# # Parse tree nodes # from __future__ import absolute_import import cython cython.declare(sys=object, os=object, copy=object, Builtin=object, error=object, warning=object, Naming=object, PyrexTypes=object, py_object_type=object, ModuleScope=object, LocalScope=object, ClosureScope=object, StructOrUnionScope=object, PyClassScope=object, CppClassScope=object, UtilityCode=object, EncodedString=object, error_type=object, _py_int_types=object) import sys, copy from itertools import chain from . import Builtin from .Errors import error, warning, InternalError, CompileError, CannotSpecialize from . import Naming from . import PyrexTypes from . import TypeSlots from .PyrexTypes import py_object_type, error_type from .Symtab import (ModuleScope, LocalScope, ClosureScope, PropertyScope, StructOrUnionScope, PyClassScope, CppClassScope, TemplateScope, GeneratorExpressionScope, CppScopedEnumScope, punycodify_name) from .Code import UtilityCode from .StringEncoding import EncodedString from . import Future from . import Options from . import DebugFlags from .Pythran import has_np_pythran, pythran_type, is_pythran_buffer from ..Utils import add_metaclass if sys.version_info[0] >= 3: _py_int_types = int else: _py_int_types = (int, long) IMPLICIT_CLASSMETHODS = {"__init_subclass__", "__class_getitem__"} def relative_position(pos): return (pos[0].get_filenametable_entry(), pos[1]) def embed_position(pos, docstring): if not Options.embed_pos_in_docstring: return docstring pos_line = u'File: %s (starting at line %s)' % relative_position(pos) if docstring is None: # unicode string return EncodedString(pos_line) # make sure we can encode the filename in the docstring encoding # otherwise make the docstring a unicode string encoding = docstring.encoding if encoding is not None: try: pos_line.encode(encoding) except UnicodeEncodeError: encoding = None if not docstring: # reuse the string encoding of the original docstring doc = EncodedString(pos_line) else: doc = EncodedString(pos_line + u'\n' + docstring) doc.encoding = encoding return doc def write_func_call(func, codewriter_class): def f(*args, **kwds): if len(args) > 1 and isinstance(args[1], codewriter_class): # here we annotate the code with this function call # but only if new code is generated node, code = args[:2] marker = ' /* %s -> %s.%s %s */' % ( ' ' * code.call_level, node.__class__.__name__, func.__name__, node.pos[1:], ) insertion_point = code.insertion_point() start = code.buffer.stream.tell() code.call_level += 4 res = func(*args, **kwds) code.call_level -= 4 if start != code.buffer.stream.tell(): code.putln(marker.replace('->', '<-', 1)) insertion_point.putln(marker) return res else: return func(*args, **kwds) return f class VerboseCodeWriter(type): # Set this as a metaclass to trace function calls in code. # This slows down code generation and makes much larger files. def __new__(cls, name, bases, attrs): from types import FunctionType from .Code import CCodeWriter attrs = dict(attrs) for mname, m in attrs.items(): if isinstance(m, FunctionType): attrs[mname] = write_func_call(m, CCodeWriter) return super(VerboseCodeWriter, cls).__new__(cls, name, bases, attrs) class CheckAnalysers(type): """Metaclass to check that type analysis functions return a node. """ methods = frozenset({ 'analyse_types', 'analyse_expressions', 'analyse_target_types', }) def __new__(cls, name, bases, attrs): from types import FunctionType def check(name, func): def call(*args, **kwargs): retval = func(*args, **kwargs) if retval is None: print('%s %s %s' % (name, args, kwargs)) return retval return call attrs = dict(attrs) for mname, m in attrs.items(): if isinstance(m, FunctionType) and mname in cls.methods: attrs[mname] = check(mname, m) return super(CheckAnalysers, cls).__new__(cls, name, bases, attrs) def _with_metaclass(cls): if DebugFlags.debug_trace_code_generation: return add_metaclass(VerboseCodeWriter)(cls) #return add_metaclass(CheckAnalysers)(cls) return cls @_with_metaclass class Node(object): # pos (string, int, int) Source file position # is_name boolean Is a NameNode # is_literal boolean Is a ConstNode is_name = 0 is_none = 0 is_nonecheck = 0 is_literal = 0 is_terminator = 0 is_wrapper = False # is a DefNode wrapper for a C function is_cproperty = False is_templated_type_node = False temps = None # All descendants should set child_attrs to a list of the attributes # containing nodes considered "children" in the tree. Each such attribute # can either contain a single node or a list of nodes. See Visitor.py. child_attrs = None # Subset of attributes that are evaluated in the outer scope (e.g. function default arguments). outer_attrs = None cf_state = None # This may be an additional (or 'actual') type that will be checked when # this node is coerced to another type. This could be useful to set when # the actual type to which it can coerce is known, but you want to leave # the type a py_object_type coercion_type = None def __init__(self, pos, **kw): self.pos = pos self.__dict__.update(kw) gil_message = "Operation" nogil_check = None in_nogil_context = False # For use only during code generation. def gil_error(self, env=None): error(self.pos, "%s not allowed without gil" % self.gil_message) cpp_message = "Operation" def cpp_check(self, env): if not env.is_cpp(): self.cpp_error() def cpp_error(self): error(self.pos, "%s only allowed in c++" % self.cpp_message) def clone_node(self): """Clone the node. This is defined as a shallow copy, except for member lists amongst the child attributes (from get_child_accessors) which are also copied. Lists containing child nodes are thus seen as a way for the node to hold multiple children directly; the list is not treated as a separate level in the tree.""" result = copy.copy(self) for attrname in result.child_attrs: value = getattr(result, attrname) if isinstance(value, list): setattr(result, attrname, [x for x in value]) return result # # There are 3 main phases of parse tree processing, applied in order to # all the statements in a given scope-block: # # (0) analyse_declarations # Make symbol table entries for all declarations at the current # level, both explicit (def, cdef, etc.) and implicit (assignment # to an otherwise undeclared name). # # (1) analyse_expressions # Determine the result types of expressions and fill in the # 'type' attribute of each ExprNode. Insert coercion nodes into the # tree where needed to convert to and from Python objects. # Replace tree nodes with more appropriate implementations found by # the type analysis. # # (2) generate_code # Emit C code for all declarations, statements and expressions. # # These phases are triggered by tree transformations. # See the full pipeline in Pipeline.py. # def analyse_declarations(self, env): pass def analyse_expressions(self, env): raise InternalError("analyse_expressions not implemented for %s" % self.__class__.__name__) def generate_code(self, code): raise InternalError("generate_code not implemented for %s" % self.__class__.__name__) def annotate(self, code): # mro does the wrong thing if isinstance(self, BlockNode): self.body.annotate(code) def end_pos(self): try: return self._end_pos except AttributeError: pos = self.pos if not self.child_attrs: self._end_pos = pos return pos for attr in self.child_attrs: child = getattr(self, attr) # Sometimes lists, sometimes nodes if child is None: pass elif isinstance(child, list): for c in child: pos = max(pos, c.end_pos()) else: pos = max(pos, child.end_pos()) self._end_pos = pos return pos def dump(self, level=0, filter_out=("pos",), cutoff=100, encountered=None): """Debug helper method that returns a recursive string representation of this node. """ if cutoff == 0: return "<...nesting level cutoff...>" if encountered is None: encountered = set() if id(self) in encountered: return "<%s (0x%x) -- already output>" % (self.__class__.__name__, id(self)) encountered.add(id(self)) def dump_child(x, level): if isinstance(x, Node): return x.dump(level, filter_out, cutoff-1, encountered) elif isinstance(x, list): return "[%s]" % ", ".join([dump_child(item, level) for item in x]) else: return repr(x) attrs = [(key, value) for key, value in self.__dict__.items() if key not in filter_out] if len(attrs) == 0: return "<%s (0x%x)>" % (self.__class__.__name__, id(self)) else: indent = " " * level res = "<%s (0x%x)\n" % (self.__class__.__name__, id(self)) for key, value in attrs: res += "%s %s: %s\n" % (indent, key, dump_child(value, level + 1)) res += "%s>" % indent return res def dump_pos(self, mark_column=False, marker='(#)'): """Debug helper method that returns the source code context of this node as a string. """ if not self.pos: return u'' source_desc, line, col = self.pos contents = source_desc.get_lines(encoding='ASCII', error_handling='ignore') # line numbers start at 1 lines = contents[max(0, line-3):line] current = lines[-1] if mark_column: current = current[:col] + marker + current[col:] lines[-1] = current.rstrip() + u' # <<<<<<<<<<<<<<\n' lines += contents[line:line+2] return u'"%s":%d:%d\n%s\n' % ( source_desc.get_escaped_description(), line, col, u''.join(lines)) class CompilerDirectivesNode(Node): """ Sets compiler directives for the children nodes """ # directives {string:value} A dictionary holding the right value for # *all* possible directives. # body Node child_attrs = ["body"] def analyse_declarations(self, env): old = env.directives env.directives = self.directives self.body.analyse_declarations(env) env.directives = old def analyse_expressions(self, env): old = env.directives env.directives = self.directives self.body = self.body.analyse_expressions(env) env.directives = old return self def generate_function_definitions(self, env, code): env_old = env.directives code_old = code.globalstate.directives code.globalstate.directives = self.directives self.body.generate_function_definitions(env, code) env.directives = env_old code.globalstate.directives = code_old def generate_execution_code(self, code): old = code.globalstate.directives code.globalstate.directives = self.directives self.body.generate_execution_code(code) code.globalstate.directives = old def annotate(self, code): old = code.globalstate.directives code.globalstate.directives = self.directives self.body.annotate(code) code.globalstate.directives = old class BlockNode(object): # Mixin class for nodes representing a declaration block. def generate_cached_builtins_decls(self, env, code): entries = env.global_scope().undeclared_cached_builtins for entry in entries: code.globalstate.add_cached_builtin_decl(entry) del entries[:] def generate_lambda_definitions(self, env, code): for node in env.lambda_defs: node.generate_function_definitions(env, code) class StatListNode(Node): # stats a list of StatNode child_attrs = ["stats"] @staticmethod def create_analysed(pos, env, **kw): node = StatListNode(pos, **kw) return node # No node-specific analysis needed def analyse_declarations(self, env): #print "StatListNode.analyse_declarations" ### for stat in self.stats: stat.analyse_declarations(env) def analyse_expressions(self, env): #print "StatListNode.analyse_expressions" ### self.stats = [stat.analyse_expressions(env) for stat in self.stats] return self def generate_function_definitions(self, env, code): #print "StatListNode.generate_function_definitions" ### for stat in self.stats: stat.generate_function_definitions(env, code) def generate_execution_code(self, code): #print "StatListNode.generate_execution_code" ### for stat in self.stats: code.mark_pos(stat.pos) stat.generate_execution_code(code) def annotate(self, code): for stat in self.stats: stat.annotate(code) class StatNode(Node): # # Code generation for statements is split into the following subphases: # # (1) generate_function_definitions # Emit C code for the definitions of any structs, # unions, enums and functions defined in the current # scope-block. # # (2) generate_execution_code # Emit C code for executable statements. # def generate_function_definitions(self, env, code): pass def generate_execution_code(self, code): raise InternalError("generate_execution_code not implemented for %s" % self.__class__.__name__) class CDefExternNode(StatNode): # include_file string or None # verbatim_include string or None # body StatListNode child_attrs = ["body"] def analyse_declarations(self, env): old_cinclude_flag = env.in_cinclude env.in_cinclude = 1 self.body.analyse_declarations(env) env.in_cinclude = old_cinclude_flag if self.include_file or self.verbatim_include: # Determine whether include should be late stats = self.body.stats if not env.directives['preliminary_late_includes_cy28']: late = False elif not stats: # Special case: empty 'cdef extern' blocks are early late = False else: late = all(isinstance(node, CVarDefNode) for node in stats) env.add_include_file(self.include_file, self.verbatim_include, late) def analyse_expressions(self, env): # Allow C properties, inline methods, etc. also in external types. self.body = self.body.analyse_expressions(env) return self def generate_function_definitions(self, env, code): self.body.generate_function_definitions(env, code) def generate_execution_code(self, code): pass def annotate(self, code): self.body.annotate(code) class CDeclaratorNode(Node): # Part of a C declaration. # # Processing during analyse_declarations phase: # # analyse # Returns (name, type) pair where name is the # CNameDeclaratorNode of the name being declared # and type is the type it is being declared as. # # calling_convention string Calling convention of CFuncDeclaratorNode # for which this is a base child_attrs = [] calling_convention = "" def declared_name(self): return None def analyse_templates(self): # Only C++ functions have templates. return None class CNameDeclaratorNode(CDeclaratorNode): # name string The Cython name being declared # cname string or None C name, if specified # default ExprNode or None the value assigned on declaration child_attrs = ['default'] default = None def declared_name(self): return self.name def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False): if nonempty and self.name == '': # May have mistaken the name for the type. if base_type.is_ptr or base_type.is_array or base_type.is_buffer: error(self.pos, "Missing argument name") elif base_type.is_void: error(self.pos, "Use spam() rather than spam(void) to declare a function with no arguments.") else: self.name = base_type.declaration_code("", for_display=1, pyrex=1) base_type = py_object_type if base_type.is_fused and env.fused_to_specific: try: base_type = base_type.specialize(env.fused_to_specific) except CannotSpecialize: error(self.pos, "'%s' cannot be specialized since its type is not a fused argument to this function" % self.name) self.type = base_type return self, base_type class CPtrDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode child_attrs = ["base"] def declared_name(self): return self.base.declared_name() def analyse_templates(self): return self.base.analyse_templates() def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False): if base_type.is_pyobject: error(self.pos, "Pointer base type cannot be a Python object") ptr_type = PyrexTypes.c_ptr_type(base_type) return self.base.analyse(ptr_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd) class _CReferenceDeclaratorBaseNode(CDeclaratorNode): child_attrs = ["base"] def declared_name(self): return self.base.declared_name() def analyse_templates(self): return self.base.analyse_templates() class CReferenceDeclaratorNode(_CReferenceDeclaratorBaseNode): def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False): if base_type.is_pyobject: error(self.pos, "Reference base type cannot be a Python object") ref_type = PyrexTypes.c_ref_type(base_type) return self.base.analyse(ref_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd) class CppRvalueReferenceDeclaratorNode(_CReferenceDeclaratorBaseNode): def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False): if base_type.is_pyobject: error(self.pos, "Rvalue-reference base type cannot be a Python object") ref_type = PyrexTypes.cpp_rvalue_ref_type(base_type) return self.base.analyse(ref_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd) class CArrayDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode # dimension ExprNode child_attrs = ["base", "dimension"] def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False): if ((base_type.is_cpp_class and base_type.is_template_type()) or base_type.is_cfunction or base_type.python_type_constructor_name): from .ExprNodes import TupleNode if isinstance(self.dimension, TupleNode): args = self.dimension.args else: args = self.dimension, values = [v.analyse_as_type(env) for v in args] if None in values: ix = values.index(None) error(args[ix].pos, "Template parameter not a type") base_type = error_type