resize operation to pass the corresponding size hints to the window manager. This means that this variable should be set only in a user's initial file; applications should never bind it temporarily. The precise meaning of a value of @code{nil} for this option depends on the toolkit used. Dragging the frame border with the mouse is usually done character-wise. Calling @code{set-frame-size} (see below) with arguments that do not specify the frame size as an integer multiple of its character size, however, may: be ignored, cause a rounding (GTK+), or be accepted (Lucid, Motif, MS-Windows). With some window managers you may have to set this to non-@code{nil} in order to make a frame appear truly ``maximized'' or ``fullscreen''. @end defopt @defun set-frame-size frame width height pixelwise This function sets the size of the text area of @var{frame}, measured in characters; @var{width} and @var{height} specify the new width in columns and the new height in lines. The optional argument @var{pixelwise} non-@code{nil} means to measure the new width and height in units of pixels instead. Note that if @code{frame-resize-pixelwise} is @code{nil}, some toolkits may refuse to fully honor the request if it does not increase/decrease the frame size to a multiple of its character size. @end defun @defun set-frame-height frame height &optional pretend pixelwise This function resizes the text area of @var{frame} to a height of @var{height} lines. The sizes of existing windows in @var{frame} are altered proportionally to fit. If @var{pretend} is non-@code{nil}, then Emacs displays @var{height} lines of output in @var{frame}, but does not change its value for the actual height of the frame. This is only useful on text terminals. Using a smaller height than the terminal actually implements may be useful to reproduce behavior observed on a smaller screen, or if the terminal malfunctions when using its whole screen. Setting the frame height ``for real'' does not always work, because knowing the correct actual size may be necessary for correct cursor positioning on text terminals. The optional fourth argument @var{pixelwise} non-@code{nil} means that @var{frame} should be @var{height} pixels high. Note that if @code{frame-resize-pixelwise} is @code{nil}, some toolkits may refuse to fully honor the request if it does not increase/decrease the frame height to a multiple of its character height. @end defun @defun set-frame-width frame width &optional pretend pixelwise This function sets the width of the text area of @var{frame}, measured in characters. The argument @var{pretend} has the same meaning as in @code{set-frame-height}. The optional fourth argument @var{pixelwise} non-@code{nil} means that @var{frame} should be @var{width} pixels wide. Note that if @code{frame-resize-pixelwise} is @code{nil}, some toolkits may refuse to fully honor the request if it does not increase/decrease the frame width to a multiple of its character width. @end defun None of these three functions will make a frame smaller than needed to display all of its windows together with their scroll bars, fringes, margins, dividers, mode and header lines. This contrasts with requests by the window manager triggered, for example, by dragging the external border of a frame with the mouse. Such requests are always honored by clipping, if necessary, portions that cannot be displayed at the right, bottom corner of the frame. By default, Emacs tries to keep the number of lines and columns of a frame's text area unaltered when, for example, adding or removing a menu bar, changing the default font or setting the width of the frame's scroll bars. This means, however, that in such case Emacs must ask the window manager to resize the display area of the frame in order to accommodate the size change. Note that wrapping a menu or tool bar usually does not resize the frame's display area, hence this will alter the number of displayed lines. Occasionally, such implied resizing of the display area may be unwanted, for example, when the frame is maximized or made fullscreen where it's turned off by default. In other cases you can disable implied resizing with the following option: @defopt frame-inhibit-implied-resize If this option is @code{nil}, changing font, menu bar, tool bar, internal borders, fringes or scroll bars of a specific frame may implicitly resize the frame's display area in order to preserve the number of columns or lines the frame displays. If this option is non-@code{nil}, no implied resizing is done. The value of this option can be also be a list of frame parameters. In that case, implied resizing is inhibited when changing a parameter that appears in this list. The frame parameters currently handled by this option are: @code{font}, @code{font-backend}, @code{internal-border-width}, @code{menu-bar-lines} and @code{tool-bar-lines}. Changing any of the @code{scroll-bar-width}, @code{scroll-bar-height}, @code{vertical-scroll-bars}, @code{horizontal-scroll-bars}, @code{left-fringe} and @code{right-fringe} frame parameters is handled as if the frame contained just one live window. This means, for example, that removing vertical scroll bars on a frame containing several side by side windows will shrink the frame width by the width of one scroll bar provided this option is @code{nil} and keep it unchanged if this option is either @code{t} or a list containing @code{vertical-scroll-bars}. The default value is @code{'(tool-bar-lines)} for Lucid, Motif and Windows (which means that adding/removing a tool bar there does not change the frame height), @code{nil} on all other window systems including GTK+ (which means that changing any of the parameters listed above may change the size of the frame), and @code{t} otherwise (which means the frame size never changes implicitly when there's no window system support). Note that when a frame is not large enough to accommodate a change of any of the parameters listed above, Emacs may try to enlarge the frame even if this option is non-@code{nil}. @end defopt @c FIXME? Belongs more in Emacs manual than here? @c But, e.g., fit-window-to-buffer is in this manual. If you have a frame that displays only one window, you can fit that frame to its buffer using the command @code{fit-frame-to-buffer}. @deffn Command fit-frame-to-buffer &optional frame max-height min-height max-width min-width only This command adjusts the size of @var{frame} to display the contents of its buffer exactly. @var{frame} can be any live frame and defaults to the selected one. Fitting is done only if @var{frame}'s root window is live. The arguments @var{max-height}, @var{min-height}, @var{max-width} and @var{min-width} specify bounds on the new total size of @var{frame}'s root window. @var{min-height} and @var{min-width} default to the values of @code{window-min-height} and @code{window-min-width} respectively. If the optional argument @var{only} is @code{vertically}, this function may resize the frame vertically only. If @var{only} is @code{horizontally}, it may resize the frame horizontally only. @end deffn The behavior of @code{fit-frame-to-buffer} can be controlled with the help of the two options listed next. @defopt fit-frame-to-buffer-margins This option can be used to specify margins around frames to be fit by @code{fit-frame-to-buffer}. Such margins can be useful to avoid, for example, that such frames overlap the taskbar. It specifies the numbers of pixels to be left free on the left, above, the right, and below a frame that shall be fit. The default specifies @code{nil} for each which means to use no margins. The value specified here can be overridden for a specific frame by that frame's @code{fit-frame-to-buffer-margins} parameter, if present. @end defopt @defopt fit-frame-to-buffer-sizes This option specifies size boundaries for @code{fit-frame-to-buffer}. It specifies the total maximum and minimum lines and maximum and minimum columns of the root window of any frame that