else: base_type = base_type.specialize_here(self.pos, env, values) return self.base.analyse(base_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd) if self.dimension: self.dimension = self.dimension.analyse_const_expression(env) if not self.dimension.type.is_int: error(self.dimension.pos, "Array dimension not integer") size = self.dimension.get_constant_c_result_code() if size is not None: try: size = int(size) except ValueError: # runtime constant? pass else: size = None if not base_type.is_complete(): error(self.pos, "Array element type '%s' is incomplete" % base_type) if base_type.is_pyobject: error(self.pos, "Array element cannot be a Python object") if base_type.is_cfunction: error(self.pos, "Array element cannot be a function") array_type = PyrexTypes.c_array_type(base_type, size) return self.base.analyse(array_type, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd) class CFuncDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode # args [CArgDeclNode] # templates [TemplatePlaceholderType] # has_varargs boolean # exception_value ConstNode or NameNode NameNode when the name of a c++ exception conversion function # exception_check boolean or "+" True if PyErr_Occurred check needed, "+" for a c++ check # nogil boolean Can be called without gil # with_gil boolean Acquire gil around function body # is_const_method boolean Whether this is a const method child_attrs = ["base", "args", "exception_value"] overridable = 0 optional_arg_count = 0 is_const_method = 0 templates = None def declared_name(self): return self.base.declared_name() def analyse_templates(self): if isinstance(self.base, CArrayDeclaratorNode): from .ExprNodes import TupleNode, NameNode template_node = self.base.dimension if isinstance(template_node, TupleNode): template_nodes = template_node.args elif isinstance(template_node, NameNode): template_nodes = [template_node] else: error(template_node.pos, "Template arguments must be a list of names") return None self.templates = [] for template in template_nodes: if isinstance(template, NameNode): self.templates.append(PyrexTypes.TemplatePlaceholderType(template.name)) else: error(template.pos, "Template arguments must be a list of names") self.base = self.base.base return self.templates else: return None def analyse(self, return_type, env, nonempty=0, directive_locals=None, visibility=None, in_pxd=False): if directive_locals is None: directive_locals = {} if nonempty: nonempty -= 1 func_type_args = [] for i, arg_node in enumerate(self.args): name_declarator, type = arg_node.analyse( env, nonempty=nonempty, is_self_arg=(i == 0 and env.is_c_class_scope and 'staticmethod' not in env.directives)) name = name_declarator.name if name in directive_locals: type_node = directive_locals[name] other_type = type_node.analyse_as_type(env) if other_type is None: error(type_node.pos, "Not a type") elif (type is not PyrexTypes.py_object_type and not type.same_as(other_type)): error(self.base.pos, "Signature does not agree with previous declaration") error(type_node.pos, "Previous declaration here") else: type = other_type if name_declarator.cname: error(self.pos, "Function argument cannot have C name specification") if i == 0 and env.is_c_class_scope and type.is_unspecified: # fix the type of self type = env.parent_type # Turn *[] argument into ** if type.is_array: type = PyrexTypes.c_ptr_type(type.base_type) # Catch attempted C-style func(void) decl if type.is_void: error(arg_node.pos, "Use spam() rather than spam(void) to declare a function with no arguments.") func_type_args.append( PyrexTypes.CFuncTypeArg(name, type, arg_node.pos)) if arg_node.default: self.optional_arg_count += 1 elif self.optional_arg_count: error(self.pos, "Non-default argument follows default argument") exc_val = None exc_check = 0 if self.exception_check == '+': env.add_include_file('ios') # for std::ios_base::failure env.add_include_file('new') # for std::bad_alloc env.add_include_file('stdexcept') env.add_include_file('typeinfo') # for std::bad_cast elif return_type.is_pyobject and self.exception_check: # Functions in pure Python mode default to always check return values for exceptions # (equivalent to the "except*" declaration). In this case, the exception clause # is silently ignored for functions returning a Python object. self.exception_check = False if (return_type.is_pyobject and (self.exception_value or self.exception_check) and self.exception_check != '+'): error(self.pos, "Exception clause not allowed for function returning Python object") else: if self.exception_value is None and self.exception_check and self.exception_check != '+': # Use an explicit exception return value to speed up exception checks. # Even if it is not declared, we can use the default exception value of the return type, # unless the function is some kind of external function that we do not control. if (return_type.exception_value is not None and (visibility != 'extern' and not in_pxd)): # - We skip this optimization for extension types; they are more difficult because # the signature must match the base type signature. # - Same for function pointers, as we want them to be able to match functions # with any exception value. # - Ideally the function-pointer test would be better after self.base is analysed # however that is hard to do with the current implementation so it lives here # for now. if not env.is_c_class_scope and not isinstance(self.base, CPtrDeclaratorNode): from .ExprNodes import ConstNode self.exception_value = ConstNode( self.pos, value=return_type.exception_value, type=return_type) if self.exception_value: if self.exception_check == '+': self.exception_value = self.exception_value.analyse_const_expression(env) exc_val_type = self.exception_value.type if (not exc_val_type.is_error and not exc_val_type.is_pyobject and not (exc_val_type.is_cfunction and not exc_val_type.return_type.is_pyobject and not exc_val_type.args) and not (exc_val_type == PyrexTypes.c_char_type and self.exception_value.value == '*')): error(self.exception_value.pos, "Exception value must be a Python exception, or C++ function with no arguments, or *.") exc_val = self.exception_value else: self.exception_value = self.exception_value.analyse_types(env).coerce_to( return_type, env).analyse_const_expression(env) exc_val = self.exception_value.get_constant_c_result_code() if exc_val is None: error(self.exception_value.pos, "Exception value must be constant") if not return_type.assignable_from(self.exception_value.type): error(self.exception_value.pos, "Exception value incompatible with function return type") if (visibility != 'extern' and (return_type.is_int or return_type.is_float) and self.exception_value.has_constant_result()): try: type_default_value = float(return_type.default_value) except ValueError: pass else: if self.exception_value.constant_result == type_default_value: warning(self.pos, "Ambiguous exception value, same as default return value: %r" % self.exception_value.constant_result) exc_check = self.exception_check if return_type.is_cfunction: error(self.pos, "Function cannot return a function") func_type = PyrexTypes.CFuncType( return_type, func_type_args, self.has_varargs, optional_arg_count=self.optional_arg_count, exception_value=exc_val, exception_check=exc_check, calling_convention=self.base.calling_convention, nogil=self.nogil, with_gil=self.with_gil, is_overridable=self.overridable, is_const_method=self.is_const_method, templates=self.templates) if self.optional_arg_count: if func_type.is_fused: # This is a bit of a hack... When we need to create specialized CFuncTypes # on the fly because the cdef is defined in a pxd, we need to declare the specialized optional arg # struct def declare_opt_arg_struct(func_type, fused_cname): self.declare_optional_arg_struct(func_type, env, fused_cname) func_type.declare_opt_arg_struct = declare_opt_arg_struct else: self.declare_optional_arg_struct(func_type, env) callspec = env.directives['callspec'] if callspec: current = func_type.calling_convention if current and current != callspec: error(self.pos, "cannot have both '%s' and '%s' " "calling conventions" % (current, callspec)) func_type.calling_convention = callspec if func_type.return_type.is_rvalue_reference: warning(self.pos, "Rvalue-reference as function return type not supported", 1) for arg in func_type.args: if arg.type.is_rvalue_reference and not arg.is_forwarding_reference(): warning(self.pos, "Rvalue-reference as function argument not supported", 1) return self.base.analyse(func_type, env, visibility=visibility, in_pxd=in_pxd) def declare_optional_arg_struct(self, func_type, env, fused_cname=None): """ Declares the optional argument struct (the struct used to hold the values for optional arguments). For fused cdef functions, this is deferred as analyse_declarations is called only once (on the fused cdef function). """ scope = StructOrUnionScope() arg_count_member = '%sn' % Naming.pyrex_prefix scope.declare_var(arg_count_member, PyrexTypes.c_int_type, self.pos) for arg in func_type.args[len(func_type.args) - self.optional_arg_count:]: scope.declare_var(arg.name, arg.type, arg.pos, allow_pyobject=True, allow_memoryview=True) struct_cname = env.mangle(Naming.opt_arg_prefix, self.base.name) if fused_cname is not None: struct_cname = PyrexTypes.get_fused_cname(fused_cname, struct_cname) op_args_struct = env.global_scope().declare_struct_or_union( name=struct_cname, kind='struct', scope=scope, typedef_flag=0, pos=self.pos, cname=struct_cname) op_args_struct.defined_in_pxd = 1 op_args_struct.used = 1 func_type.op_arg_struct = PyrexTypes.c_ptr_type(op_args_struct.type) class CConstDeclaratorNode(CDeclaratorNode): # base CDeclaratorNode child_attrs = ["base"] def analyse(self, base_type, env, nonempty=0, visibility=None, in_pxd=False): if base_type.is_pyobject: error(self.pos, "Const base type cannot be a Python object") const = PyrexTypes.c_const_type(base_type) return self.base.analyse(const, env, nonempty=nonempty, visibility=visibility, in_pxd=in_pxd) class CArgDeclNode(Node): # Item in a function declaration argument list. # # base_type CBaseTypeNode # declarator CDeclaratorNode # not_none boolean Tagged with 'not None' # or_none boolean Tagged with 'or None' # accept_none boolean Resolved boolean for not_none/or_none # default ExprNode or None # default_value PyObjectConst constant for default value # annotation ExprNode or None Py3 function arg annotation # is_self_arg boolean Is the "self" arg of an extension type method # is_type_arg boolean Is the "class" arg of an extension type classmethod # kw_only boolean Is a keyword-only argument # is_dynamic boolean Non-literal arg stored inside CyFunction # pos_only boolean Is a positional-only argument # # name_cstring property that converts the name to a cstring taking care of unicode # and quoting it child_attrs = ["base_type", "declarator", "default", "annotation"] outer_attrs = ["default", "annotation"] is_self_arg = 0 is_type_arg = 0 is_generic = 1 kw_only = 0 pos_only = 0 not_none = 0 or_none = 0 type = None name_declarator = None default_value = None annotation = None is_dynamic = 0 def declared_name(self): return self.declarator.declared_name() @property def name_cstring(self): return self.name.as_c_string_literal() @property def hdr_cname(self): # done lazily - needs self.entry to be set to get the class-mangled # name, which means it has to be generated relatively late if self.needs_conversion: return punycodify_name(Naming.arg_prefix + self.entry.name) else: return punycodify_name(Naming.var_prefix + self.entry.name) def analyse(self, env, nonempty=0, is_self_arg=False): if is_self_arg: self.base_type.is_self_arg = self.is_self_arg = is_self_arg if self.type is not None: return self.name_declarator, self.type # The parser may misinterpret names as types. We fix that here. if isinstance(self.declarator, CNameDeclaratorNode) and self.declarator.name == '': if nonempty: if self.base_type.is_basic_c_type: # char, short, long called "int" type = self.base_type.analyse(env, could_be_name=True) arg_name = type.empty_declaration_code() else: arg_name = self.base_type.name self.declarator.name = EncodedString(arg_name) self.base_type.name = None self.base_type.is_basic_c_type = False could_be_name = True else: could_be_name = False self.base_type.is_arg = True base_type = self.base_type.analyse(env, could_be_name=could_be_name) base_arg_name = getattr(self.base_type, 'arg_name', None) if base_arg_name: self.declarator.name = base_arg_name # The parser is unable to resolve the ambiguity of [] as part of the # type (e.g. in buffers) or empty declarator (as with arrays). # This is only arises for empty multi-dimensional arrays. if (base_type.is_array and isinstance(self.base_type, TemplatedTypeNode) and isinstance(self.declarator, CArrayDeclaratorNode)): declarator = self.declarator while isinstance(declarator.base, CArrayDeclaratorNode): declarator = declarator.base declarator.base = self.base_type.array_declarator base_type = base_type.base_type # inject type declaration from annotations # this is called without 'env' by AdjustDefByDirectives transform before declaration analysis if (self.annotation and env and env.directives['annotation_typing'] # CSimpleBaseTypeNode has a name attribute; CAnalysedBaseTypeNode # (and maybe other options) doesn't and getattr(self.base_type, "name", None) is None): arg_type = self.inject_type_from_annotations(env) if arg_type is not None: base_type = arg_type return self.declarator.analyse(base_type, env, nonempty=nonempty) def inject_type_from_annotations(self, env): annotation = self.annotation if not annotation: return None modifiers, arg_type = annotation.analyse_type_annotation(env, assigned_value=self.default) if arg_type is not None: self.base_type = CAnalysedBaseTypeNode( annotation.pos, type=arg_type, is_arg=True) if arg_type: if "typing.Optional" in modifiers: # "x: Optional[...]" => explicitly allow 'None' arg_type = arg_type.resolve() if arg_type and not arg_type.is_pyobject: # We probably already reported this as "cannot be applied to non-Python type". # error(annotation.pos, "Only Python type arguments can use typing.Optional[...]") pass else: self.or_none = True elif arg_type is py_object_type: # exclude ": object" from the None check - None is a generic object. self.or_none = True elif self.default and self.default.is_none and (arg_type.is_pyobject or arg_type.equivalent_type): # "x: ... = None" => implicitly allow 'None' if not arg_type.is_pyobject: arg_type = arg_type.equivalent_type if not self.or_none: warning(self.pos, "PEP-484 recommends 'typing.Optional[...]' for arguments that can be None.") self.or_none = True elif arg_type.is_pyobject and not self.or_none: self.not_none = True return arg_type def calculate_default_value_code(self, code): if self.default_value is None: if self.default: if self.default.is_literal: # will not output any code, just assign the result_code self.default.generate_evaluation_code(code) return self.type.cast_code(self.default.result()) self.default_value = code.get_argument_default_const(self.type) return self.default_value def annotate(self, code): if self.default: self.default.annotate(code) def generate_assignment_code(self, code, target=None, overloaded_assignment=False): default = self.default if default is None or default.is_literal: return if target is None: target = self.calculate_default_value_code(code) default.generate_evaluation_code(code) default.make_owned_reference(code) result = default.result() if overloaded_assignment else default.result_as(self.type) code.putln("%s = %s;" % (target, result)) code.put_giveref(default.result(), self.type) default.generate_post_assignment_code(code) default.free_temps(code) class CBaseTypeNode(Node): # Abstract base class for C base type nodes. # # Processing during analyse_declarations phase: # # analyse # Returns the type. def analyse_as_type(self, env): return self.analyse(env) class CAnalysedBaseTypeNode(Node): # type type child_attrs = [] def analyse(self, env, could_be_name=False): return self.type class CSimpleBaseTypeNode(CBaseTypeNode): # name string # module_path [string] Qualifying name components # is_basic_c_type boolean # signed boolean # longness integer # complex boolean # is_self_arg boolean Is self argument of C method # ##is_type_arg boolean Is type argument of class method child_attrs = [] arg_name = None # in case the argument name was interpreted as a type module_path = [] is_basic_c_type = False complex = False is_self_arg = False def analyse(self, env, could_be_name=False): # Return type descriptor. #print "CSimpleBaseTypeNode.analyse: is_self_arg =", self.is_self_arg ### type = None if self.is_basic_c_type: type = PyrexTypes.simple_c_type(self.signed, self.longness, self.name) if not type: error(self.pos, "Unrecognised type modifier combination") elif self.name == "object" and not self.module_path: type = py_object_type elif self.name is None: if self.is_self_arg and env.is_c_class_scope: #print "CSimpleBaseTypeNode.analyse: defaulting to parent type" ### type = env.parent_type ## elif self.is_type_arg and env.is_c_class_scope: ## type = Builtin.type_type else: type = py_object_type else: scope = env if self.module_path: # Maybe it's a nested C++ class. for item in self.module_path: entry = scope.lookup(item) if entry is not None and ( entry.is_cpp_class or entry.is_type and entry.type.is_cpp_class ): scope = entry.type.scope else: scope = None break if scope is None and len(self.module_path) == 1: # (may be possible to handle longer module paths?) # TODO: probably not the best place to declare it? from .Builtin import get_known_standard_library_module_scope found_entry = env.lookup(self.module_path[0]) if found_entry and found_entry.known_standard_library_import: scope = get_known_standard_library_module_scope(found_entry.known_standard_library_import) if scope is None: # Maybe it's a cimport. scope = env.find_imported_module(self.module_path, self.pos) if scope: if scope.is_c_class_scope: scope = scope.global_scope() type = scope.lookup_type(self.name) if type is not None: pass elif could_be_name: if self.is_self_arg and env.is_c_class_scope: type = env.parent_type ## elif self.is_type_arg and env.is_c_class_scope: ## type = Builtin.type_type else: type = py_object_type self.arg_name = EncodedString(self.name) else: if self.templates: if self.name not in self.templates: error(self.pos, "'%s' is not a type identifier" % self.name) type = PyrexTypes.TemplatePlaceholderType(self.name) else: error(self.pos, "'%s' is not a type identifier" % self.name) if type and type.is_fused and env.fused_to_specific: type = type.specialize(env.fused_to_specific) if self.complex: if not type.is_numeric or type.is_complex: error(self.pos, "can only complexify c numeric types") type = PyrexTypes.CComplexType(type) type.create_declaration_utility_code(env) elif type is Builtin.complex_type: # Special case: optimise builtin complex type into C's # double complex. The parser cannot do this (as for the # normal scalar types) as the user may have redeclared the # 'complex' type. Testing for the exact type here works. type = PyrexTypes.c_double_complex_type type.create_declaration_utility_code(env) self.complex = True if not type: type = PyrexTypes.error_type return type class MemoryViewSliceTypeNode(CBaseTypeNode): name = 'memoryview' child_attrs = ['base_type_node', 'axes'] def analyse(self, env, could_be_name=False): base_type = self.base_type_node.analyse(env) if base_type.is_error: return base_type from . import MemoryView try: axes_specs = MemoryView.get_axes_specs(env, self.axes) except CompileError as e: error(e.position, e.message_only) self.type = PyrexTypes.ErrorType() return self.type if not MemoryView.validate_axes(self.pos, axes_specs): self.type = error_type else: self.type = PyrexTypes.MemoryViewSliceType(base_type, axes_specs) self.type.validate_memslice_dtype(self.pos) self.use_memview_utilities(env) return self.type def use_memview_utilities(self, env): from . import MemoryView env.use_utility_code(MemoryView.view_utility_code) class CNestedBaseTypeNode(CBaseTypeNode): # For C++ classes that live inside other C++ classes. # name string # base_type CBaseTypeNode child_attrs = ['base_type'] def analyse(self, env, could_be_name=None): base_type = self.base_type.analyse(env) if base_type is PyrexTypes.error_type: return PyrexTypes.error_type if not base_type.is_cpp_class: error(self.pos, "'%s' is not a valid type scope" % base_type) return PyrexTypes.error_type type_entry = base_type.scope.lookup_here(self.name) if not type_entry or not type_entry.is_type: error(self.pos, "'%s.%s' is not a type identifier" % (base_type, self.name)) return PyrexTypes.error_type return type_entry.type class TemplatedTypeNode(CBaseTypeNode): # After parsing: # positional_args [ExprNode] List of positional arguments # keyword_args DictNode Keyword arguments # base_type_node CBaseTypeNode # After analysis: # type PyrexTypes.BufferType or PyrexTypes.CppClassType ...containing the right options child_attrs = ["base_type_node", "positional_args", "keyword_args", "dtype_node"] is_templated_type_node = True dtype_node = None name = None def _analyse_template_types(self, env, base_type): require_python_types = base_type.python_type_constructor_name in ( 'typing.Optional', 'dataclasses.ClassVar', ) in_c_type_context = env.in_c_type_context and not require_python_types template_types = [] for template_node in self.positional_args: # CBaseTypeNode -> allow C type declarations in a 'cdef' context again with env.new_c_type_context(in_c_type_context or isinstance(template_node, CBaseTypeNode)): ttype = template_node.analyse_as_type(env) if ttype is None: if base_type.is_cpp_class: error(template_node.pos, "unknown type in template argument") ttype = error_type # For Python generics we can be a bit more flexible and allow None. elif require_python_types and not ttype.is_pyobject: if ttype.equivalent_type and not template_node.as_cython_attribute(): ttype = ttype.equivalent_type else: error(template_node.pos, "%s[...] cannot be applied to non-Python type %s" % ( base_type.python_type_constructor_name, ttype, )) ttype = error_type template_types.append(ttype) return template_types def analyse(self, env, could_be_name=False, base_type=None): if base_type is None: base_type = self.base_type_node.analyse(env) if base_type.is_error: return base_type if ((base_type.is_cpp_class and base_type.is_template_type()) or base_type.python_type_constructor_name): # Templated class, Python generics, etc. if self.keyword_args and self.keyword_args.key_value_pairs: tp = "c++ templates" if base_type.is_cpp_class else "indexed types" error(self.pos, "%s cannot take keyword arguments" % tp) self.type = PyrexTypes.error_type return self.type template_types = self._analyse_template_types(env, base_type) self.type = base_type.specialize_here(self.pos, env, template_types) elif base_type.is_pyobject: # Buffer from . import Buffer options = Buffer.analyse_buffer_options( self.pos, env, self.positional_args, self.keyword_args, base_type.buffer_defaults) if sys.version_info[0] < 3: # Py 2.x enforces byte strings as keyword arguments ... options = dict([(name.encode('ASCII'), value) for name, value in options.items()]) self.type = PyrexTypes.BufferType(base_type, **options) if has_np_pythran(env) and is_pythran_buffer(self.type): self.type = PyrexTypes.PythranExpr(pythran_type(self.type), self.type) else: # Array empty_declarator = CNameDeclaratorNode(self.pos, name="", cname=None) if len(self.positional_args) > 1 or self.keyword_args.key_value_pairs: error(self.pos, "invalid array declaration") self.type = PyrexTypes.error_type else: # It would be nice to merge this class with CArrayDeclaratorNode, # but arrays are part of the declaration, not the type... if not self.positional_args: dimension = None else: dimension = self.positional_args[0] self.array_declarator = CArrayDeclaratorNode( self.pos, base=empty_declarator, dimension=dimension) self.type = self.array_declarator.analyse(base_type, env)[1] if self.type and self.type.is_fused and env.fused_to_specific: try: self.type = self.type.specialize(env.fused_to_specific) except CannotSpecialize: error(self.pos, "'%s' cannot be specialized since its type is not a fused argument to this function" % self.name) return self.type def analyse_pytyping_modifiers(self, env): # Check for declaration modifiers, e.g. "typing.Optional[...]" or "dataclasses.InitVar[...]" # TODO: somehow bring this together with IndexNode.analyse_pytyping_modifiers() modifiers = [] modifier_node = self while modifier_node.is_templated_type_node and modifier_node.base_type_node and len(modifier_node.positional_args) == 1: modifier_type = self.base_type_node.analyse_as_type(env) if modifier_type.python_type_constructor_name and modifier_type.modifier_name: modifiers.append(modifier_type.modifier_name) modifier_node = modifier_node.positional_args[0] return modifiers class CComplexBaseTypeNode(CBaseTypeNode): # base_type CBaseTypeNode # declarator CDeclaratorNode child_attrs = ["base_type", "declarator"] def analyse(self, env, could_be_name=False): base = self.base_type.analyse(env, could_be_name) _, type = self.declarator.analyse(base, env) return type class CTupleBaseTypeNode(CBaseTypeNode): # components [CBaseTypeNode] child_attrs = ["components"] def analyse(self, env, could_be_name=False): component_types = [] for c in self.components: type = c.analyse(env) if type.is_pyobject: error(c.pos, "Tuple types can't (yet) contain Python objects.") return error_type component_types.append(type) entry = env.declare_tuple_type(self.pos, component_types) entry.used = True return entry.type class FusedTypeNode(CBaseTypeNode): """ Represents a fused type in a ctypedef statement: ctypedef cython.fused_type(int, long, long long) integral name str name of this fused type types [CSimpleBaseTypeNode] is the list of types to be fused """ child_attrs = [] def analyse_declarations(self, env): type = self.analyse(env) entry = env.declare_typedef(self.name, type, self.pos) # Omit the typedef declaration that self.declarator would produce entry.in_cinclude = True def analyse(self, env, could_be_name=False): types = [] for type_node in self.types: type = type_node.analyse_as_type(env) if not type: error(type_node.pos, "Not a type") continue if type in types: error(type_node.pos, "Type specified multiple times") else: types.append(type) # if len(self.types) == 1: # return types[0] return PyrexTypes.FusedType(types, name=self.name) class CConstOrVolatileTypeNode(CBaseTypeNode): # base_type CBaseTypeNode # is_const boolean # is_volatile boolean child_attrs = ["base_type"] def analyse(self, env, could_be_name=False): base = self.base_type.analyse(env, could_be_name) if base.is_pyobject: error(self.pos, "Const/volatile base type cannot be a Python object") return PyrexTypes.c_const_or_volatile_type(base, self.is_const, self.is_volatile) class CVarDefNode(StatNode): # C variable definition or forward/extern function declaration. # # visibility 'private' or 'public' or 'extern' # base_type CBaseTypeNode # declarators [CDeclaratorNode] # in_pxd boolean # api boolean # overridable boolean whether it is a cpdef # modifiers ['inline'] # decorators [cython.locals(...)] or None # directive_locals { string : NameNode } locals defined by cython.locals(...) child_attrs = ["base_type", "declarators"] decorators = None directive_locals = None def analyse_declarations(self, env, dest_scope=None): if self.directive_locals is None: self.directive_locals = {} if not dest_scope: dest_scope = env self.dest_scope = dest_scope if self.declarators: templates = self.declarators[0].analyse_templates() else: templates = None if templates is not None: if self.visibility != 'extern': error(self.pos, "Only extern functions allowed") if len(self.declarators) > 1: error(self.declarators[1].pos, "Can't multiply declare template types") env = TemplateScope('func_template', env) env.directives = env.outer_scope.directives for template_param in templates: env.declare_type(template_param.name, template_param, self.pos) base_type = self.base_type.analyse(env) # Check for declaration modifiers, e.g. "typing.Optional[...]" or "dataclasses.InitVar[...]" modifiers = None if self.base_type.is_templated_type_node: modifiers = self.base_type.analyse_pytyping_modifiers(env) if base_type.is_fused and not self.in_pxd and (env.is_c_class_scope or env.is_module_scope): error(self.pos, "Fused types not allowed here") return error_type self.entry = None visibility = self.visibility for declarator in self.declarators: if (len(self.declarators) > 1 and not isinstance(declarator, CNameDeclaratorNode) and env.directives['warn.multiple_declarators']): warning( declarator.pos, "Non-trivial type declarators in shared declaration (e.g. mix of pointers and values). " "Each pointer declaration should be on its own line.", 1) create_extern_wrapper = (self.overridable and self.visibility == 'extern' and env.is_module_scope) if create_extern_wrapper: declarator.overridable = False if isinstance(declarator, CFuncDeclaratorNode): name_declarator, type = declarator.analyse( base_type, env, directive_locals=self.directive_locals, visibility=visibility, in_pxd=self.in_pxd) else: name_declarator, type = declarator.analyse( base_type, env, visibility=visibility, in_pxd=self.in_pxd) if not type.is_complete(): if not (self.visibility == 'extern' and type.is_array or type.is_memoryviewslice): error(declarator.pos, "Variable type '%s' is incomplete" % type) if self.visibility == 'extern' and type.is_pyobject: error(declarator.pos, "Python object cannot be declared extern") name = name_declarator.name cname = name_declarator.cname if name == '': error(declarator.pos, "Missing name in declaration.") return if type.is_reference and self.visibility != 'extern': error(declarator.pos, "C++ references cannot be declared; use a pointer instead") if type.is_rvalue_reference and self.visibility != 'extern': error(declarator.pos, "C++ rvalue-references cannot be declared") if type.is_cfunction: if 'staticmethod' in env.directives: type.is_static_method = True self.entry = dest_scope.declare_cfunction( name, type, declarator.pos, cname=cname, visibility=self.visibility, in_pxd=self.in_pxd, api=self.api, modifiers=self.modifiers, overridable=self.overridable) if self.entry is not None: self.entry.directive_locals = copy.copy(self.directive_locals) if create_extern_wrapper: self.entry.type.create_to_py_utility_code(env) self.entry.create_wrapper = True else: if self.overridable: error(self.pos, "Variables cannot be declared with 'cpdef'. Use 'cdef' instead.") if self.directive_locals: error(self.pos, "Decorators can only be followed by functions") self.entry = dest_scope.declare_var( name, type, declarator.pos, cname=cname, visibility=visibility, in_pxd=self.in_pxd, api=self.api, is_cdef=True, pytyping_modifiers=modifiers) if Options.docstrings: self.entry.doc = embed_position(self.pos, self.doc) class CStructOrUnionDefNode(StatNode): # name string # cname string or None # kind "struct" or "union" # typedef_flag boolean # visibility "public" or "private" # api boolean # in_pxd boolean # attributes [CVarDefNode] or None # entry Entry # packed boolean child_attrs = ["attributes"] def declare(self, env, scope=None): self.entry = env.declare_struct_or_union( self.name, self.kind, scope, self.typedef_flag, self.pos, self.cname, visibility=self.visibility, api=self.api, packed=self.packed) def analyse_declarations(self, env): scope = None if self.attributes is not None: scope = StructOrUnionScope(self.name) self.declare(env, scope) if self.attributes is not None: if self.in_pxd and not env.in_cinclude: self.entry.defined_in_pxd = 1 for attr in self.attributes: attr.analyse_declarations(env, scope) if self.visibility != 'extern': for attr in scope.var_entries: type = attr.type while type.is_array: type = type.base_type if type == self.entry.type: error(attr.pos, "Struct cannot contain itself as a member.") def analyse_expressions(self, env): return self def generate_execution_code(self, code): pass class CppClassNode(CStructOrUnionDefNode, BlockNode): # name string # cname string or None # visibility "extern" # in_pxd boolean # attributes [CVarDefNode] or None # entry Entry # base_classes [CBaseTypeNode] # templates [(string, bool)] or None # decorators [DecoratorNode] or None decorators = None def declare(self, env): if self.templates is None: template_types = None else: template_types = [PyrexTypes.TemplatePlaceholderType(template_name, not required) for template_name, required in self.templates] num_optional_templates = sum(not required for _, required in self.templates) if num_optional_templates and not all(required for _, required in self.templates[:-num_optional_templates]): error(self.pos, "Required template parameters must precede optional template parameters.") self.entry = env.declare_cpp_class( self.name, None, self.pos, self.cname, base_classes=[], visibility=self.visibility, templates=template_types) def analyse_declarations(self, env): if self.templates is None: template_types = template_names = None else: template_names = [template_name for template_name, _ in self.templates] template_types = [PyrexTypes.TemplatePlaceholderType(template_name, not required) for template_name, required in self.templates] scope = None if self.attributes is not None: scope = CppClassScope(self.name, env, templates=template_names) def base_ok(base_class): if base_class.is_cpp_class or base_class.is_struct: return True else: error(self.pos, "Base class '%s' not a struct or