shall be fit to its buffer. If any of these values is non-@code{nil}, it overrides the corresponding argument of @code{fit-frame-to-buffer}. @end defopt @node Geometry @subsection Geometry Here's how to examine the data in an X-style window geometry specification: @defun x-parse-geometry geom @cindex geometry specification The function @code{x-parse-geometry} converts a standard X window geometry string to an alist that you can use as part of the argument to @code{make-frame}. The alist describes which parameters were specified in @var{geom}, and gives the values specified for them. Each element looks like @code{(@var{parameter} . @var{value})}. The possible @var{parameter} values are @code{left}, @code{top}, @code{width}, and @code{height}. For the size parameters, the value must be an integer. The position parameter names @code{left} and @code{top} are not totally accurate, because some values indicate the position of the right or bottom edges instead. The @var{value} possibilities for the position parameters are: an integer, a list @code{(+ @var{pos})}, or a list @code{(- @var{pos})}; as previously described (@pxref{Position Parameters}). Here is an example: @example (x-parse-geometry "35x70+0-0") @result{} ((height . 70) (width . 35) (top - 0) (left . 0)) @end example @end defun @node Terminal Parameters @section Terminal Parameters @cindex terminal parameters Each terminal has a list of associated parameters. These @dfn{terminal parameters} are mostly a convenient way of storage for terminal-local variables, but some terminal parameters have a special meaning. This section describes functions to read and change the parameter values of a terminal. They all accept as their argument either a terminal or a frame; the latter means use that frame's terminal. An argument of @code{nil} means the selected frame's terminal. @defun terminal-parameters &optional terminal This function returns an alist listing all the parameters of @var{terminal} and their values. @end defun @defun terminal-parameter terminal parameter This function returns the value of the parameter @var{parameter} (a symbol) of @var{terminal}. If @var{terminal} has no setting for @var{parameter}, this function returns @code{nil}. @end defun @defun set-terminal-parameter terminal parameter value This function sets the parameter @var{parm} of @var{terminal} to the specified @var{value}, and returns the previous value of that parameter. @end defun Here's a list of a few terminal parameters that have a special meaning: @table @code @item background-mode The classification of the terminal's background color, either @code{light} or @code{dark}. @item normal-erase-is-backspace Value is either 1 or 0, depending on whether @code{normal-erase-is-backspace-mode} is turned on or off on this terminal. @xref{DEL Does Not Delete,,, emacs, The Emacs Manual}. @item terminal-initted After the terminal is initialized, this is set to the terminal-specific initialization function. @item tty-mode-set-strings When present, a list of strings containing escape sequences that Emacs will output while configuring a tty for rendering. Emacs emits these strings only when configuring a terminal: if you want to enable a mode on a terminal that is already active (for example, while in @code{tty-setup-hook}), explicitly output the necessary escape sequence using @code{send-string-to-terminal} in addition to adding the sequence to @code{tty-mode-set-strings}. @item tty-mode-reset-strings When present, a list of strings that undo the effects of the strings in @code{tty-mode-set-strings}. Emacs emits these strings when exiting, deleting a terminal, or suspending itself. @end table @node Frame Titles @section Frame Titles @cindex frame title Every frame has a @code{name} parameter; this serves as the default for the frame title which window systems typically display at the top of the frame. You can specify a name explicitly by setting the @code{name} frame property. Normally you don't specify the name explicitly, and Emacs computes the frame name automatically based on a template stored in the variable @code{frame-title-format}. Emacs recomputes the name each time the frame is redisplayed. @defvar frame-title-format This variable specifies how to compute a name for a frame when you have not explicitly specified one. The variable's value is actually a mode line construct, just like @code{mode-line-format}, except that the @samp{%c} and @samp{%l} constructs are ignored. @xref{Mode Line Data}. @end defvar @defvar icon-title-format This variable specifies how to compute the name for an iconified frame, when you have not explicitly specified the frame title. This title appears in the icon itself. @end defvar @defvar multiple-frames This variable is set automatically by Emacs. Its value is @code{t} when there are two or more frames (not counting minibuffer-only frames or invisible frames). The default value of @code{frame-title-format} uses @code{multiple-frames} so as to put the buffer name in the frame title only when there is more than one frame. The value of this variable is not guaranteed to be accurate except while processing @code{frame-title-format} or @code{icon-title-format}. @end defvar @node Deleting Frames @section Deleting Frames @cindex deleting frames A @dfn{live frame} is one that has not been deleted. When a frame is deleted, it is removed from its terminal display, although it may continue to exist as a Lisp object until there are no more references to it. @deffn Command delete-frame &optional frame force @vindex delete-frame-functions This function deletes the frame @var{frame}. Unless @var{frame} is a tooltip, it first runs the hook @code{delete-frame-functions} (each function gets one argument, @var{frame}). By default, @var{frame} is the selected frame. A frame cannot be deleted if its minibuffer is used by other frames. Normally, you cannot delete a frame if all other frames are invisible, but if @var{force} is non-@code{nil}, then you are allowed to do so. @end deffn @defun frame-live-p frame The function @code{frame-live-p} returns non-@code{nil} if the frame @var{frame} has not been deleted. The possible non-@code{nil} return values are like those of @code{framep}. @xref{Frames}. @end defun Some window managers provide a command to delete a window. These work by sending a special message to the program that operates the window. When Emacs gets one of these commands, it generates a @code{delete-frame} event, whose normal definition is a command that calls the function @code{delete-frame}. @xref{Misc Events}. @node Finding All Frames @section Finding All Frames @cindex frames, scanning all @defun frame-list This function returns a list of all the live frames, i.e., those that have not been deleted. It is analogous to @code{buffer-list} for buffers, and includes frames on all terminals. The list that you get is newly created, so modifying the list doesn't have any effect on the internals of Emacs. @end defun @defun visible-frame-list This function returns a list of just the currently visible frames. @xref{Visibility of Frames}. Frames on text terminals always count as ``visible'', even though only the selected one is actually displayed. @end defun @defun next-frame &optional frame minibuf This function lets you cycle conveniently through all the frames on the current display from an arbitrary starting point. It returns the ``next'' frame after @var{frame} in the cycle. If @var{frame} is omitted or @code{nil}, it defaults to the selected frame (@pxref{Input Focus}). The second argument, @var{minibuf}, says which frames to consider: @table @asis @item @code{nil} Exclude minibuffer-only frames. @item @code{visible} Consider all visible frames. @item 0 Consider all visible or iconified frames. @item a window Consider only the frames using that particular window as their minibuffer. @item anything else Consider all frames. @end table @end defun @defun previous-frame &optional frame minibuf Like @code{next-frame}, but cycles through all frames in the opposite direction. @end defun See also @code{next-window} and @code{previous-window}, in @ref{Cyclic Window Ordering}. @node Minibuffers and Frames @section Minibuffers and Frames Normally, each frame has its own minibuffer window at the bottom, which is used whenever that frame is selected. If the frame has a minibuffer, you can get it with @code{minibuffer-window} (@pxref{Definition of minibuffer-window}). @cindex frame without a minibuffer However, you can also create a frame with no minibuffer. Such a frame must use the minibuffer window of some other frame. When you create the frame, you can explicitly specify the minibuffer window to use (in some other frame). If you don't, then the minibuffer is found in the frame which is the value of the variable @code{default-minibuffer-frame}. Its value should be a frame that does have a minibuffer. If you use a minibuffer-only frame, you might want that frame to raise when you enter the minibuffer. If so, set the variable @code{minibuffer-auto-raise} to @code{t}. @xref{Raising and Lowering}. @defvar default-minibuffer-frame This variable specifies the frame to use for the minibuffer window, by default. It does not affect existing frames. It is always local to the current terminal and cannot be buffer-local. @xref{Multiple Terminals}. @end defvar @node Input Focus @section Input Focus @cindex input focus @c @cindex selected frame Duplicates selected-frame, same for selected-window. At any time, one frame in Emacs is the @dfn{selected frame}. The selected window always resides on the selected frame. When Emacs displays its frames on several terminals (@pxref{Multiple Terminals}), each terminal has its own selected frame. But only one of these is ``@emph{the} selected frame'': it's the frame that belongs to the terminal from which the most recent input came. That is, when Emacs runs a command that came from a certain terminal, the selected frame is the one of that terminal. Since Emacs runs only a single command at any given time, it needs to consider only one selected frame at a time; this frame is what we call @dfn{the selected frame} in this manual. The display on which the selected frame is shown is the @dfn{selected frame's display}. @defun selected-frame This function returns the selected frame. @end defun Some window systems and window managers direct keyboard input to the window object that the mouse is in; others require explicit clicks or commands to @dfn{shift the focus} to various window objects. Either way, Emacs automatically keeps track of which frame has the focus. To explicitly switch to a different frame from a Lisp function, call @code{select-frame-set-input-focus}. Lisp programs can also switch frames ``temporarily'' by calling the function @code{select-frame}. This does not alter the window system's concept of focus; rather, it escapes from the window manager's control until that control is somehow reasserted. When using a text terminal, only one frame can be displayed at a time on the terminal, so after a call to @code{select-frame}, the next redisplay actually displays the newly selected frame. This frame remains selected until a subsequent call to @code{select-frame}. Each frame on a text terminal has a number which appears in the mode line before the buffer name (@pxref{Mode Line Variables}). @defun select-frame-set-input-focus frame &optional norecord This function selects @var{frame}, raises it (should it happen to be obscured by other frames) and tries to give it the X server's focus. On a text terminal, the next redisplay displays the new frame on the entire terminal screen. The optional argument @var{norecord} has the same meaning as for @code{select-frame} (see below). The return value of this function is not significant. @end defun @deffn Command select-frame frame &optional norecord This function selects frame @var{frame}, temporarily disregarding the focus of the X server if any. The selection of @var{frame} lasts until the next time the user does something to select a different frame, or until the next time this function is called. (If you are using a window system, the previously selected frame may be restored as the selected frame after return to the command loop, because it still may have the window system's input focus.) The specified @var{frame} becomes the selected frame, and its terminal becomes the selected terminal. This function then calls @code{select-window} as a subroutine, passing the window selected within @var{frame} as its first argument and @var{norecord} as its second argument (hence, if @var{norecord} is non-@code{nil}, this avoids changing the order of recently selected windows nor the buffer list). @xref{Selecting Windows}. This function returns @var{frame}, or @code{nil} if @var{frame} has been deleted. In general, you should never use @code{select-frame} in a way that could switch to a different terminal without switching back when you're done. @end deffn Emacs cooperates with the window system by arranging to select frames as the server and window manager request. It does so by generating a special kind of input event, called a @dfn{focus} event, when appropriate. The command loop handles a focus event by calling @code{handle-switch-frame}. @xref{Focus Events}. @deffn Command handle-switch-frame frame This function handles a focus event by selecting frame @var{frame}. Focus events normally do their job by invoking this command. Don't call it for any other reason. @end deffn @defun redirect-frame-focus frame &optional focus-frame This function redirects focus from @var{frame} to @var{focus-frame}. This means that @var{focus-frame} will receive subsequent keystrokes and events intended for @var{frame}. After such an event, the value of @code{last-event-frame} will be @var{focus-frame}. Also, switch-frame events specifying @var{frame} will instead select @var{focus-frame}. If @var{focus-frame} is omitted or @code{nil}, that cancels any existing redirection for @var{frame}, which therefore once again receives its own events. One use of focus redirection is for frames that don't have minibuffers. These frames use minibuffers on other frames. Activating a minibuffer on another frame redirects focus to that frame. This puts the focus on the minibuffer's frame, where it belongs, even though the mouse remains in the frame that activated the minibuffer. Selecting a frame can also change focus redirections. Selecting frame @code{bar}, when @code{foo} had been selected, changes any redirections pointing to @code{foo} so that they point to @code{bar} instead. This allows focus redirection to work properly when the user switches from one frame to another using @code{select-window}. This means that a frame whose focus is redirected to itself is treated differently from a frame whose focus is not redirected. @code{select-frame} affects the former but not the latter. The redirection lasts until @code{redirect-frame-focus} is called to change it. @end defun @defvar focus-in-hook This is a normal hook run when an Emacs frame gains input focus. @end defvar @defvar focus-out-hook This is a normal hook run when an Emacs frame loses input focus. @end defvar @defopt focus-follows-mouse This option is how you inform Emacs whether the window manager transfers focus when the user moves the mouse. Non-@code{nil} says that it does. When this is so, the command @code{other-frame} moves the mouse to a position consistent with the new selected frame. @end defopt @node Visibility of Frames @section Visibility of Frames @cindex visible frame @cindex invisible frame @cindex iconified frame @cindex minimized frame @cindex frame visibility A frame on a graphical display may be @dfn{visible}, @dfn{invisible}, or @dfn{iconified}. If it is visible, its contents are displayed in the usual manner. If it is iconified, its contents are not displayed, but there is a little icon somewhere to bring the frame back into view (some window managers refer to this state as @dfn{minimized} rather than @dfn{iconified}, but from Emacs' point of view they are the same thing). If a frame is invisible, it is not displayed at all. Visibility is meaningless on text terminals, since only the selected one is actually displayed in any case. @defun frame-visible-p frame This function returns the visibility status of frame @var{frame}. The value is @code{t} if @var{frame} is visible, @code{nil} if it is invisible, and @code{icon} if it is iconified. On a text terminal, all frames are considered ``visible'' for the purposes of this function, even though only one frame is displayed. @xref{Raising and Lowering}. @end defun @deffn Command iconify-frame &optional frame This function iconifies frame @var{frame}. If you omit @var{frame}, it iconifies the selected frame. @end deffn @deffn Command make-frame-visible &optional frame This function makes frame @var{frame} visible. If you omit @var{frame}, it makes the selected frame visible. This does not raise the frame, but you can do that with @code{raise-frame} if you wish (@pxref{Raising and Lowering}). @end deffn @deffn Command make-frame-invisible &optional frame force This function makes frame @var{frame} invisible. If you omit @var{frame}, it makes the selected frame invisible. Unless @var{force} is non-@code{nil}, this function refuses to make @var{frame} invisible if all other frames are invisible.. @end deffn The visibility status of a frame is also available as a frame parameter. You can read or change it as such. @xref{Management Parameters}. The user can also iconify and deiconify frames with the window manager. This happens below the level at which Emacs can exert any control, but Emacs does provide events that you can use to keep track of such changes. @xref{Misc Events}. @node Raising and Lowering @section Raising and Lowering Frames @cindex raising a frame @cindex lowering a frame Most window systems use a desktop metaphor. Part of this metaphor is the idea that system-level windows (e.g., Emacs frames) are stacked in a notional third dimension perpendicular to the screen surface. Where two overlap, the one higher up covers the one underneath. You can @dfn{raise} or @dfn{lower} a frame using the functions @code{raise-frame} and @code{lower-frame}. @deffn Command raise-frame &optional frame This function raises frame @var{frame} (default, the selected frame). If @var{frame} is invisible or iconified, this makes it visible. @end deffn @deffn Command lower-frame &optional frame This function lowers frame @var{frame} (default, the selected frame). @end deffn @defopt minibuffer-auto-raise If this is non-@code{nil}, activation of the minibuffer raises the frame that the minibuffer window is in. @end defopt On window systems, you can also enable auto-raising (on frame selection) or auto-lowering (on frame deselection) using frame parameters. @xref{Management Parameters}. @cindex top frame The concept of raising and lowering frames also applies to text terminal frames. On each text terminal, only the top frame is displayed at any one time. @defun tty-top-frame terminal This function returns the top frame on @var{terminal}. @var{terminal} should be a terminal object, a frame (meaning that frame's terminal), or @code{nil} (meaning the selected frame's terminal). If it does not refer to a text terminal, the return value is @code{nil}. @end defun @node Frame Configurations @section Frame Configurations @cindex frame configuration A @dfn{frame configuration} records the current arrangement of frames, all their properties, and the window configuration of each one. (@xref{Window Configurations}.) @defun current-frame-configuration This function returns a frame configuration list that describes the current arrangement of frames and their contents. @end defun @defun set-frame-configuration configuration &optional nodelete This function restores the state of frames described in @var{configuration}. However, this function does not restore deleted frames. Ordinarily, this function deletes all existing frames not listed in @var{configuration}. But if @var{nodelete} is non-@code{nil}, the unwanted frames are iconified instead. @end defun @node Mouse Tracking @section Mouse Tracking @cindex mouse tracking @c @cindex tracking the mouse Duplicates track-mouse Sometimes it is useful to @dfn{track} the mouse, which means to display something to indicate where the mouse is and move the indicator as the mouse moves. For efficient mouse tracking, you need a way to wait until the mouse actually moves. The convenient way to track the mouse is to ask for events to represent mouse motion. Then you can wait for motion by waiting for an event. In addition, you can easily handle any other sorts of events that may occur. That is useful, because normally you don't want to track the mouse forever---only until some other event, such as the release of a button. @defspec track-mouse body@dots{} This special form executes @var{body}, with generation of mouse motion events enabled. Typically, @var{body} would use @code{read-event} to read the motion events and modify the display accordingly. @xref{Motion Events}, for the format of mouse motion events. The value of @code{track-mouse} is that of the last form in @var{body}. You should design @var{body} to return when it sees the up-event that indicates the release of the button, or whatever kind of event means it is time to stop tracking. @end defspec The usual purpose of tracking mouse motion is to indicate on the screen the consequences of pushing or releasing a button at the current position. In many cases, you can avoid the need to track the mouse by using the @code{mouse-face} text property (@pxref{Special Properties}). That works at a much lower level and runs more smoothly than Lisp-level mouse tracking. @ignore @c These are not implemented yet. These functions change the screen appearance instantaneously. The effect is transient, only until the next ordinary Emacs redisplay. That is OK for mouse tracking, since it doesn't make sense for mouse tracking to change the text, and the body of @code{track-mouse} normally reads the events itself and does not do redisplay. @defun x-contour-region window beg end This function draws lines to make a box around the text from @var{beg} to @var{end}, in window @var{window}. @end defun @defun x-uncontour-region window beg end This function erases the lines that would make a box around the text from @var{beg} to @var{end}, in window @var{window}. Use it to remove a contour that you previously made by calling @code{x-contour-region}. @end defun @defun x-draw-rectangle frame left top right bottom This function draws a hollow rectangle on frame @var{frame} with the specified edge coordinates, all measured in pixels from the inside top left corner. It uses the cursor color, the one used for indicating the location of point. @end defun @defun x-erase-rectangle frame left top right bottom This function erases a hollow rectangle on frame @var{frame} with the specified edge coordinates, all measured in pixels from the inside top left corner. Erasure means redrawing the text and background that normally belong in the specified rectangle. @end defun @end ignore @node Mouse Position @section Mouse Position @cindex mouse position @cindex position of mouse The functions @code{mouse-position} and @code{set-mouse-position} give access to the current position of the mouse. @defun mouse-position This function returns a description of the position of the mouse. The value looks like @code{(@var{frame} @var{x} . @var{y})}, where @var{x} and @var{y} are integers giving the position in characters relative to the top left corner of the inside of @var{frame}. @end defun @defvar mouse-position-function If non-@code{nil}, the value of this variable is a function for @code{mouse-position} to call. @code{mouse-position} calls this function just before returning, with its normal return value