class." % base_class) base_class_types = filter(base_ok, [b.analyse(scope or env) for b in self.base_classes]) self.entry = env.declare_cpp_class( self.name, scope, self.pos, self.cname, base_class_types, visibility=self.visibility, templates=template_types) if self.entry is None: return self.entry.is_cpp_class = 1 if scope is not None: scope.type = self.entry.type defined_funcs = [] def func_attributes(attributes): for attr in attributes: if isinstance(attr, CFuncDefNode): yield attr elif isinstance(attr, CompilerDirectivesNode): for sub_attr in func_attributes(attr.body.stats): yield sub_attr elif isinstance(attr, CppClassNode) and attr.attributes is not None: for sub_attr in func_attributes(attr.attributes): yield sub_attr if self.attributes is not None: if self.in_pxd and not env.in_cinclude: self.entry.defined_in_pxd = 1 for attr in self.attributes: declare = getattr(attr, 'declare', None) if declare: attr.declare(scope) attr.analyse_declarations(scope) for func in func_attributes(self.attributes): defined_funcs.append(func) if self.templates is not None: func.template_declaration = "template " % ", typename ".join(template_names) self.body = StatListNode(self.pos, stats=defined_funcs) self.scope = scope def analyse_expressions(self, env): self.body = self.body.analyse_expressions(self.entry.type.scope) return self def generate_function_definitions(self, env, code): self.body.generate_function_definitions(self.entry.type.scope, code) def generate_execution_code(self, code): self.body.generate_execution_code(code) def annotate(self, code): self.body.annotate(code) class CEnumDefNode(StatNode): # name string or None # cname string or None # scoped boolean Is a C++ scoped enum # underlying_type CSimpleBaseTypeNode The underlying value type (int or C++ type) # items [CEnumDefItemNode] # typedef_flag boolean # visibility "public" or "private" or "extern" # api boolean # in_pxd boolean # create_wrapper boolean # entry Entry # doc EncodedString or None Doc string child_attrs = ["items", "underlying_type"] doc = None def declare(self, env): doc = None if Options.docstrings: doc = embed_position(self.pos, self.doc) self.entry = env.declare_enum( self.name, self.pos, cname=self.cname, scoped=self.scoped, typedef_flag=self.typedef_flag, visibility=self.visibility, api=self.api, create_wrapper=self.create_wrapper, doc=doc) def analyse_declarations(self, env): scope = None underlying_type = self.underlying_type.analyse(env) if not underlying_type.is_int: error(self.underlying_type.pos, "underlying type is not an integral type") self.entry.type.underlying_type = underlying_type if self.scoped and self.items is not None: scope = CppScopedEnumScope(self.name, env) scope.type = self.entry.type else: scope = env if self.items is not None: if self.in_pxd and not env.in_cinclude: self.entry.defined_in_pxd = 1 for item in self.items: item.analyse_declarations(scope, self.entry) def analyse_expressions(self, env): return self def generate_execution_code(self, code): if self.scoped: return # nothing to do here for C++ enums if self.visibility == 'public' or self.api: code.mark_pos(self.pos) temp = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True) for item in self.entry.enum_values: code.putln("%s = PyInt_FromLong(%s); %s" % ( temp, item.cname, code.error_goto_if_null(temp, item.pos))) code.put_gotref(temp, PyrexTypes.py_object_type) code.putln('if (PyDict_SetItemString(%s, "%s", %s) < 0) %s' % ( Naming.moddict_cname, item.name, temp, code.error_goto(item.pos))) code.put_decref_clear(temp, PyrexTypes.py_object_type) code.funcstate.release_temp(temp) class CEnumDefItemNode(StatNode): # name string # cname string or None # value ExprNode or None child_attrs = ["value"] def analyse_declarations(self, env, enum_entry): if self.value: self.value = self.value.analyse_const_expression(env) if not self.value.type.is_int: self.value = self.value.coerce_to(PyrexTypes.c_int_type, env) self.value = self.value.analyse_const_expression(env) if enum_entry.type.is_cpp_enum: cname = "%s::%s" % (enum_entry.cname, self.name) else: cname = self.cname entry = env.declare_const( self.name, enum_entry.type, self.value, self.pos, cname=cname, visibility=enum_entry.visibility, api=enum_entry.api, create_wrapper=enum_entry.create_wrapper and enum_entry.name is None) enum_entry.enum_values.append(entry) if enum_entry.name: enum_entry.type.values.append(entry.name) class CTypeDefNode(StatNode): # base_type CBaseTypeNode # declarator CDeclaratorNode # visibility "public" or "private" # api boolean # in_pxd boolean child_attrs = ["base_type", "declarator"] def analyse_declarations(self, env): base = self.base_type.analyse(env) name_declarator, type = self.declarator.analyse( base, env, visibility=self.visibility, in_pxd=self.in_pxd) name = name_declarator.name cname = name_declarator.cname entry = env.declare_typedef( name, type, self.pos, cname=cname, visibility=self.visibility, api=self.api) if type.is_fused: entry.in_cinclude = True if self.in_pxd and not env.in_cinclude: entry.defined_in_pxd = 1 def analyse_expressions(self, env): return self def generate_execution_code(self, code): pass class FuncDefNode(StatNode, BlockNode): # Base class for function definition nodes. # # return_type PyrexType # #filename string C name of filename string const # entry Symtab.Entry # needs_closure boolean Whether or not this function has inner functions/classes/yield # needs_outer_scope boolean Whether or not this function requires outer scope # pymethdef_required boolean Force Python method struct generation # directive_locals { string : ExprNode } locals defined by cython.locals(...) # directive_returns [ExprNode] type defined by cython.returns(...) # star_arg PyArgDeclNode or None * argument # starstar_arg PyArgDeclNode or None ** argument # # is_async_def boolean is a Coroutine function # # has_fused_arguments boolean # Whether this cdef function has fused parameters. This is needed # by AnalyseDeclarationsTransform, so it can replace CFuncDefNodes # with fused argument types with a FusedCFuncDefNode py_func = None needs_closure = False needs_outer_scope = False pymethdef_required = False is_generator = False is_generator_expression = False # this can be True alongside is_generator is_coroutine = False is_asyncgen = False is_generator_body = False is_async_def = False modifiers = [] has_fused_arguments = False star_arg = None starstar_arg = None is_cyfunction = False code_object = None return_type_annotation = None outer_attrs = None # overridden by some derived classes - to be visited outside the node's scope def analyse_default_values(self, env): default_seen = 0 for arg in self.args: if arg.default: default_seen = 1 if arg.is_generic: arg.default = arg.default.analyse_types(env) arg.default = arg.default.coerce_to(arg.type, env) else: error(arg.pos, "This argument cannot have a default value") arg.default = None elif arg.kw_only: default_seen = 1 elif default_seen: error(arg.pos, "Non-default argument following default argument") def analyse_annotations(self, env): for arg in self.args: if arg.annotation: arg.annotation = arg.annotation.analyse_types(env) if self.return_type_annotation: self.return_type_annotation = self.return_type_annotation.analyse_types(env) def align_argument_type(self, env, arg): # @cython.locals() directive_locals = self.directive_locals orig_type = arg.type if arg.name in directive_locals: type_node = directive_locals[arg.name] other_type = type_node.analyse_as_type(env) elif isinstance(arg, CArgDeclNode) and arg.annotation and env.directives['annotation_typing']: type_node = arg.annotation other_type = arg.inject_type_from_annotations(env) if other_type is None: return arg else: return arg if other_type is None: error(type_node.pos, "Not a type") elif orig_type is not py_object_type and not orig_type.same_as(other_type): error(arg.base_type.pos, "Signature does not agree with previous declaration") error(type_node.pos, "Previous declaration here") else: arg.type = other_type if arg.type.is_complex: # utility code for complex types is special-cased and also important to ensure that it's run arg.type.create_declaration_utility_code(env) return arg def need_gil_acquisition(self, lenv): return 0 def create_local_scope(self, env): genv = env while genv.is_py_class_scope or genv.is_c_class_scope: genv = genv.outer_scope if self.needs_closure: cls = GeneratorExpressionScope if self.is_generator_expression else ClosureScope lenv = cls(name=self.entry.name, outer_scope=genv, parent_scope=env, scope_name=self.entry.cname) else: lenv = LocalScope(name=self.entry.name, outer_scope=genv, parent_scope=env) lenv.return_type = self.return_type type = self.entry.type if type.is_cfunction: lenv.nogil = type.nogil and not type.with_gil self.local_scope = lenv lenv.directives = env.directives return lenv def generate_function_body(self, env, code): self.body.generate_execution_code(code) def generate_function_definitions(self, env, code): from . import Buffer lenv = self.local_scope if lenv.is_closure_scope and not lenv.is_passthrough: outer_scope_cname = "%s->%s" % (Naming.cur_scope_cname, Naming.outer_scope_cname) else: outer_scope_cname = Naming.outer_scope_cname lenv.mangle_closure_cnames(outer_scope_cname) # Generate closure function definitions self.body.generate_function_definitions(lenv, code) # generate lambda function definitions self.generate_lambda_definitions(lenv, code) is_getbuffer_slot = (self.entry.name == "__getbuffer__" and self.entry.scope.is_c_class_scope) is_releasebuffer_slot = (self.entry.name == "__releasebuffer__" and self.entry.scope.is_c_class_scope) is_buffer_slot = is_getbuffer_slot or is_releasebuffer_slot if is_buffer_slot: if 'cython_unused' not in self.modifiers: self.modifiers = self.modifiers + ['cython_unused'] preprocessor_guard = self.get_preprocessor_guard() profile = code.globalstate.directives['profile'] linetrace = code.globalstate.directives['linetrace'] if profile or linetrace: if linetrace: code.use_fast_gil_utility_code() code.globalstate.use_utility_code( UtilityCode.load_cached("Profile", "Profile.c")) # Generate C code for header and body of function code.enter_cfunc_scope(lenv) code.return_from_error_cleanup_label = code.new_label() code.funcstate.gil_owned = not lenv.nogil # ----- Top-level constants used by this function code.mark_pos(self.pos) self.generate_cached_builtins_decls(lenv, code) # ----- Function header code.putln("") if preprocessor_guard: code.putln(preprocessor_guard) with_pymethdef = (self.needs_assignment_synthesis(env, code) or self.pymethdef_required) if self.py_func: self.py_func.generate_function_header( code, with_pymethdef=with_pymethdef, proto_only=True) self.generate_function_header(code, with_pymethdef=with_pymethdef) # ----- Local variable declarations # Find function scope cenv = env while cenv.is_py_class_scope or cenv.is_c_class_scope: cenv = cenv.outer_scope if self.needs_closure: code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname)) code.putln(";") elif self.needs_outer_scope: if lenv.is_passthrough: code.put(lenv.scope_class.type.declaration_code(Naming.cur_scope_cname)) code.putln(";") code.put(cenv.scope_class.type.declaration_code(Naming.outer_scope_cname)) code.putln(";") self.generate_argument_declarations(lenv, code) for entry in lenv.var_entries: if not (entry.in_closure or entry.is_arg): code.put_var_declaration(entry) # Initialize the return variable __pyx_r init = "" return_type = self.return_type if return_type.is_cv_qualified and return_type.is_const: # Within this function body, we want to be able to set this # variable, even though the function itself needs to return # a const version return_type = return_type.cv_base_type if not return_type.is_void: if return_type.is_pyobject: init = " = NULL" elif return_type.is_memoryviewslice: init = ' = ' + return_type.literal_code(return_type.default_value) code.putln("%s%s;" % ( return_type.declaration_code(Naming.retval_cname), init)) tempvardecl_code = code.insertion_point() self.generate_keyword_list(code) # ----- GIL acquisition acquire_gil = self.acquire_gil # See if we need to acquire the GIL for variable declarations, or for # refnanny only # Closures are not currently possible for cdef nogil functions, # but check them anyway have_object_args = self.needs_closure or self.needs_outer_scope for arg in lenv.arg_entries: if arg.type.is_pyobject: have_object_args = True break used_buffer_entries = [entry for entry in lenv.buffer_entries if entry.used] acquire_gil_for_var_decls_only = ( lenv.nogil and lenv.has_with_gil_block and (have_object_args or used_buffer_entries)) acquire_gil_for_refnanny_only = ( lenv.nogil and lenv.has_with_gil_block and not acquire_gil_for_var_decls_only) use_refnanny = not lenv.nogil or lenv.has_with_gil_block gilstate_decl = None if acquire_gil or acquire_gil_for_var_decls_only: code.put_ensure_gil() code.funcstate.gil_owned = True else: gilstate_decl = code.insertion_point() if profile or linetrace: if not self.is_generator: # generators are traced when iterated, not at creation tempvardecl_code.put_trace_declarations() code_object = self.code_object.calculate_result_code(code) if self.code_object else None code.put_trace_frame_init(code_object) # ----- Special check for getbuffer if is_getbuffer_slot: self.getbuffer_check(code) # ----- set up refnanny if use_refnanny: tempvardecl_code.put_declare_refcount_context() code.put_setup_refcount_context( self.entry.name, acquire_gil=acquire_gil_for_refnanny_only) # ----- Automatic lead-ins for certain special functions if is_getbuffer_slot: self.getbuffer_init(code) # ----- Create closure scope object if self.needs_closure: tp_slot = TypeSlots.ConstructorSlot("tp_new", '__new__') slot_func_cname = TypeSlots.get_slot_function(lenv.scope_class.type.scope, tp_slot) if not slot_func_cname: slot_func_cname = '%s->tp_new' % lenv.scope_class.type.typeptr_cname code.putln("%s = (%s)%s(%s, %s, NULL);" % ( Naming.cur_scope_cname, lenv.scope_class.type.empty_declaration_code(), slot_func_cname, lenv.scope_class.type.typeptr_cname, Naming.empty_tuple)) code.putln("if (unlikely(!%s)) {" % Naming.cur_scope_cname) # Scope unconditionally DECREFed on return. code.putln("%s = %s;" % ( Naming.cur_scope_cname, lenv.scope_class.type.cast_code("Py_None"))) code.put_incref("Py_None", py_object_type) code.putln(code.error_goto(self.pos)) code.putln("} else {") code.put_gotref(Naming.cur_scope_cname, lenv.scope_class.type) code.putln("}") # Note that it is unsafe to decref the scope at this point. if self.needs_outer_scope: if self.is_cyfunction: code.putln("%s = (%s) __Pyx_CyFunction_GetClosure(%s);" % ( outer_scope_cname, cenv.scope_class.type.empty_declaration_code(), Naming.self_cname)) else: code.putln("%s = (%s) %s;" % ( outer_scope_cname, cenv.scope_class.type.empty_declaration_code(), Naming.self_cname)) if lenv.is_passthrough: code.putln("%s = %s;" % (Naming.cur_scope_cname, outer_scope_cname)) elif self.needs_closure: # inner closures own a reference to their outer parent code.put_incref(outer_scope_cname, cenv.scope_class.type) code.put_giveref(outer_scope_cname, cenv.scope_class.type) # ----- Trace function call if profile or linetrace: # this looks a bit late, but if we don't get here due to a # fatal error before hand, it's not really worth tracing if not self.is_generator: # generators are traced when iterated, not at creation if self.is_wrapper: trace_name = self.entry.name + " (wrapper)" else: trace_name = self.entry.name code.put_trace_call( trace_name, self.pos, nogil=not code.funcstate.gil_owned) code.funcstate.can_trace = True # ----- Fetch arguments self.generate_argument_parsing_code(env, code) # If an argument is assigned to in the body, we must # incref it to properly keep track of refcounts. for entry in lenv.arg_entries: if not entry.type.is_memoryviewslice: if (acquire_gil or entry.cf_is_reassigned) and not entry.in_closure: code.put_var_incref(entry) # Note: defaults are always incref-ed. For def functions, we # we acquire arguments from object conversion, so we have # new references. If we are a cdef function, we need to # incref our arguments elif entry.cf_is_reassigned and not entry.in_closure: code.put_var_incref_memoryviewslice(entry, have_gil=code.funcstate.gil_owned) for entry in lenv.var_entries: if entry.is_arg and entry.cf_is_reassigned and not entry.in_closure: if entry.xdecref_cleanup: code.put_var_xincref(entry) else: code.put_var_incref(entry) # ----- Initialise local buffer auxiliary variables for entry in lenv.var_entries + lenv.arg_entries: if entry.type.is_buffer and entry.buffer_aux.buflocal_nd_var.used: Buffer.put_init_vars(entry, code) # ----- Check and convert arguments self.generate_argument_type_tests(code) # ----- Acquire buffer arguments for entry in lenv.arg_entries: if