as the sole argument, and it returns whatever this function returns to it. This abnormal hook exists for the benefit of packages like @file{xt-mouse.el} that need to do mouse handling at the Lisp level. @end defvar @defun set-mouse-position frame x y This function @dfn{warps the mouse} to position @var{x}, @var{y} in frame @var{frame}. The arguments @var{x} and @var{y} are integers, giving the position in characters relative to the top left corner of the inside of @var{frame}. If @var{frame} is not visible, this function does nothing. The return value is not significant. @end defun @defun mouse-pixel-position This function is like @code{mouse-position} except that it returns coordinates in units of pixels rather than units of characters. @end defun @defun set-mouse-pixel-position frame x y This function warps the mouse like @code{set-mouse-position} except that @var{x} and @var{y} are in units of pixels rather than units of characters. These coordinates are not required to be within the frame. If @var{frame} is not visible, this function does nothing. The return value is not significant. @end defun @defun frame-pointer-visible-p &optional frame This predicate function returns non-@code{nil} if the mouse pointer displayed on @var{frame} is visible; otherwise it returns @code{nil}. @var{frame} omitted or @code{nil} means the selected frame. This is useful when @code{make-pointer-invisible} is set to @code{t}: it allows to know if the pointer has been hidden. @xref{Mouse Avoidance,,,emacs, The Emacs Manual}. @end defun @need 3000 @node Pop-Up Menus @section Pop-Up Menus @cindex menus, popup A Lisp program can pop up a menu so that the user can choose an alternative with the mouse. On a text terminal, if the mouse is not available, the user can choose an alternative using the keyboard motion keys---@kbd{C-n}, @kbd{C-p}, or up- and down-arrow keys. @defun x-popup-menu position menu This function displays a pop-up menu and returns an indication of what selection the user makes. The argument @var{position} specifies where on the screen to put the top left corner of the menu. It can be either a mouse button event (which says to put the menu where the user actuated the button) or a list of this form: @example ((@var{xoffset} @var{yoffset}) @var{window}) @end example @noindent where @var{xoffset} and @var{yoffset} are coordinates, measured in pixels, counting from the top left corner of @var{window}. @var{window} may be a window or a frame. If @var{position} is @code{t}, it means to use the current mouse position (or the top-left corner of the frame if the mouse is not available on a text terminal). If @var{position} is @code{nil}, it means to precompute the key binding equivalents for the keymaps specified in @var{menu}, without actually displaying or popping up the menu. The argument @var{menu} says what to display in the menu. It can be a keymap or a list of keymaps (@pxref{Menu Keymaps}). In this case, the return value is the list of events corresponding to the user's choice. This list has more than one element if the choice occurred in a submenu. (Note that @code{x-popup-menu} does not actually execute the command bound to that sequence of events.) On text terminals and toolkits that support menu titles, the title is taken from the prompt string of @var{menu} if @var{menu} is a keymap, or from the prompt string of the first keymap in @var{menu} if it is a list of keymaps (@pxref{Defining Menus}). Alternatively, @var{menu} can have the following form: @example (@var{title} @var{pane1} @var{pane2}...) @end example @noindent where each pane is a list of form @example (@var{title} @var{item1} @var{item2}...) @end example Each @var{item} should be a cons cell, @code{(@var{line} . @var{value})}, where @var{line} is a string and @var{value} is the value to return if that @var{line} is chosen. Unlike in a menu keymap, a @code{nil} @var{value} does not make the menu item non-selectable. Alternatively, each @var{item} can be a string rather than a cons cell; this makes a non-selectable menu item. If the user gets rid of the menu without making a valid choice, for instance by clicking the mouse away from a valid choice or by typing @kbd{C-g}, then this normally results in a quit and @code{x-popup-menu} does not return. But if @var{position} is a mouse button event (indicating that the user invoked the menu with the mouse) then no quit occurs and @code{x-popup-menu} returns @code{nil}. @end defun @strong{Usage note:} Don't use @code{x-popup-menu} to display a menu if you could do the job with a prefix key defined with a menu keymap. If you use a menu keymap to implement a menu, @kbd{C-h c} and @kbd{C-h a} can see the individual items in that menu and provide help for them. If instead you implement the menu by defining a command that calls @code{x-popup-menu}, the help facilities cannot know what happens inside that command, so they cannot give any help for the menu's items. The menu bar mechanism, which lets you switch between submenus by moving the mouse, cannot look within the definition of a command to see that it calls @code{x-popup-menu}. Therefore, if you try to implement a submenu using @code{x-popup-menu}, it cannot work with the menu bar in an integrated fashion. This is why all menu bar submenus are implemented with menu keymaps within the parent menu, and never with @code{x-popup-menu}. @xref{Menu Bar}. If you want a menu bar submenu to have contents that vary, you should still use a menu keymap to implement it. To make the contents vary, add a hook function to @code{menu-bar-update-hook} to update the contents of the menu keymap as necessary. @node Dialog Boxes @section Dialog Boxes @cindex dialog boxes A dialog box is a variant of a pop-up menu---it looks a little different, it always appears in the center of a frame, and it has just one level and one or more buttons. The main use of dialog boxes is for asking questions that the user can answer with ``yes'', ``no'', and a few other alternatives. With a single button, they can also force the user to acknowledge important information. The functions @code{y-or-n-p} and @code{yes-or-no-p} use dialog boxes instead of the keyboard, when called from commands invoked by mouse clicks. @defun x-popup-dialog position contents &optional header This function displays a pop-up dialog box and returns an indication of what selection the user makes. The argument @var{contents} specifies the alternatives to offer; it has this format: @example (@var{title} (@var{string} . @var{value})@dots{}) @end example @noindent which looks like the list that specifies a single pane for @code{x-popup-menu}. The return value is @var{value} from the chosen alternative. As for @code{x-popup-menu}, an element of the list may be just a string instead of a cons cell @code{(@var{string} . @var{value})}. That makes a box that cannot be selected. If @code{nil} appears in the list, it separates the left-hand items from the right-hand items; items that precede the @code{nil} appear on the left, and items that follow the @code{nil} appear on the right. If you don't include a @code{nil} in the list, then approximately half the items appear on each side. Dialog boxes always appear in the center of a frame; the argument @var{position} specifies which frame. The possible values are as in @code{x-popup-menu}, but the precise coordinates or the individual window don't matter; only the frame matters. If @var{header} is non-@code{nil}, the frame title for the box is @samp{Information}, otherwise it is @samp{Question}. The former is used for @code{message-box} (@pxref{message-box}). (On text terminals, the box title is not displayed.) In some configurations, Emacs cannot display a real dialog box; so instead it displays the same items in a pop-up menu in the center of the frame. If the user gets rid of the dialog box without making a valid choice, for instance using the window manager, then this produces a quit and @code{x-popup-dialog} does