entry.type.is_buffer: Buffer.put_acquire_arg_buffer(entry, code, self.pos) if acquire_gil_for_var_decls_only: code.put_release_ensured_gil() code.funcstate.gil_owned = False # ------------------------- # ----- Function body ----- # ------------------------- self.generate_function_body(env, code) code.mark_pos(self.pos, trace=False) code.putln("") code.putln("/* function exit code */") gil_owned = { 'success': code.funcstate.gil_owned, 'error': code.funcstate.gil_owned, 'gil_state_declared': gilstate_decl is None, } def assure_gil(code_path, code=code): if not gil_owned[code_path]: if not gil_owned['gil_state_declared']: gilstate_decl.declare_gilstate() gil_owned['gil_state_declared'] = True code.put_ensure_gil(declare_gilstate=False) gil_owned[code_path] = True # ----- Default return value return_type = self.return_type if not self.body.is_terminator: if return_type.is_pyobject: #if return_type.is_extension_type: # lhs = "(PyObject *)%s" % Naming.retval_cname #else: lhs = Naming.retval_cname assure_gil('success') code.put_init_to_py_none(lhs, return_type) elif not return_type.is_memoryviewslice: # memory view structs receive their default value on initialisation val = return_type.default_value if val: code.putln("%s = %s;" % (Naming.retval_cname, val)) elif not return_type.is_void: code.putln("__Pyx_pretend_to_initialize(&%s);" % Naming.retval_cname) # ----- Error cleanup if code.label_used(code.error_label): if not self.body.is_terminator: code.put_goto(code.return_label) code.put_label(code.error_label) for cname, type in code.funcstate.all_managed_temps(): assure_gil('error') code.put_xdecref(cname, type, have_gil=gil_owned['error']) # Clean up buffers -- this calls a Python function # so need to save and restore error state buffers_present = len(used_buffer_entries) > 0 #memslice_entries = [e for e in lenv.entries.values() if e.type.is_memoryviewslice] if buffers_present: code.globalstate.use_utility_code(restore_exception_utility_code) code.putln("{ PyObject *__pyx_type, *__pyx_value, *__pyx_tb;") code.putln("__Pyx_PyThreadState_declare") assure_gil('error') code.putln("__Pyx_PyThreadState_assign") code.putln("__Pyx_ErrFetch(&__pyx_type, &__pyx_value, &__pyx_tb);") for entry in used_buffer_entries: Buffer.put_release_buffer_code(code, entry) #code.putln("%s = 0;" % entry.cname) code.putln("__Pyx_ErrRestore(__pyx_type, __pyx_value, __pyx_tb);}") if return_type.is_memoryviewslice: from . import MemoryView MemoryView.put_init_entry(Naming.retval_cname, code) err_val = Naming.retval_cname else: err_val = self.error_value() exc_check = self.caller_will_check_exceptions() if err_val is not None or exc_check: # TODO: Fix exception tracing (though currently unused by cProfile). # code.globalstate.use_utility_code(get_exception_tuple_utility_code) # code.put_trace_exception() assure_gil('error') if code.funcstate.error_without_exception: tempvardecl_code.putln( "int %s = 0; /* StopIteration */" % Naming.error_without_exception_cname ) code.putln("if (!%s) {" % Naming.error_without_exception_cname) code.put_add_traceback(self.entry.qualified_name) if code.funcstate.error_without_exception: code.putln("}") else: warning(self.entry.pos, "Unraisable exception in function '%s'." % self.entry.qualified_name, 0) assure_gil('error') code.put_unraisable(self.entry.qualified_name) default_retval = return_type.default_value if err_val is None and default_retval: err_val = default_retval if err_val is not None: if err_val != Naming.retval_cname: code.putln("%s = %s;" % (Naming.retval_cname, err_val)) elif not return_type.is_void: code.putln("__Pyx_pretend_to_initialize(&%s);" % Naming.retval_cname) if is_getbuffer_slot: assure_gil('error') self.getbuffer_error_cleanup(code) def align_error_path_gil_to_success_path(code=code.insertion_point()): # align error and success GIL state when both join if gil_owned['success']: assure_gil('error', code=code) elif gil_owned['error']: code.put_release_ensured_gil() gil_owned['error'] = False assert gil_owned['error'] == gil_owned['success'], "%s: error path %s != success path %s" % ( self.pos, gil_owned['error'], gil_owned['success']) # If we are using the non-error cleanup section we should # jump past it if we have an error. The if-test below determine # whether this section is used. if buffers_present or is_getbuffer_slot or return_type.is_memoryviewslice: # In the buffer cases, we already called assure_gil('error') and own the GIL. assert gil_owned['error'] or return_type.is_memoryviewslice code.put_goto(code.return_from_error_cleanup_label) else: # Adapt the GIL state to the success path right now. align_error_path_gil_to_success_path() else: # No error path, no need to adapt the GIL state. def align_error_path_gil_to_success_path(): pass # ----- Non-error return cleanup if code.label_used(code.return_label) or not code.label_used(code.error_label): code.put_label(code.return_label) for entry in used_buffer_entries: assure_gil('success') Buffer.put_release_buffer_code(code, entry) if is_getbuffer_slot: assure_gil('success') self.getbuffer_normal_cleanup(code) if return_type.is_memoryviewslice: # See if our return value is uninitialized on non-error return # from . import MemoryView # MemoryView.err_if_nogil_initialized_check(self.pos, env) cond = code.unlikely(return_type.error_condition(Naming.retval_cname)) code.putln( 'if (%s) {' % cond) if not gil_owned['success']: code.put_ensure_gil() code.putln( 'PyErr_SetString(PyExc_TypeError, "Memoryview return value is not initialized");') if not gil_owned['success']: code.put_release_ensured_gil() code.putln( '}') # ----- Return cleanup for both error and no-error return if code.label_used(code.return_from_error_cleanup_label): align_error_path_gil_to_success_path() code.put_label(code.return_from_error_cleanup_label) for entry in lenv.var_entries: if not entry.used or entry.in_closure: continue if entry.type.is_pyobject: if entry.is_arg and not entry.cf_is_reassigned: continue if entry.type.needs_refcounting: assure_gil('success') # FIXME ideally use entry.xdecref_cleanup but this currently isn't reliable code.put_var_xdecref(entry, have_gil=gil_owned['success']) # Decref any increfed args for entry in lenv.arg_entries: if entry.in_closure: continue if entry.type.is_memoryviewslice: # decref slices of def functions and acquired slices from cdef # functions, but not borrowed slices from cdef functions. if not entry.cf_is_reassigned: continue else: if not acquire_gil and not entry.cf_is_reassigned: continue if entry.type.needs_refcounting: assure_gil('success') # FIXME use entry.xdecref_cleanup - del arg seems to be the problem code.put_var_xdecref(entry, have_gil=gil_owned['success']) if self.needs_closure: assure_gil('success') code.put_decref(Naming.cur_scope_cname, lenv.scope_class.type) # ----- Return # This code is duplicated in ModuleNode.generate_module_init_func if not lenv.nogil: default_retval = return_type.default_value err_val = self.error_value() if err_val is None and default_retval: err_val = default_retval # FIXME: why is err_val not used? code.put_xgiveref(Naming.retval_cname, return_type) if self.entry.is_special and self.entry.name == "__hash__": # Returning -1 for __hash__ is supposed to signal an error # We do as Python instances and coerce -1 into -2. assure_gil('success') # in special methods, the GIL is owned anyway code.putln("if (unlikely(%s == -1) && !PyErr_Occurred()) %s = -2;" % ( Naming.retval_cname, Naming.retval_cname)) if profile or linetrace: code.funcstate.can_trace = False if not self.is_generator: # generators are traced when iterated, not at creation if return_type.is_pyobject: code.put_trace_return( Naming.retval_cname, nogil=not gil_owned['success']) else: code.put_trace_return( "Py_None", nogil=not gil_owned['success']) if use_refnanny: code.put_finish_refcount_context(nogil=not gil_owned['success']) if acquire_gil or (lenv.nogil and gil_owned['success']): # release the GIL (note that with-gil blocks acquire it on exit in their EnsureGILNode) code.put_release_ensured_gil() code.funcstate.gil_owned = False if not return_type.is_void: code.putln("return %s;" % Naming.retval_cname) code.putln("}") if preprocessor_guard: code.putln("#endif /*!(%s)*/" % preprocessor_guard) # ----- Go back and insert temp variable declarations tempvardecl_code.put_temp_declarations(code.funcstate) # ----- Python version code.exit_cfunc_scope() if self.py_func: self.py_func.generate_function_definitions(env, code) self.generate_wrapper_functions(code) def declare_argument(self, env, arg): if arg.type.is_void: error(arg.pos, "Invalid use of 'void'") elif not arg.type.is_complete() and not (arg.type.is_array or arg.type.is_memoryviewslice): error(arg.pos, "Argument type '%s' is incomplete" % arg.type) entry = env.declare_arg(arg.name, arg.type, arg.pos) if arg.annotation: entry.annotation = arg.annotation return entry def generate_arg_type_test(self, arg, code): # Generate type test for one argument. if arg.type.typeobj_is_available(): code.globalstate.use_utility_code( UtilityCode.load_cached("ArgTypeTest", "FunctionArguments.c")) typeptr_cname = arg.type.typeptr_cname arg_code = "((PyObject *)%s)" % arg.entry.cname code.putln( 'if (unlikely(!__Pyx_ArgTypeTest(%s, %s, %d, %s, %s))) %s' % ( arg_code, typeptr_cname, arg.accept_none, arg.name_cstring, arg.type.is_builtin_type and arg.type.require_exact, code.error_goto(arg.pos))) else: error(arg.pos, "Cannot test type of extern C class without type object name specification") def generate_arg_none_check(self, arg, code): # Generate None check for one argument. if arg.type.is_memoryviewslice: cname = "%s.memview" % arg.entry.cname else: cname = arg.entry.cname code.putln('if (unlikely(((PyObject *)%s) == Py_None)) {' % cname) code.putln('''PyErr_Format(PyExc_TypeError, "Argument '%%.%ds' must not be None", %s); %s''' % ( max(200, len(arg.name_cstring)), arg.name_cstring, code.error_goto(arg.pos))) code.putln('}') def generate_wrapper_functions(self, code): pass def generate_execution_code(self, code): code.mark_pos(self.pos) # Evaluate and store argument default values # skip this for wrappers since it's done by wrapped function if not self.is_wrapper: for arg in self.args: if not arg.is_dynamic: arg.generate_assignment_code(code) # # Special code for the __getbuffer__ function # def _get_py_buffer_info(self): py_buffer = self.local_scope.arg_entries[1] try: # Check builtin definition of struct Py_buffer obj_type = py_buffer.type.base_type.scope.entries['obj'].type except (AttributeError, KeyError): # User code redeclared struct Py_buffer obj_type = None return py_buffer, obj_type # Old Python 3 used to support write-locks on buffer-like objects by # calling PyObject_GetBuffer() with a view==NULL parameter. This obscure # feature is obsolete, it was almost never used (only one instance in # `Modules/posixmodule.c` in Python 3.1) and it is now officially removed # (see bpo-14203). We add an extra check here to prevent legacy code from # from trying to use the feature and prevent segmentation faults. def getbuffer_check(self, code): py_buffer, _ = self._get_py_buffer_info() view = py_buffer.cname code.putln("if (unlikely(%s == NULL)) {" % view) code.putln("PyErr_SetString(PyExc_BufferError, " "\"PyObject_GetBuffer: view==NULL argument is obsolete\");") code.putln("return -1;") code.putln("}") def getbuffer_init(self, code): py_buffer, obj_type = self._get_py_buffer_info() view = py_buffer.cname if obj_type and obj_type.is_pyobject: code.put_init_to_py_none("%s->obj" % view, obj_type) code.put_giveref("%s->obj" % view, obj_type) # Do not refnanny object within structs else: code.putln("%s->obj = NULL;" % view) def getbuffer_error_cleanup(self, code): py_buffer, obj_type = self._get_py_buffer_info() view = py_buffer.cname if obj_type and obj_type.is_pyobject: code.putln("if (%s->obj != NULL) {" % view) code.put_gotref("%s->obj" % view, obj_type) code.put_decref_clear("%s->obj" % view, obj_type) code.putln("}") else: code.putln("Py_CLEAR(%s->obj);" % view) def getbuffer_normal_cleanup(self, code): py_buffer, obj_type = self._get_py_buffer_info() view = py_buffer.cname if obj_type and obj_type.is_pyobject: code.putln("if (%s->obj == Py_None) {" % view) code.put_gotref("%s->obj" % view, obj_type) code.put_decref_clear("%s->obj" % view, obj_type) code.putln("}") def get_preprocessor_guard(self): if not self.entry.is_special: return None name = self.entry.name slot = TypeSlots.get_slot_table(self.local_scope.directives).get_slot_by_method_name(name) if not slot: return None if name == '__long__' and not self.entry.scope.lookup_here('__int__'): return None if name in ("__getbuffer__", "__releasebuffer__") and self.entry.scope.is_c_class_scope: return None return slot.preprocessor_guard_code() class CFuncDefNode(FuncDefNode): # C function definition. # # modifiers ['inline'] # visibility 'private' or 'public' or 'extern' # base_type CBaseTypeNode # declarator CDeclaratorNode # cfunc_declarator the CFuncDeclarator of this function # (this is also available through declarator or a # base thereof) # body StatListNode # api boolean # decorators [DecoratorNode] list of decorators # # with_gil boolean Acquire GIL around body # type CFuncType # py_func wrapper for calling from Python # overridable whether or not this is a cpdef function # inline_in_pxd whether this is an inline function in a pxd file # template_declaration String or None Used for c++ class methods # is_const_method whether this is a const method # is_static_method whether this is a static method # is_c_class_method whether this is a cclass method child_attrs = ["base_type", "declarator", "body", "decorators", "py_func_stat"] outer_attrs = ["decorators", "py_func_stat"] inline_in_pxd = False decorators = None directive_locals = None directive_returns = None override = None template_declaration = None is_const_method = False py_func_stat = None def unqualified_name(self): return self.entry.name def declared_name(self): return self.declarator.declared_name() @property def code_object(self): # share the CodeObject with the cpdef wrapper (if available) return self.py_func.code_object if self.py_func else None def analyse_declarations(self, env): self.is_c_class_method = env.is_c_class_scope if self.directive_locals is None: self.directive_locals = {} self.directive_locals.update(env.directives.get('locals', {})) if self.directive_returns is not None: base_type = self.directive_returns.analyse_as_type(env) if base_type is None: error(self.directive_returns.pos, "Not a type") base_type = PyrexTypes.error_type else: base_type = self.base_type.analyse(env) self.is_static_method = 'staticmethod' in env.directives and not env.lookup_here('staticmethod') # The 2 here is because we need both function and argument names. if isinstance(self.declarator, CFuncDeclaratorNode): name_declarator, typ = self.declarator.analyse( base_type, env, nonempty=2 * (self.body is not None), directive_locals=self.directive_locals, visibility=self.visibility) else: name_declarator, typ = self.declarator.analyse( base_type, env, nonempty=2 * (self.body is not None), visibility=self.visibility) if not typ.is_cfunction: error(self.pos, "Suite attached to non-function declaration") # Remember the actual type according to the function header # written here, because the type in the symbol table entry # may be different if we're overriding a C method inherited # from the base type of an extension type. self.type = typ typ.is_overridable = self.overridable declarator = self.declarator while not hasattr(declarator, 'args'): declarator = declarator.base self.cfunc_declarator = declarator self.args = declarator.args opt_arg_count = self.cfunc_declarator.optional_arg_count if (self.visibility == 'public' or self.api) and opt_arg_count: error(self.cfunc_declarator.pos, "Function with optional arguments may not be declared public or api") if typ.exception_check == '+' and self.visibility != 'extern': if typ.exception_value and typ.exception_value.is_name: # it really is impossible to reason about what the user wants to happens # if they've specified a C++ exception translation function. Therefore, # raise an error. error(self.pos, "Only extern functions can throw C++ exceptions.") else: warning(self.pos, "Only extern functions can throw C++ exceptions.", 2) for formal_arg, type_arg in zip(self.args, typ.args): self.align_argument_type(env, type_arg) formal_arg.type = type_arg.type formal_arg.name = type_arg.name formal_arg.cname = type_arg.cname self._validate_type_visibility(type_arg.type, type_arg.pos, env) if type_arg.type.is_fused: self.has_fused_arguments = True if type_arg.type.is_buffer and 'inline' in self.modifiers: warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1) if type_arg.type.is_buffer or type_arg.type.is_pythran_expr: if self.type.nogil: error(formal_arg.pos, "Buffer may not be acquired without the GIL. Consider using memoryview slices instead.") elif 'inline' in self.modifiers: warning(formal_arg.pos, "Buffer unpacking not optimized away.", 1) self._validate_type_visibility(typ.return_type, self.pos, env) name = name_declarator.name cname = name_declarator.cname typ.is_const_method = self.is_const_method typ.is_static_method = self.is_static_method self.entry = env.declare_cfunction( name, typ, self.pos, cname=cname, visibility=self.visibility, api=self.api, defining=self.body is not None, modifiers=self.modifiers, overridable=self.overridable) self.entry.inline_func_in_pxd = self.inline_in_pxd self.return_type = typ.return_type if self.return_type.is_array and self.visibility != 'extern': error(self.pos, "Function cannot return an array") if self.return_type.is_cpp_class: self.return_type.check_nullary_constructor(self.pos, "used as a return value") if self.overridable and not env.is_module_scope and not self.is_static_method: if len(self.args) < 1 or not self.args[0].type.is_pyobject: # An error will be produced in the cdef function self.overridable = False self.declare_cpdef_wrapper(env) self.create_local_scope(env) def declare_cpdef_wrapper(self, env): if not self.overridable: return if self.is_static_method: # TODO(robertwb): Finish this up, perhaps via more function refactoring. error(self.pos, "static cpdef methods not yet supported") name = self.entry.name py_func_body = self.call_self_node(is_module_scope=env.is_module_scope) if self.is_static_method: from .ExprNodes import NameNode decorators = [DecoratorNode(self.pos, decorator=NameNode(self.pos, name=EncodedString('staticmethod')))] decorators[0].decorator.analyse_types(env) else: decorators = [] self.py_func = DefNode(pos=self.pos, name=self.entry.name, args=self.args, star_arg=None, starstar_arg=None, doc=self.doc, body=py_func_body, decorators=decorators, is_wrapper=1) self.py_func.is_module_scope = env.is_module_scope self.py_func.analyse_declarations(env) self.py_func.entry.is_overridable = True self.py_func_stat = StatListNode(self.pos, stats=[self.py_func]) self.py_func.type = PyrexTypes.py_object_type self.entry.as_variable = self.py_func.entry self.entry.used = self.entry.as_variable.used = True # Reset scope entry the above cfunction env.entries[name] = self.entry if (not self.entry.is_final_cmethod and (not env.is_module_scope or Options.lookup_module_cpdef)): if self.override: # This is a hack: we shouldn't create the wrapper twice, but we do for fused functions. assert self.entry.is_fused_specialized # should not happen for non-fused cpdef functions self.override.py_func = self.py_func else: self.override = OverrideCheckNode(self.pos, py_func=self.py_func) self.body = StatListNode(self.pos, stats=[self.override, self.body]) def _validate_type_visibility(self, type, pos, env): """ Ensure that types used in cdef functions are public or api, or defined in a C header. """ public_or_api = (self.visibility == 'public' or self.api) entry = getattr(type, 'entry', None) if public_or_api and entry and env.is_module_scope: if not (entry.visibility in ('public', 'extern') or entry.api or entry.in_cinclude): error(pos, "Function declared public or api may not have private types") def call_self_node(self, omit_optional_args=0, is_module_scope=0): from . import ExprNodes args = self.type.args if omit_optional_args: args = args[:len(args) - self.type.optional_arg_count] arg_names = [arg.name for arg in args] if is_module_scope: cfunc = ExprNodes.NameNode(self.pos, name=self.entry.name) call_arg_names = arg_names skip_dispatch = Options.lookup_module_cpdef elif self.type.is_static_method: class_entry = self.entry.scope.parent_type.entry class_node = ExprNodes.NameNode(self.pos, name=class_entry.name) class_node.entry = class_entry cfunc = ExprNodes.AttributeNode(self.pos, obj=class_node, attribute=self.entry.name) # Calling static c(p)def methods on an instance disallowed. # TODO(robertwb): Support by passing self to check for override? skip_dispatch = True else: type_entry = self.type.args[0].type.entry type_arg = ExprNodes.NameNode(self.pos, name=type_entry.name) type_arg.entry = type_entry cfunc = ExprNodes.AttributeNode(self.pos, obj=type_arg, attribute=self.entry.name) skip_dispatch = not is_module_scope or Options.lookup_module_cpdef c_call = ExprNodes.SimpleCallNode( self.pos, function=cfunc, args=[ExprNodes.NameNode(self.pos, name=n) for n in arg_names], wrapper_call=skip_dispatch) return ReturnStatNode(pos=self.pos, return_type=PyrexTypes.py_object_type, value=c_call) def declare_arguments(self, env): for arg in self.type.args: if not arg.name: error(arg.pos, "Missing argument name") self.declare_argument(env, arg) def need_gil_acquisition(self, lenv): return self.type.with_gil def nogil_check(self, env): type = self.type with_gil = type.with_gil if type.nogil and not with_gil: if type.return_type.is_pyobject: error(self.pos, "Function with Python return type cannot be declared nogil") for entry in self.local_scope.var_entries: if entry.type.is_pyobject and not entry.in_with_gil_block: error(self.pos, "Function declared nogil has Python locals or temporaries") def analyse_expressions(self, env): self.local_scope.directives = env.directives if self.py_func_stat is not None: # this will also analyse the default values and the function name assignment self.py_func_stat = self.py_func_stat.analyse_expressions(env) elif self.py_func is not None: # this will also analyse the default values self.py_func = self.py_func.analyse_expressions(env) else: self.analyse_default_values(env) self.analyse_annotations(env) self.acquire_gil = self.need_gil_acquisition(self.local_scope) return self def needs_assignment_synthesis(self, env, code=None): return False def generate_function_header(self, code, with_pymethdef, with_opt_args=1, with_dispatch=1, cname=None): scope = self.local_scope arg_decls = [] type = self.type for arg in type.args[:len(type.args)-type.optional_arg_count]: arg_decl = arg.declaration_code() entry = scope.lookup(arg.name) if not entry.cf_used: arg_decl = 'CYTHON_UNUSED %s' % arg_decl arg_decls.append(arg_decl) if with_dispatch and self.overridable: dispatch_arg = PyrexTypes.c_int_type.declaration_code( Naming.skip_dispatch_cname) if self.override: arg_decls.append(dispatch_arg) else: arg_decls.append('CYTHON_UNUSED %s' % dispatch_arg) if type.optional_arg_count and with_opt_args: arg_decls.append(type.op_arg_struct.declaration_code(Naming.optional_args_cname)) if type.has_varargs: arg_decls.append("...") if not arg_decls: arg_decls = ["void"] if cname is None: cname = self.entry.func_cname entity = type.function_header_code(cname, ', '.join(arg_decls)) if self.entry.visibility == 'private' and '::' not in cname: storage_class = "static " else: storage_class = "" dll_linkage = None modifiers = code.build_function_modifiers(self.entry.func_modifiers) header = self.return_type.declaration_code(entity, dll_linkage=dll_linkage) #print (storage_class, modifiers, header) needs_proto = self.is_c_class_method or self.entry.is_cproperty if self.template_declaration: if needs_proto: code.globalstate.parts['module_declarations'].putln(self.template_declaration) code.putln(self.template_declaration) if needs_proto: code.globalstate.parts['module_declarations'].putln( "%s%s%s; /* proto*/" % (storage_class, modifiers, header)) code.putln("%s%s%s {" % (storage_class, modifiers, header)) def generate_argument_declarations(self, env, code): scope = self.local_scope for arg in self.args: if arg.default: entry = scope.lookup(arg.name) if self.override or entry.cf_used: result = arg.calculate_default_value_code(code) code.putln('%s = %s;' % ( arg.type.declaration_code(arg.cname), result)) def generate_keyword_list(self, code): pass def generate_argument_parsing_code(self, env, code): i = 0 used = 0 scope = self.local_scope if self.type.optional_arg_count: code.putln('if (%s) {' % Naming.optional_args_cname) for arg in self.args: if arg.default: entry = scope.lookup(arg.name) if self.override or entry.cf_used: code.putln('if (%s->%sn > %s) {' % (Naming.optional_args_cname, Naming.pyrex_prefix, i)) declarator = arg.declarator while not hasattr(declarator, 'name'): declarator = declarator.base code.putln('%s = %s->%s;' % (arg.cname, Naming.optional_args_cname, self.type.opt_arg_cname(declarator.name))) used += 1 i += 1 for _ in range(used): code.putln('}') code.putln('}') # Move arguments into closure if required def put_into_closure(entry): if entry.in_closure and not arg.default: code.putln('%s = %s;' % (entry.cname, entry.original_cname)) if entry.type.is_memoryviewslice: entry.type.generate_incref_memoryviewslice(code, entry.cname, True) else: code.put_var_incref(entry) code.put_var_giveref(entry) for arg in self.args: put_into_closure(scope.lookup_here(arg.name)) def generate_argument_conversion_code(self, code): pass def generate_argument_type_tests(self, code): # Generate type tests for args whose type in a parent # class is a supertype of the declared type. for arg in self.type.args: if arg.needs_type_test: self.generate_arg_type_test(arg, code) elif arg.type.is_pyobject and not arg.accept_none: self.generate_arg_none_check(arg, code) def generate_execution_code(self, code): if code.globalstate.directives['linetrace']: code.mark_pos(self.pos) code.putln("") # generate line tracing code super(CFuncDefNode, self).generate_execution_code(code) if self.py_func_stat: self.py_func_stat.generate_execution_code(code) def error_value(self): if self.return_type.is_pyobject: return "0" else: return self.entry.type.exception_value def caller_will_check_exceptions(self): return self.entry.type.exception_check def generate_wrapper_functions(self, code): # If the C signature of a function has changed, we need to generate # wrappers to put in the slots here. k = 0 entry = self.entry func_type = entry.type while entry.prev_entry is not None: k += 1 entry = entry.prev_entry entry.func_cname = "%s%swrap_%s" % (self.entry.func_cname, Naming.pyrex_prefix, k) code.putln() self.generate_function_header( code, 0, with_dispatch=entry.type.is_overridable, with_opt_args=entry.type.optional_arg_count, cname=entry.func_cname) if not self.return_type.is_void: code.put('return ') args = self.type.args arglist = [arg.cname for arg in args[:len(args)-self.type.optional_arg_count]] if entry.type.is_overridable: arglist.append(Naming.skip_dispatch_cname) elif func_type.is_overridable: arglist.append('0') if entry.type.optional_arg_count: arglist.append(Naming.optional_args_cname) elif func_type.optional_arg_count: arglist.append('NULL') code.putln('%s(%s);' % (self.entry.func_cname, ', '.join(arglist))) code.putln('}') class PyArgDeclNode(Node): # Argument which must be a Python object (used # for * and ** arguments). # # name string # entry Symtab.Entry # annotation ExprNode or None Py3 argument annotation child_attrs = [] is_self_arg = False is_type_arg = False def generate_function_definitions(self, env, code): self.entry.generate_function_definitions(env, code) class DecoratorNode(Node): # A decorator # # decorator NameNode or CallNode or AttributeNode child_attrs = ['decorator'] class DefNode(FuncDefNode): # A Python function definition. # # name string the Python name of the function # lambda_name string the internal name of a lambda 'function' # decorators [DecoratorNode] list of decorators # args [CArgDeclNode] formal arguments # doc EncodedString or None # body StatListNode # return_type_annotation # ExprNode or None the Py3 return type annotation # # The following subnode is constructed internally # when the def statement is inside a Python class definition. # # fused_py_func DefNode The original fused cpdef DefNode # (in case this is a specialization) # specialized_cpdefs [DefNode] list of specialized cpdef DefNodes # py_cfunc_node PyCFunctionNode/InnerFunctionNode The PyCFunction to create and assign # # decorator_indirection IndirectionNode Used to remove __Pyx_Method_ClassMethod for fused functions child_attrs = ["args", "star_arg", "starstar_arg", "body", "decorators", "return_type_annotation"] outer_attrs = ["decorators", "return_type_annotation"] is_staticmethod = False is_classmethod = False lambda_name = None reqd_kw_flags_cname = "0" is_wrapper = 0 no_assignment_synthesis = 0 decorators = None return_type_annotation = None entry = None acquire_gil = 0 self_in_stararg = 0 py_cfunc_node = None requires_classobj = False defaults_struct = None # Dynamic kwrds structure name doc = None fused_py_func = False specialized_cpdefs = None py_wrapper = None py_wrapper_required = True func_cname = None defaults_getter = None def __init__(self, pos, **kwds): FuncDefNode.__init__(self, pos, **kwds) p = k = rk = r = 0 for arg in self.args: if arg.pos_only: p += 1 if arg.kw_only: k += 1 if not arg.default: rk += 1 if not arg.default: r += 1 self.num_posonly_args = p self.num_kwonly_args = k self.num_required_kw_args = rk self.num_required_args = r def as_cfunction(self, cfunc=None, scope=None, overridable=True, returns=None, except_val=None, modifiers=None, nogil=False, with_gil=False): if self.star_arg: error(self.star_arg.pos, "cdef function cannot have star argument") if self.starstar_arg: error(self.starstar_arg.pos, "cdef function cannot have starstar argument") exception_value, exception_check = except_val or (None, False) if cfunc is None: cfunc_args = [] for formal_arg in self.args: name_declarator, type = formal_arg.analyse(scope, nonempty=1) cfunc_args.append(PyrexTypes.CFuncTypeArg(name=name_declarator.name, cname=None, annotation=formal_arg.annotation, type=py_object_type, pos=formal_arg.pos)) cfunc_type = PyrexTypes.CFuncType(return_type=py_object_type, args=cfunc_args, has_varargs=False, exception_value=None, exception_check=exception_check, nogil=nogil, with_gil=with_gil, is_overridable=overridable) cfunc = CVarDefNode(self.pos, type=cfunc_type) else: if scope is None: scope = cfunc.scope cfunc_type = cfunc.type if len(self.args) != len(cfunc_type.args) or cfunc_type.has_varargs: error(self.pos, "wrong number of arguments") error(cfunc.pos, "previous declaration here") for i, (formal_arg, type_arg) in enumerate(zip(self.args, cfunc_type.args)): name_declarator, type = formal_arg.analyse(scope, nonempty=1, is_self_arg=(i == 0 and scope.is_c_class_scope)) if type is None or type is PyrexTypes.py_object_type: formal_arg.type = type_arg.type formal_arg.name_declarator = name_declarator if exception_value is None and cfunc_type.exception_value is not None: from .ExprNodes import ConstNode exception_value = ConstNode( self.pos, value=cfunc_type.exception_value, type=cfunc_type.return_type) declarator = CFuncDeclaratorNode(self.pos, base=CNameDeclaratorNode(self.pos, name=self.name, cname=None), args=self.args, has_varargs=False, exception_check=cfunc_type.exception_check, exception_value=exception_value, with_gil=cfunc_type.with_gil, nogil=cfunc_type.nogil) return CFuncDefNode(self.pos, modifiers=modifiers or [], base_type=CAnalysedBaseTypeNode(self.pos, type=cfunc_type.return_type), declarator=declarator, body=self.body, doc=self.doc, overridable=cfunc_type.is_overridable, type=cfunc_type, with_gil=cfunc_type.with_gil, nogil=cfunc_type.nogil, visibility='private', api=False, directive_locals=getattr(cfunc, 'directive_locals', {}), directive_returns=returns) def is_cdef_func_compatible(self): """Determines if the function's signature is compatible with a cdef function. This can be used before calling .as_cfunction() to see if that will be successful. """ if self.needs_closure: return False if self.star_arg or self.starstar_arg: return False return True def analyse_declarations(self, env): if self.decorators: for decorator in self.decorators: func = decorator.decorator if func.is_name: self.is_classmethod |= func.name == 'classmethod' self.is_staticmethod |= func.name == 'staticmethod' if self.is_classmethod and env.lookup_here('classmethod'): # classmethod() was overridden - not much we can do here ... self.is_classmethod = False if self.is_staticmethod and env.lookup_here('staticmethod'): # staticmethod() was overridden - not much we can do here ... self.is_staticmethod = False if env.is_py_class_scope or env.is_c_class_scope: if self.name == '__new__' and env.is_py_class_scope: self.is_staticmethod = True elif self.name == '__init_subclass__' and env.is_c_class_scope: error(self.pos, "'__init_subclass__' is not supported by extension class") elif self.name in IMPLICIT_CLASSMETHODS and not self.is_classmethod: self.is_classmethod = True # TODO: remove the need to generate a real decorator here, is_classmethod=True should suffice. from .ExprNodes import NameNode self.decorators = self.decorators or [] self.decorators.insert(0, DecoratorNode( self.pos, decorator=NameNode(self.pos, name=EncodedString('classmethod')))) self.analyse_argument_types(env) if self.name == '': self.declare_lambda_function(env) else: self.declare_pyfunction(env) self.analyse_signature(env) self.return_type = self.entry.signature.return_type() # if a signature annotation provides a more specific return object type, use it if self.return_type is py_object_type and self.return_type_annotation: if env.directives['annotation_typing'] and not self.entry.is_special: _, return_type = self.return_type_annotation.analyse_type_annotation(env) if return_type and return_type.is_pyobject: self.return_type = return_type self.create_local_scope(env) self.py_wrapper = DefNodeWrapper( self.pos, target=self, name=self.entry.name, args=self.args, star_arg=self.star_arg, starstar_arg=self.starstar_arg, return_type=self.return_type) self.py_wrapper.analyse_declarations(env) def analyse_argument_types(self, env): self.directive_locals = env.directives.get('locals', {}) allow_none_for_extension_args = env.directives['allow_none_for_extension_args'] f2s = env.fused_to_specific env.fused_to_specific = None for arg in self.args: if hasattr(arg, 'name'): name_declarator = None else: base_type = arg.base_type.analyse(env) # If we hare in pythran mode and we got a buffer supported by # Pythran, we change this node to a fused type if has_np_pythran(env) and base_type.is_pythran_expr: base_type = PyrexTypes.FusedType([ base_type, #PyrexTypes.PythranExpr(pythran_type(self.type, "numpy_texpr")), base_type.org_buffer]) name_declarator, type = \ arg.declarator.analyse(base_type, env) arg.name = name_declarator.name arg.type = type self.align_argument_type(env, arg) if name_declarator and name_declarator.cname: error(self.pos, "Python function argument cannot have C name specification") arg.type = arg.type.as_argument_type() arg.hdr_type = None arg.needs_conversion = 0 arg.needs_type_test = 0 arg.is_generic = 1 if arg.type.is_pyobject or arg.type.is_buffer or arg.type.is_memoryviewslice: if arg.or_none: arg.accept_none = True elif arg.not_none: arg.accept_none = False elif (arg.type.is_extension_type or arg.type.is_builtin_type or arg.type.is_buffer or arg.type.is_memoryviewslice): if arg.default and arg.default.constant_result is None: # special case: def func(MyType obj = None) arg.accept_none = True else: # default depends on compiler directive arg.accept_none = allow_none_for_extension_args else: # probably just a plain 'object' arg.accept_none = True elif not arg.type.is_error: arg.accept_none = True # won't be used, but must be there if arg.not_none: error(arg.pos, "Only Python type arguments can have 'not None'") if arg.or_none: error(arg.pos, "Only Python type arguments can have 'or None'") if arg.type.is_fused: self.has_fused_arguments = True env.fused_to_specific = f2s if has_np_pythran(env): self.np_args_idx = [i for i,a in enumerate(self.args) if a.type.is_numpy_buffer] else: self.np_args_idx = [] def analyse_signature(self, env): if self.entry.is_special: if self.decorators: error(self.pos, "special functions of cdef classes cannot have decorators") self.entry.trivial_signature = len(self.args) == 1 and not (self.star_arg or self.starstar_arg) elif not (self.star_arg or self.starstar_arg) and ( not env.directives['always_allow_keywords'] or all([arg.pos_only for arg in self.args])): # Use the simpler calling signature for zero- and one-argument pos-only functions. if self.entry.signature is TypeSlots.pyfunction_signature: if len(self.args) == 0: self.entry.signature = TypeSlots.pyfunction_noargs elif len(self.args) == 1: if self.args[0].default is None and not self.args[0].kw_only: self.entry.signature = TypeSlots.pyfunction_onearg elif self.entry.signature is TypeSlots.pymethod_signature: if len(self.args) == 1: self.entry.signature = TypeSlots.unaryfunc elif len(self.args) == 2: if self.args[1].default is None and not self.args[1].kw_only: self.entry.signature = TypeSlots.ibinaryfunc sig = self.entry.signature nfixed = sig.num_fixed_args() if (sig is TypeSlots.pymethod_signature and nfixed == 1 and len(self.args) == 0 and self.star_arg): # this is the only case where a diverging number of # arguments is not an error - when we have no explicit # 'self' parameter as in method(*args) sig = self.entry.signature = TypeSlots.pyfunction_signature # self is not 'really' used self.self_in_stararg = 1 nfixed = 0 if self.is_staticmethod and env.is_c_class_scope: nfixed = 0 self.self_in_stararg = True # FIXME: why for staticmethods? self.entry.signature = sig = copy.copy(sig) sig.fixed_arg_format = "*" sig.is_staticmethod = True sig.has_generic_args = True if ((self.is_classmethod or self.is_staticmethod) and self.has_fused_arguments and env.is_c_class_scope): del self.decorator_indirection.stats[:] for i in range(min(nfixed, len(self.args))): arg = self.args[i] arg.is_generic = 0 if sig.is_self_arg(i) and not self.is_staticmethod: if self.is_classmethod: arg.is_type_arg = 1 arg.hdr_type = arg.type = Builtin.type_type else: arg.is_self_arg = 1 arg.hdr_type = arg.type = env.parent_type arg.needs_conversion = 0 else: arg.hdr_type = sig.fixed_arg_type(i) if not arg.type.same_as(arg.hdr_type): if arg.hdr_type.is_pyobject and arg.type.is_pyobject: arg.needs_type_test = 1 else: arg.needs_conversion = 1 if nfixed > len(self.args): self.bad_signature() return elif nfixed < len(self.args): if not sig.has_generic_args: self.bad_signature() for arg in self.args: if arg.is_generic and (arg.type.is_extension_type or arg.type.is_builtin_type): arg.needs_type_test = 1 # Decide whether to use METH_FASTCALL # 1. If we use METH_NOARGS or METH_O, keep that. We can only change # METH_VARARGS to METH_FASTCALL # 2. Special methods like __call__ always use the METH_VARGARGS # calling convention mf = sig.method_flags() if mf and TypeSlots.method_varargs in mf and not self.entry.is_special: # 3. If the function uses the full args tuple, it's more # efficient to use METH_VARARGS. This happens when the function # takes *args but no other positional arguments (apart from # possibly self). We don't do the analogous check for keyword # arguments since the kwargs dict is copied anyway. if self.star_arg: uses_args_tuple = True for arg in self.args: if (arg.is_generic and not arg.kw_only and not arg.is_self_arg and not arg.is_type_arg): # Other positional argument uses_args_tuple = False else: uses_args_tuple = False if not uses_args_tuple: sig = self.entry.signature = sig.with_fastcall() def bad_signature(self): sig = self.entry.signature expected_str = "%d" % sig.num_fixed_args() if sig.has_generic_args: expected_str += " or more" name = self.name if name.startswith("__") and name.endswith("__"): desc = "Special method" else: desc = "Method" error(self.pos, "%s %s has wrong number of arguments (%d declared, %s expected)" % ( desc, self.name, len(self.args), expected_str)) def declare_pyfunction(self, env): #print "DefNode.declare_pyfunction:", self.name, "in", env ### name = self.name entry = env.lookup_here(name) if entry: if entry.is_final_cmethod and not env.parent_type.is_final_type: error(self.pos, "Only final types can have final Python (def/cpdef) methods") if entry.type.is_cfunction and not entry.is_builtin_cmethod and not self.is_wrapper: warning(self.pos, "Overriding cdef method with def method.", 5) entry = env.declare_pyfunction(name, self.pos, allow_redefine=not self.is_wrapper) self.entry = entry prefix = env.next_id(env.scope_prefix) self.entry.pyfunc_cname = punycodify_name(Naming.pyfunc_prefix + prefix + name) if Options.docstrings: entry.doc = embed_position(self.pos, self.doc) entry.doc_cname = punycodify_name(Naming.funcdoc_prefix + prefix + name) if entry.is_special: if entry.name in TypeSlots.invisible or not entry.doc or ( entry.name in '__getattr__' and env.directives['fast_getattr']): entry.wrapperbase_cname = None else: entry.wrapperbase_cname = punycodify_name(Naming.wrapperbase_prefix + prefix + name) else: entry.doc = None def declare_lambda_function(self, env): entry = env.declare_lambda_function(self.lambda_name, self.pos) entry.doc = None self.entry = entry self.entry.pyfunc_cname = entry.cname def declare_arguments(self, env): for arg in self.args: if not arg.name: error(arg.pos, "Missing argument name") if arg.needs_conversion: arg.entry = env.declare_var(arg.name, arg.type, arg.pos) if arg.type.is_pyobject: arg.entry.init = "0" else: arg.entry = self.declare_argument(env, arg) arg.entry.is_arg = 1 arg.entry.used = 1 arg.entry.is_self_arg = arg.is_self_arg self.declare_python_arg(env, self.star_arg) self.declare_python_arg(env, self.starstar_arg) def declare_python_arg(self, env, arg): if arg: if env.directives['infer_types'] != False: type = PyrexTypes.unspecified_type else: type = py_object_type entry = env.declare_var(arg.name, type, arg.pos) entry.is_arg = 1 entry.used = 1 entry.init = "0" entry.xdecref_cleanup = 1 arg.entry = entry def analyse_expressions(self, env): self.local_scope.directives = env.directives self.analyse_default_values(env) self.analyse_annotations(env) if not self.needs_assignment_synthesis(env) and self.decorators: for decorator in self.decorators[::-1]: decorator.decorator = decorator.decorator.analyse_expressions(env) self.py_wrapper.prepare_argument_coercion(env) return self def needs_assignment_synthesis(self, env, code=None): if self.is_staticmethod: return True if self.specialized_cpdefs or self.entry.is_fused_specialized: return False if self.no_assignment_synthesis: return False if self.entry.is_special: return False if self.entry.is_anonymous: return True if env.is_module_scope or env.is_c_class_scope: if code is None: return self.local_scope.directives['binding'] else: return code.globalstate.directives['binding'] return env.is_py_class_scope or env.is_closure_scope def error_value(self): return self.entry.signature.error_value def caller_will_check_exceptions(self): return self.entry.signature.exception_check def generate_function_definitions(self, env, code): if self.defaults_getter: # defaults getter must never live in class scopes, it's always a module function self.defaults_getter.generate_function_definitions(env.global_scope(), code) # Before closure cnames are mangled if self.py_wrapper_required: # func_cname might be modified by @cname self.py_wrapper.func_cname = self.entry.func_cname self.py_wrapper.generate_function_definitions(env, code) FuncDefNode.generate_function_definitions(self, env, code) def generate_function_header(self, code, with_pymethdef, proto_only=0): if proto_only: if self.py_wrapper_required: self.py_wrapper.generate_function_header( code, with_pymethdef, True) return arg_code_list = [] if self.entry.signature.has_dummy_arg: self_arg = 'PyObject *%s' % Naming.self_cname if not self.needs_outer_scope: self_arg = 'CYTHON_UNUSED ' + self_arg arg_code_list.append(self_arg) def arg_decl_code(arg): entry = arg.entry if entry.in_closure: cname = entry.original_cname else: cname = entry.cname decl = entry.type.declaration_code(cname) if not entry.cf_used: decl = 'CYTHON_UNUSED ' + decl return decl for arg in self.args: arg_code_list.append(arg_decl_code(arg)) if self.star_arg: arg_code_list.append(arg_decl_code(self.star_arg)) if self.starstar_arg: arg_code_list.append(arg_decl_code(self.starstar_arg)) if arg_code_list: arg_code = ', '.join(arg_code_list) else: arg_code = 'void' # No arguments dc = self.return_type.declaration_code(self.entry.pyfunc_cname) decls_code = code.globalstate['decls'] preprocessor_guard = self.get_preprocessor_guard() if preprocessor_guard: decls_code.putln(preprocessor_guard) decls_code.putln( "static %s(%s); /* proto */" % (dc, arg_code)) if preprocessor_guard: decls_code.putln("#endif") code.putln("static %s(%s) {" % (dc, arg_code)) def generate_argument_declarations(self, env, code): pass def generate_keyword_list(self, code): pass def generate_argument_parsing_code(self, env, code): # Move arguments into closure if required def put_into_closure(entry): if entry.in_closure: if entry.type.is_array: # This applies to generator expressions that iterate over C arrays (and need to # capture them by value), under most other circumstances C array arguments are dropped to # pointers so this copy isn't used assert entry.type.size is not None code.globalstate.use_utility_code(UtilityCode.load_cached("IncludeStringH", "StringTools.c")) code.putln("memcpy({0}, {1}, sizeof({0}));".format(entry.cname, entry.original_cname)) else: code.putln('%s = %s;' % (entry.cname, entry.original_cname)) if entry.type.is_memoryviewslice: # TODO - at some point reference count of memoryviews should # genuinely be unified with PyObjects entry.type.generate_incref_memoryviewslice(code, entry.cname, True) elif entry.xdecref_cleanup: # mostly applies to the starstar arg - this can sometimes be NULL # so must be xincrefed instead code.put_var_xincref(entry) code.put_var_xgiveref(entry) else: code.put_var_incref(entry) code.put_var_giveref(entry) for arg in self.args: put_into_closure(arg.entry) for arg in self.star_arg, self.starstar_arg: if arg: put_into_closure(arg.entry) def generate_argument_type_tests(self, code): pass class DefNodeWrapper(FuncDefNode): # DefNode python wrapper code generator defnode = None target = None # Target DefNode def __init__(self, *args, **kwargs): FuncDefNode.__init__(self, *args, **kwargs) self.num_posonly_args = self.target.num_posonly_args self.num_kwonly_args = self.target.num_kwonly_args self.num_required_kw_args = self.target.num_required_kw_args self.num_required_args = self.target.num_required_args self.self_in_stararg = self.target.self_in_stararg self.signature = None def analyse_declarations(self, env): target_entry = self.target.entry name = self.name prefix = env.next_id(env.scope_prefix) target_entry.func_cname = punycodify_name(Naming.pywrap_prefix + prefix + name) target_entry.pymethdef_cname = punycodify_name(Naming.pymethdef_prefix + prefix + name) self.signature = target_entry.signature self.np_args_idx = self.target.np_args_idx def prepare_argument_coercion(self, env): # This is only really required for Cython utility code at this time, # everything else can be done during code generation. But we expand # all utility code here, simply because we cannot easily distinguish # different code types. for arg in self.args: if not arg.type.is_pyobject: if not arg.type.create_from_py_utility_code(env): pass # will fail later elif arg.hdr_type and not arg.hdr_type.is_pyobject: if not arg.hdr_type.create_to_py_utility_code(env): pass # will fail later if self.starstar_arg and not self.starstar_arg.entry.cf_used: # we will set the kwargs argument to NULL instead of a new dict # and must therefore correct the control flow state entry = self.starstar_arg.entry entry.xdecref_cleanup = 1 for ass in entry.cf_assignments: if not ass.is_arg and ass.lhs.is_name: ass.lhs.cf_maybe_null = True def signature_has_nongeneric_args(self): argcount = len(self.args) if argcount == 0 or ( argcount == 1 and (self.args[0].is_self_arg or self.args[0].is_type_arg)): return 0 return 1 def signature_has_generic_args(self): return self.signature.has_generic_args def generate_function_body(self, code): args = [] if self.signature.has_dummy_arg: args.append(Naming.self_cname) for arg in self.args: if arg.type.is_cpp_class: # it's safe to move converted C++ types because they aren't # used again afterwards code.globalstate.use_utility_code( UtilityCode.load_cached("MoveIfSupported", "CppSupport.cpp")) args.append("__PYX_STD_MOVE_IF_SUPPORTED(%s)" % arg.entry.cname) elif arg.hdr_type and not (arg.type.is_memoryviewslice or arg.type.is_struct or arg.type.is_complex): args.append(arg.type.cast_code(arg.entry.cname)) else: args.append(arg.entry.cname) if self.star_arg: args.append(self.star_arg.entry.cname) if self.starstar_arg: args.append(self.starstar_arg.entry.cname) args = ', '.join(args) if not self.return_type.is_void: code.put('%s = ' % Naming.retval_cname) code.putln('%s(%s);' % ( self.target.entry.pyfunc_cname, args)) def generate_function_definitions(self, env, code): lenv = self.target.local_scope # Generate C code for header and body of function code.mark_pos(self.pos) code.putln("") code.putln("/* Python wrapper */") preprocessor_guard = self.target.get_preprocessor_guard() if preprocessor_guard: code.putln(preprocessor_guard) code.enter_cfunc_scope(lenv) code.return_from_error_cleanup_label = code.new_label() with_pymethdef = (self.target.needs_assignment_synthesis(env, code) or self.target.pymethdef_required) self.generate_function_header(code, with_pymethdef) self.generate_argument_declarations(lenv, code) tempvardecl_code = code.insertion_point() if self.return_type.is_pyobject: retval_init = ' = 0' else: retval_init = '' if not self.return_type.is_void: code.putln('%s%s;' % ( self.return_type.declaration_code(Naming.retval_cname), retval_init)) code.put_declare_refcount_context() code.put_setup_refcount_context(EncodedString('%s (wrapper)' % self.name)) self.generate_argument_parsing_code(lenv, code) self.generate_argument_type_tests(code) self.generate_function_body(code) # ----- Go back and insert temp variable declarations tempvardecl_code.put_temp_declarations(code.funcstate) code.mark_pos(self.pos) code.putln("") code.putln("/* function exit code */") # ----- Error cleanup if code.error_label in code.labels_used: code.put_goto(code.return_label) code.put_label(code.error_label) for cname, type in code.funcstate.all_managed_temps(): code.put_xdecref(cname, type) err_val = self.error_value() if err_val is not None: code.putln("%s = %s;" % (Naming.retval_cname, err_val)) # ----- Non-error return cleanup code.put_label(code.return_label) for entry in lenv.var_entries: if entry.is_arg: # mainly captures the star/starstar args if entry.xdecref_cleanup: code.put_var_xdecref(entry) else: code.put_var_decref(entry) for arg in self.args: if not arg.type.is_pyobject: # This captures anything that's been converted from a PyObject. # Primarily memoryviews at the moment if arg.entry.xdecref_cleanup: code.put_var_xdecref(arg.entry) else: code.put_var_decref(arg.entry) code.put_finish_refcount_context() if not self.return_type.is_void: code.putln("return %s;" % Naming.retval_cname) code.putln('}') code.exit_cfunc_scope() if preprocessor_guard: code.putln("#endif /*!