not return. @end defun @node Pointer Shape @section Pointer Shape @cindex pointer shape @cindex mouse pointer shape You can specify the mouse pointer style for particular text or images using the @code{pointer} text property, and for images with the @code{:pointer} and @code{:map} image properties. The values you can use in these properties are @code{text} (or @code{nil}), @code{arrow}, @code{hand}, @code{vdrag}, @code{hdrag}, @code{modeline}, and @code{hourglass}. @code{text} stands for the usual mouse pointer style used over text. Over void parts of the window (parts that do not correspond to any of the buffer contents), the mouse pointer usually uses the @code{arrow} style, but you can specify a different style (one of those above) by setting @code{void-text-area-pointer}. @defopt void-text-area-pointer This variable specifies the mouse pointer style for void text areas. These include the areas after the end of a line or below the last line in the buffer. The default is to use the @code{arrow} (non-text) pointer style. @end defopt When using X, you can specify what the @code{text} pointer style really looks like by setting the variable @code{x-pointer-shape}. @defvar x-pointer-shape This variable specifies the pointer shape to use ordinarily in the Emacs frame, for the @code{text} pointer style. @end defvar @defvar x-sensitive-text-pointer-shape This variable specifies the pointer shape to use when the mouse is over mouse-sensitive text. @end defvar These variables affect newly created frames. They do not normally affect existing frames; however, if you set the mouse color of a frame, that also installs the current value of those two variables. @xref{Font and Color Parameters}. The values you can use, to specify either of these pointer shapes, are defined in the file @file{lisp/term/x-win.el}. Use @kbd{M-x apropos @key{RET} x-pointer @key{RET}} to see a list of them. @node Window System Selections @section Window System Selections @cindex selection (for window systems) @cindex clipboard @cindex primary selection @cindex secondary selection In the X window system, data can be transferred between different applications by means of @dfn{selections}. X defines an arbitrary number of @dfn{selection types}, each of which can store its own data; however, only three are commonly used: the @dfn{clipboard}, @dfn{primary selection}, and @dfn{secondary selection}. @xref{Cut and Paste,, Cut and Paste, emacs, The GNU Emacs Manual}, for Emacs commands that make use of these selections. This section documents the low-level functions for reading and setting X selections. @deffn Command x-set-selection type data This function sets an X selection. It takes two arguments: a selection type @var{type}, and the value to assign to it, @var{data}. @var{type} should be a symbol; it is usually one of @code{PRIMARY}, @code{SECONDARY} or @code{CLIPBOARD}. These are symbols with upper-case names, in accord with X Window System conventions. If @var{type} is @code{nil}, that stands for @code{PRIMARY}. If @var{data} is @code{nil}, it means to clear out the selection. Otherwise, @var{data} may be a string, a symbol, an integer (or a cons of two integers or list of two integers), an overlay, or a cons of two markers pointing to the same buffer. An overlay or a pair of markers stands for text in the overlay or between the markers. The argument @var{data} may also be a vector of valid non-vector selection values. This function returns @var{data}. @end deffn @defun x-get-selection &optional type data-type This function accesses selections set up by Emacs or by other X clients. It takes two optional arguments, @var{type} and @var{data-type}. The default for @var{type}, the selection type, is @code{PRIMARY}. The @var{data-type} argument specifies the form of data conversion to use, to convert the raw data obtained from another X client into Lisp data. Meaningful values include @code{TEXT}, @code{STRING}, @code{UTF8_STRING}, @code{TARGETS}, @code{LENGTH}, @code{DELETE}, @code{FILE_NAME}, @code{CHARACTER_POSITION}, @code{NAME}, @code{LINE_NUMBER}, @code{COLUMN_NUMBER}, @code{OWNER_OS}, @code{HOST_NAME}, @code{USER}, @code{CLASS}, @code{ATOM}, and @code{INTEGER}. (These are symbols with upper-case names in accord with X conventions.) The default for @var{data-type} is @code{STRING}. @end defun @defopt selection-coding-system This variable specifies the coding system to use when reading and writing selections or the clipboard. @xref{Coding Systems}. The default is @code{compound-text-with-extensions}, which converts to the text representation that X11 normally uses. @end defopt @cindex clipboard support (for MS-Windows) When Emacs runs on MS-Windows, it does not implement X selections in general, but it does support the clipboard. @code{x-get-selection} and @code{x-set-selection} on MS-Windows support the text data type only; if the clipboard holds other types of data, Emacs treats the clipboard as empty. @node Drag and Drop @section Drag and Drop @cindex drag and drop @vindex x-dnd-test-function @vindex x-dnd-known-types When a user drags something from another application over Emacs, that other application expects Emacs to tell it if Emacs can handle the data that is dragged. The variable @code{x-dnd-test-function} is used by Emacs to determine what to reply. The default value is @code{x-dnd-default-test-function} which accepts drops if the type of the data to be dropped is present in @code{x-dnd-known-types}. You can customize @code{x-dnd-test-function} and/or @code{x-dnd-known-types} if you want Emacs to accept or reject drops based on some other criteria. @vindex x-dnd-types-alist If you want to change the way Emacs handles drop of different types or add a new type, customize @code{x-dnd-types-alist}. This requires detailed knowledge of what types other applications use for drag and drop. @vindex dnd-protocol-alist When an URL is dropped on Emacs it may be a file, but it may also be another URL type (ftp, http, etc.). Emacs first checks @code{dnd-protocol-alist} to determine what to do with the URL@. If there is no match there and if @code{browse-url-browser-function} is an alist, Emacs looks for a match there. If no match is found the text for the URL is inserted. If you want to alter Emacs behavior, you can customize these variables. @node Color Names @section Color Names @cindex color names @cindex specify color @cindex numerical RGB color specification A color name is text (usually in a string) that specifies a color. Symbolic names such as @samp{black}, @samp{white}, @samp{red}, etc., are allowed; use @kbd{M-x list-colors-display} to see a list of defined names. You can also specify colors numerically in forms such as @samp{#@var{rgb}} and @samp{RGB:@var{r}/@var{g}/@var{b}}, where @var{r} specifies the red level, @var{g} specifies the green level, and @var{b} specifies the blue level. You can use either one, two, three, or four hex digits for @var{r}; then you must use the same number of hex digits for all @var{g} and @var{b} as well, making either 3, 6, 9 or 12 hex digits in all. (See the documentation of the X Window System for more details about numerical RGB specification of colors.) These functions provide a way to determine which color names are valid, and what they look like. In some cases, the value depends on the @dfn{selected frame}, as described below; see @ref{Input Focus}, for the meaning of the term ``selected frame''. To read user input of color names with completion, use @code{read-color} (@pxref{High-Level Completion, read-color}). @defun color-defined-p color &optional frame This function reports whether a color name is meaningful. It returns @code{t} if so; otherwise, @code{nil}. The argument @var{frame} says which frame's display to ask about; if @var{frame} is omitted or @code{nil}, the selected frame is used. Note that this does not tell you whether the display you are using really supports that color. When using X, you can ask for any defined color on any kind of display, and you will get some result---typically, the closest it can do. To determine whether a frame can really display a certain color, use @code{color-supported-p} (see below). @findex x-color-defined-p This function used to be called @code{x-color-defined-p}, and that name is still supported as an alias. @end defun @defun defined-colors &optional frame This function returns a list of the color names that are defined and supported on frame @var{frame} (default, the selected frame). If @var{frame} does not support colors, the value is @code{nil}. @findex x-defined-colors This function used to be called @code{x-defined-colors}, and that name is still supported as an alias. @end defun @defun color-supported-p color &optional frame background-p This returns @code{t} if @var{frame} can really display the color @var{color} (or at least something close to it). If @var{frame} is omitted or @code{nil}, the question applies to the selected frame. Some terminals support a different set of colors for foreground and background. If @var{background-p} is non-@code{nil}, that means you are asking whether @var{color} can be used as a background; otherwise you are asking whether it can be used as a foreground. The argument @var{color} must be a valid color name. @end defun @defun color-gray-p color &optional frame This returns @code{t} if @var{color} is a shade of gray, as defined on @var{frame}'s display. If @var{frame} is omitted or @code{nil}, the question applies to the selected frame. If @var{color} is not a valid color name, this function returns @code{nil}. @end defun @defun color-values color &optional frame @cindex rgb value This function returns a value that describes what @var{color} should ideally look like on @var{frame}. If @var{color} is defined, the value is a list of three integers, which give the amount of red, the amount of green, and the amount of blue. Each integer ranges in principle from 0 to 65535, but some displays may not use the full range. This three-element list is called the @dfn{rgb values} of the color. If @var{color} is not defined, the value is @code{nil}. @example (color-values "black") @result{} (0 0 0) (color-values "white") @result{} (65280 65280 65280) (color-values "red") @result{} (65280 0 0) (color-values "pink") @result{} (65280 49152 51968) (color-values "hungry") @result{} nil @end example The color values are returned for @var{frame}'s display. If @var{frame} is omitted or @code{nil}, the information is returned for the selected frame's display. If the frame cannot display colors, the value is @code{nil}. @findex x-color-values This function used to be called @code{x-color-values}, and that name is still supported as an alias. @end defun @node Text Terminal Colors @section Text Terminal Colors @cindex colors on text terminals Text terminals usually support only a small number of colors, and the computer uses small integers to select colors on the terminal. This means that the computer cannot reliably tell what the selected color looks like; instead, you have to inform your application which small integers correspond to which colors. However, Emacs does know the standard set of colors and will try to use them automatically. The functions described in this section control how terminal colors are used by Emacs. Several of these functions use or return @dfn{rgb values}, described in @ref{Color Names}. These functions accept a display (either a frame or the name of a terminal) as an optional argument. We hope in the future to make Emacs support different colors on different text terminals; then this argument will specify which terminal to operate on (the default being the selected frame's terminal; @pxref{Input Focus}). At present, though, the @var{frame} argument has no effect. @defun tty-color-define name number &optional rgb frame This function associates the color name @var{name} with color number @var{number} on the terminal. The optional argument @var{rgb}, if specified, is an rgb value, a list of three numbers that specify what the color actually looks like. If you do not specify @var{rgb}, then this color cannot be used by @code{tty-color-approximate} to approximate other colors, because Emacs will not know what it looks like. @end defun @defun tty-color-clear &optional frame This function clears the table of defined colors for a text terminal. @end defun @defun tty-color-alist &optional frame This function returns an alist recording the known colors supported by a text terminal. Each element has the form @code{(@var{name} @var{number} . @var{rgb})} or @code{(@var{name} @var{number})}. Here, @var{name} is the color name, @var{number} is the number used to specify it to the terminal. If present, @var{rgb} is a list of three color values (for red, green, and blue) that says what the color actually looks like. @end defun @defun tty-color-approximate rgb &optional frame This function finds the closest color, among the known colors supported for @var{display}, to that described by the rgb value @var{rgb} (a list of color values). The return value is an element of @code{tty-color-alist}. @end defun @defun tty-color-translate color &optional frame This function finds the closest color to @var{color} among the known colors supported for @var{display} and returns its index (an integer). If the name @var{color} is not defined, the value is @code{nil}. @end defun @node Resources @section X Resources This section describes some of the functions and variables for querying and using X resources, or their equivalent on your operating system. @xref{X Resources,, X Resources, emacs, The GNU Emacs Manual}, for more information about X resources. @defun x-get-resource attribute class &optional component subclass The function @code{x-get-resource} retrieves a resource value from the X Window defaults database. Resources are indexed by a combination of a @dfn{key} and a @dfn{class}. This function searches using a key of the form @samp{@var{instance}.@var{attribute}} (where @var{instance} is the name under which Emacs was invoked), and using @samp{Emacs.@var{class}} as the class. The optional arguments @var{component} and @var{subclass} add to the key and the class, respectively. You must specify both of them or neither. If you specify them, the key is @samp{@var{instance}.@var{component}.@var{attribute}}, and the class is @samp{Emacs.@var{class}.@var{subclass}}. @end defun @defvar x-resource-class This variable specifies the application name that @code{x-get-resource} should look up. The default value is @code{"Emacs"}. You can examine X resources for application names other than ``Emacs'' by binding this variable to some other string, around a call to @code{x-get-resource}. @end defvar @defvar x-resource-name This variable specifies the instance name that @code{x-get-resource} should look up. The default value is the name Emacs was invoked with, or the value specified with the @samp{-name} or @samp{-rn} switches. @end defvar To illustrate some of the above, suppose that you have the line: @example xterm.vt100.background: yellow @end example @noindent in your X resources file (whose name is usually @file{~/.Xdefaults} or @file{~/.Xresources}). Then: @example @group (let ((x-resource-class "XTerm") (x-resource-name "xterm")) (x-get-resource "vt100.background" "VT100.Background")) @result{} "yellow" @end group @group (let ((x-resource-class "XTerm") (x-resource-name "xterm")) (x-get-resource "background" "VT100" "vt100" "Background")) @result{} "yellow" @end group @end example @defvar inhibit-x-resources If this variable is non-@code{nil}, Emacs does not look up X resources, and X resources do not have any effect when creating new frames. @end defvar @node Display Feature Testing @section Display Feature Testing @cindex display feature testing The functions in this section describe the basic capabilities of a particular display. Lisp programs can use them to adapt their behavior to what the display can do. For example, a program that ordinarily uses a popup menu could use the minibuffer if popup menus are not supported. The optional argument @var{display} in these functions specifies which display to ask the question about. It can be a display name, a frame (which designates the display that frame is on), or @code{nil} (which refers to the selected frame's display, @pxref{Input Focus}). @xref{Color Names}, @ref{Text Terminal Colors}, for other functions to obtain information about displays. @defun display-popup-menus-p &optional display This function returns @code{t} if popup menus are supported on @var{display}, @code{nil} if not. Support for popup menus requires that the mouse be available, since the menu is popped up by clicking the mouse on some portion of the Emacs display. @end defun @defun display-graphic-p &optional display This function returns @code{t} if @var{display} is a graphic display capable of displaying several frames and several different fonts at once. This is true for displays that use a window system such as X, and false for text terminals. @end defun @defun display-mouse-p &optional display @cindex mouse, availability This function returns @code{t} if @var{display} has a mouse available, @code{nil} if not. @end defun @defun display-color-p &optional display @findex x-display-color-p This function returns @code{t} if the screen is a color screen. It used to be called @code{x-display-color-p}, and that name is still supported as an alias. @end defun @defun display-grayscale-p &optional display This function returns @code{t} if the screen can display shades of gray. (All color displays can do this.) @end defun @defun display-supports-face-attributes-p attributes &optional display @anchor{Display Face Attribute Testing} This function returns non-@code{nil} if all the face attributes in @var{attributes} are supported (@pxref{Face Attributes}). The definition of `supported' is somewhat heuristic, but basically means that a face containing all the attributes in @var{attributes}, when merged with the default face for display, can be represented in a way that's @enumerate @item different in appearance than the default face, and @item `close in spirit' to what the attributes specify, if not exact. @end enumerate Point (2) implies that a @code{:weight black} attribute will be satisfied by any display that can display bold, as will @code{:foreground "yellow"} as long as some yellowish color can be displayed, but @code{:slant italic} will @emph{not} be satisfied by the tty display code's automatic substitution of a `dim' face for italic. @end defun @defun display-selections-p &optional display This function returns @code{t} if @var{display} supports selections. Windowed displays normally support selections, but they may also be supported in some other cases. @end defun @defun display-images-p &optional display This function returns @code{t} if @var{display} can display images. Windowed displays ought in principle to handle images, but some systems lack the support for that. On a display that does not support images, Emacs cannot display a tool bar. @end defun @defun display-screens &optional display This function returns the number of screens associated with the display. @end defun @defun display-pixel-height &optional display This function returns the height of the screen in pixels. On a character terminal, it gives the height in characters. For graphical terminals, note that on ``multi-monitor'' setups this refers to the pixel height for all physical monitors associated with @var{display}. @xref{Multiple Terminals}. @end defun @defun display-pixel-width &optional display This function returns the width of the screen in pixels. On a character terminal, it gives the width in characters. For graphical terminals, note that on ``multi-monitor'' setups this refers to the pixel width for all physical monitors associated with @var{display}. @xref{Multiple Terminals}. @end defun @defun display-mm-height &optional display This function returns the height of the screen in millimeters, or @code{nil} if Emacs cannot get that information. For graphical terminals, note that on ``multi-monitor'' setups this refers to the height for all physical monitors associated with @var{display}. @xref{Multiple Terminals}. @end defun @defun display-mm-width &optional display This function returns the width of the screen in millimeters, or @code{nil} if Emacs cannot get that information. For graphical terminals, note that on ``multi-monitor'' setups this refers to the width for all physical monitors associated with @var{display}. @xref{Multiple Terminals}. @end defun @defopt display-mm-dimensions-alist This variable allows the user to specify the dimensions of graphical displays returned by @code{display-mm-height} and @code{display-mm-width} in case the system provides incorrect values. @end defopt @cindex backing store @defun display-backing-store &optional display This function returns the backing store capability of the display. Backing store means recording the pixels of windows (and parts of windows) that are not exposed, so that when exposed they can be displayed very quickly. Values can be the symbols @code{always}, @code{when-mapped}, or @code{not-useful}. The function can also return @code{nil} when the question is inapplicable to a certain kind of display. @end defun @cindex SaveUnder feature @defun display-save-under &optional display This function returns non-@code{nil} if the display supports the SaveUnder feature. That feature is used by pop-up windows to save the pixels they obscure, so that they can pop down quickly. @end defun @defun display-planes &optional display This function returns the number of planes the display supports. This is typically the number of bits per pixel. For a tty display, it is log to base two of the number of colors supported. @end defun @defun display-visual-class &optional display This function returns the visual class for the screen. The value is one of the symbols @code{static-gray} (a limited, unchangeable number of grays), @code{gray-scale} (a full range of grays), @code{static-color} (a limited, unchangeable number of colors), @code{pseudo-color} (a limited number of colors), @code{true-color} (a full range of colors), and @code{direct-color} (a full range of colors). @end defun @defun display-color-cells &optional display This function returns the number of color cells the screen supports. @end defun These functions obtain additional information about the window system in use where Emacs shows the specified @var{display}. (Their names begin with @code{x-} for historical reasons.) @defun x-server-version &optional display This function returns the list of version numbers of the GUI window system running on @var{display}, such as the X server on GNU and Unix systems. The value is a list of three integers: the major and minor version numbers of the protocol, and the distributor-specific release number of the window system software itself. On GNU and Unix systems, these are normally the version of the X protocol and the distributor-specific release number of the X server software. On MS-Windows, this is the version of the Windows OS. @end defun @defun x-server-vendor &optional display This function returns the ``vendor'' that provided the window system software (as a string). On GNU and Unix systems this really means whoever distributes the X server. On MS-Windows this is the vendor ID string of the Windows OS (Microsoft). When the developers of X labeled software distributors as ``vendors'', they showed their false assumption that no system could ever be developed and distributed noncommercially. @end defun @ignore @defvar x-no-window-manager This variable's value is @code{t} if no X window manager is in use. @end defvar @end ignore @ignore @item The functions @code{x-pixel-width} and @code{x-pixel-height} return the width and height of an X Window frame, measured in pixels. @end ignore