(%s)*/" % preprocessor_guard) def generate_function_header(self, code, with_pymethdef, proto_only=0): arg_code_list = [] sig = self.signature if sig.has_dummy_arg or self.self_in_stararg: arg_code = "PyObject *%s" % Naming.self_cname if not sig.has_dummy_arg: arg_code = 'CYTHON_UNUSED ' + arg_code arg_code_list.append(arg_code) for arg in self.args: if not arg.is_generic: if arg.is_self_arg or arg.is_type_arg: arg_code_list.append("PyObject *%s" % arg.hdr_cname) else: arg_code_list.append( arg.hdr_type.declaration_code(arg.hdr_cname)) entry = self.target.entry if not entry.is_special and sig.method_flags() == [TypeSlots.method_noargs]: arg_code_list.append("CYTHON_UNUSED PyObject *unused") if entry.scope.is_c_class_scope and entry.name == "__ipow__": arg_code_list.append("CYTHON_UNUSED PyObject *unused") if sig.has_generic_args: varargs_args = "PyObject *%s, PyObject *%s" % ( Naming.args_cname, Naming.kwds_cname) if sig.use_fastcall: fastcall_args = "PyObject *const *%s, Py_ssize_t %s, PyObject *%s" % ( Naming.args_cname, Naming.nargs_cname, Naming.kwds_cname) arg_code_list.append( "\n#if CYTHON_METH_FASTCALL\n%s\n#else\n%s\n#endif\n" % ( fastcall_args, varargs_args)) else: arg_code_list.append(varargs_args) arg_code = ", ".join(arg_code_list) # Prevent warning: unused function '__pyx_pw_5numpy_7ndarray_1__getbuffer__' mf = "" if (entry.name in ("__getbuffer__", "__releasebuffer__") and entry.scope.is_c_class_scope): mf = "CYTHON_UNUSED " with_pymethdef = False dc = self.return_type.declaration_code(entry.func_cname) header = "%sstatic %s(%s)" % (mf, dc, arg_code) code.putln("%s; /*proto*/" % header) if proto_only: if self.target.fused_py_func: # If we are the specialized version of the cpdef, we still # want the prototype for the "fused cpdef", in case we're # checking to see if our method was overridden in Python self.target.fused_py_func.generate_function_header( code, with_pymethdef, proto_only=True) return if (Options.docstrings and entry.doc and not self.target.fused_py_func and not entry.scope.is_property_scope and (not entry.is_special or entry.wrapperbase_cname)): # h_code = code.globalstate['h_code'] docstr = entry.doc if docstr.is_unicode: docstr = docstr.as_utf8_string() if not (entry.is_special and entry.name in ('__getbuffer__', '__releasebuffer__')): code.putln('PyDoc_STRVAR(%s, %s);' % ( entry.doc_cname, docstr.as_c_string_literal())) if entry.is_special: code.putln('#if CYTHON_UPDATE_DESCRIPTOR_DOC') code.putln( "struct wrapperbase %s;" % entry.wrapperbase_cname) code.putln('#endif') if with_pymethdef or self.target.fused_py_func: code.put( "static PyMethodDef %s = " % entry.pymethdef_cname) code.put_pymethoddef(self.target.entry, ";", allow_skip=False) code.putln("%s {" % header) def generate_argument_declarations(self, env, code): for arg in self.args: if arg.is_generic: if arg.needs_conversion: code.putln("PyObject *%s = 0;" % arg.hdr_cname) else: code.put_var_declaration(arg.entry) for entry in env.var_entries: if entry.is_arg: code.put_var_declaration(entry) # Assign nargs variable as len(args), but avoid an "unused" warning in the few cases where we don't need it. if self.signature_has_generic_args(): nargs_code = "CYTHON_UNUSED const Py_ssize_t %s = PyTuple_GET_SIZE(%s);" % ( Naming.nargs_cname, Naming.args_cname) if self.signature.use_fastcall: code.putln("#if !CYTHON_METH_FASTCALL") code.putln(nargs_code) code.putln("#endif") else: code.putln(nargs_code) # Array containing the values of keyword arguments when using METH_FASTCALL. code.globalstate.use_utility_code( UtilityCode.load_cached("fastcall", "FunctionArguments.c")) code.putln('CYTHON_UNUSED PyObject *const *%s = __Pyx_KwValues_%s(%s, %s);' % ( Naming.kwvalues_cname, self.signature.fastvar, Naming.args_cname, Naming.nargs_cname)) def generate_argument_parsing_code(self, env, code): # Generate fast equivalent of PyArg_ParseTuple call for # generic arguments, if any, including args/kwargs old_error_label = code.new_error_label() our_error_label = code.error_label end_label = code.new_label("argument_unpacking_done") has_kwonly_args = self.num_kwonly_args > 0 has_star_or_kw_args = self.star_arg is not None \ or self.starstar_arg is not None or has_kwonly_args for arg in self.args: if not arg.type.is_pyobject: if not arg.type.create_from_py_utility_code(env): pass # will fail later if not self.signature_has_generic_args(): if has_star_or_kw_args: error(self.pos, "This method cannot have * or keyword arguments") self.generate_argument_conversion_code(code) elif not self.signature_has_nongeneric_args(): # func(*args) or func(**kw) or func(*args, **kw) # possibly with a "self" argument but no other non-star # arguments self.generate_stararg_copy_code(code) else: self.generate_tuple_and_keyword_parsing_code(self.args, end_label, code) code.error_label = old_error_label if code.label_used(our_error_label): if not code.label_used(end_label): code.put_goto(end_label) code.put_label(our_error_label) if has_star_or_kw_args: self.generate_arg_decref(self.star_arg, code) if self.starstar_arg: if self.starstar_arg.entry.xdecref_cleanup: code.put_var_xdecref_clear(self.starstar_arg.entry) else: code.put_var_decref_clear(self.starstar_arg.entry) for arg in self.args: if not arg.type.is_pyobject and arg.type.needs_refcounting: # at the moment this just catches memoryviewslices, but in future # other non-PyObject reference counted types might need cleanup code.put_var_xdecref(arg.entry) code.put_add_traceback(self.target.entry.qualified_name) code.put_finish_refcount_context() code.putln("return %s;" % self.error_value()) if code.label_used(end_label): code.put_label(end_label) def generate_arg_xdecref(self, arg, code): if arg: code.put_var_xdecref_clear(arg.entry) def generate_arg_decref(self, arg, code): if arg: code.put_var_decref_clear(arg.entry) def generate_stararg_copy_code(self, code): if not self.star_arg: code.globalstate.use_utility_code( UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c")) code.putln("if (unlikely(%s > 0)) {" % Naming.nargs_cname) code.put('__Pyx_RaiseArgtupleInvalid(%s, 1, 0, 0, %s); return %s;' % ( self.name.as_c_string_literal(), Naming.nargs_cname, self.error_value())) code.putln("}") if self.starstar_arg: if self.star_arg or not self.starstar_arg.entry.cf_used: kwarg_check = "unlikely(%s)" % Naming.kwds_cname else: kwarg_check = "%s" % Naming.kwds_cname else: kwarg_check = "unlikely(%s) && __Pyx_NumKwargs_%s(%s)" % ( Naming.kwds_cname, self.signature.fastvar, Naming.kwds_cname) code.globalstate.use_utility_code( UtilityCode.load_cached("KeywordStringCheck", "FunctionArguments.c")) code.putln( "if (%s && unlikely(!__Pyx_CheckKeywordStrings(%s, %s, %d))) return %s;" % ( kwarg_check, Naming.kwds_cname, self.name.as_c_string_literal(), bool(self.starstar_arg), self.error_value())) if self.starstar_arg and self.starstar_arg.entry.cf_used: code.putln("if (%s) {" % kwarg_check) code.putln("%s = __Pyx_KwargsAsDict_%s(%s, %s);" % ( self.starstar_arg.entry.cname, self.signature.fastvar, Naming.kwds_cname, Naming.kwvalues_cname)) code.putln("if (unlikely(!%s)) return %s;" % ( self.starstar_arg.entry.cname, self.error_value())) code.put_gotref(self.starstar_arg.entry.cname, py_object_type) code.putln("} else {") allow_null = all(ref.node.allow_null for ref in self.starstar_arg.entry.cf_references) if allow_null: code.putln("%s = NULL;" % (self.starstar_arg.entry.cname,)) else: code.putln("%s = PyDict_New();" % (self.starstar_arg.entry.cname,)) code.putln("if (unlikely(!%s)) return %s;" % ( self.starstar_arg.entry.cname, self.error_value())) code.put_var_gotref(self.starstar_arg.entry) self.starstar_arg.entry.xdecref_cleanup = allow_null code.putln("}") if self.self_in_stararg and not self.target.is_staticmethod: assert not self.signature.use_fastcall # need to create a new tuple with 'self' inserted as first item code.put("%s = PyTuple_New(%s + 1); if (unlikely(!%s)) " % ( self.star_arg.entry.cname, Naming.nargs_cname, self.star_arg.entry.cname)) if self.starstar_arg and self.starstar_arg.entry.cf_used: code.putln("{") code.put_var_xdecref_clear(self.starstar_arg.entry) code.putln("return %s;" % self.error_value()) code.putln("}") else: code.putln("return %s;" % self.error_value()) code.put_var_gotref(self.star_arg.entry) code.put_incref(Naming.self_cname, py_object_type) code.put_giveref(Naming.self_cname, py_object_type) code.putln("PyTuple_SET_ITEM(%s, 0, %s);" % ( self.star_arg.entry.cname, Naming.self_cname)) temp = code.funcstate.allocate_temp(PyrexTypes.c_py_ssize_t_type, manage_ref=False) code.putln("for (%s=0; %s < %s; %s++) {" % ( temp, temp, Naming.nargs_cname, temp)) code.putln("PyObject* item = PyTuple_GET_ITEM(%s, %s);" % ( Naming.args_cname, temp)) code.put_incref("item", py_object_type) code.put_giveref("item", py_object_type) code.putln("PyTuple_SET_ITEM(%s, %s+1, item);" % ( self.star_arg.entry.cname, temp)) code.putln("}") code.funcstate.release_temp(temp) self.star_arg.entry.xdecref_cleanup = 0 elif self.star_arg: assert not self.signature.use_fastcall code.put_incref(Naming.args_cname, py_object_type) code.putln("%s = %s;" % ( self.star_arg.entry.cname, Naming.args_cname)) self.star_arg.entry.xdecref_cleanup = 0 def generate_tuple_and_keyword_parsing_code(self, args, success_label, code): code.globalstate.use_utility_code( UtilityCode.load_cached("fastcall", "FunctionArguments.c")) self_name_csafe = self.name.as_c_string_literal() argtuple_error_label = code.new_label("argtuple_error") positional_args = [] required_kw_only_args = [] optional_kw_only_args = [] num_pos_only_args = 0 for arg in args: if arg.is_generic: if arg.default: if not arg.is_self_arg and not arg.is_type_arg: if arg.kw_only: optional_kw_only_args.append(arg) else: positional_args.append(arg) elif arg.kw_only: required_kw_only_args.append(arg) elif not arg.is_self_arg and not arg.is_type_arg: positional_args.append(arg) if arg.pos_only: num_pos_only_args += 1 # sort required kw-only args before optional ones to avoid special # cases in the unpacking code kw_only_args = required_kw_only_args + optional_kw_only_args min_positional_args = self.num_required_args - self.num_required_kw_args if len(args) > 0 and (args[0].is_self_arg or args[0].is_type_arg): min_positional_args -= 1 max_positional_args = len(positional_args) has_fixed_positional_count = not self.star_arg and \ min_positional_args == max_positional_args has_kw_only_args = bool(kw_only_args) if self.starstar_arg or self.star_arg: self.generate_stararg_init_code(max_positional_args, code) code.putln('{') all_args = tuple(positional_args) + tuple(kw_only_args) non_posonly_args = [arg for arg in all_args if not arg.pos_only] non_pos_args_id = ','.join( ['&%s' % code.intern_identifier(arg.entry.name) for arg in non_posonly_args] + ['0']) code.putln("PyObject **%s[] = {%s};" % ( Naming.pykwdlist_cname, non_pos_args_id)) # Before being converted and assigned to the target variables, # borrowed references to all unpacked argument values are # collected into a local PyObject* array called "values", # regardless if they were taken from default arguments, # positional arguments or keyword arguments. Note that # C-typed default arguments are handled at conversion time, # so their array value is NULL in the end if no argument # was passed for them. self.generate_argument_values_setup_code(all_args, code) # If all args are positional-only, we can raise an error # straight away if we receive a non-empty kw-dict. # This requires a PyDict_Size call. This call is wasteful # for functions which do accept kw-args, so we do not generate # the PyDict_Size call unless all args are positional-only. accept_kwd_args = non_posonly_args or self.starstar_arg if accept_kwd_args: kw_unpacking_condition = Naming.kwds_cname else: kw_unpacking_condition = "%s && __Pyx_NumKwargs_%s(%s) > 0" % ( Naming.kwds_cname, self.signature.fastvar, Naming.kwds_cname) if self.num_required_kw_args > 0: kw_unpacking_condition = "likely(%s)" % kw_unpacking_condition # --- optimised code when we receive keyword arguments code.putln("if (%s) {" % kw_unpacking_condition) if accept_kwd_args: self.generate_keyword_unpacking_code( min_positional_args, max_positional_args, has_fixed_positional_count, has_kw_only_args, all_args, argtuple_error_label, code) else: # Here we do not accept kw-args but we are passed a non-empty kw-dict. # We call ParseOptionalKeywords which will raise an appropriate error if # the kw-args dict passed is non-empty (which it will be, since kw_unpacking_condition is true) code.globalstate.use_utility_code( UtilityCode.load_cached("ParseKeywords", "FunctionArguments.c")) code.putln('if (likely(__Pyx_ParseOptionalKeywords(%s, %s, %s, %s, %s, %s, %s) < 0)) %s' % ( Naming.kwds_cname, Naming.kwvalues_cname, Naming.pykwdlist_cname, self.starstar_arg.entry.cname if self.starstar_arg else 0, 'values', 0, self_name_csafe, code.error_goto(self.pos))) # --- optimised code when we do not receive any keyword arguments if (self.num_required_kw_args and min_positional_args > 0) or min_positional_args == max_positional_args: # Python raises arg tuple related errors first, so we must # check the length here if min_positional_args == max_positional_args and not self.star_arg: compare = '!=' else: compare = '<' code.putln('} else if (unlikely(%s %s %d)) {' % ( Naming.nargs_cname, compare, min_positional_args)) code.put_goto(argtuple_error_label) if self.num_required_kw_args: # pure error case: keywords required but not passed if max_positional_args > min_positional_args and not self.star_arg: code.putln('} else if (unlikely(%s > %d)) {' % ( Naming.nargs_cname, max_positional_args)) code.put_goto(argtuple_error_label) code.putln('} else {') for i, arg in enumerate(kw_only_args): if not arg.default: pystring_cname = code.intern_identifier(arg.entry.name) # required keyword-only argument missing code.globalstate.use_utility_code( UtilityCode.load_cached("RaiseKeywordRequired", "FunctionArguments.c")) code.put('__Pyx_RaiseKeywordRequired("%s", %s); ' % ( self.name, pystring_cname)) code.putln(code.error_goto(self.pos)) break else: # optimised tuple unpacking code code.putln('} else {') if min_positional_args == max_positional_args: # parse the exact number of positional arguments from # the args tuple for i, arg in enumerate(positional_args): code.putln("values[%d] = __Pyx_Arg_%s(%s, %d);" % ( i, self.signature.fastvar, Naming.args_cname, i)) else: # parse the positional arguments from the variable length # args tuple and reject illegal argument tuple sizes code.putln('switch (%s) {' % Naming.nargs_cname) if self.star_arg: code.putln('default:') reversed_args = list(enumerate(positional_args))[::-1] for i, arg in reversed_args: if i >= min_positional_args-1: if i != reversed_args[0][0]: code.putln('CYTHON_FALLTHROUGH;') code.put('case %2d: ' % (i+1)) code.putln("values[%d] = __Pyx_Arg_%s(%s, %d);" % ( i, self.signature.fastvar, Naming.args_cname, i)) if min_positional_args == 0: code.putln('CYTHON_FALLTHROUGH;') code.put('case 0: ') code.putln('break;') if self.star_arg: if min_positional_args: for i in range(min_positional_args-1, -1, -1): code.putln('case %2d:' % i) code.put_goto(argtuple_error_label) else: code.put('default: ') code.put_goto(argtuple_error_label) code.putln('}') code.putln('}') # end of the conditional unpacking blocks # Convert arg values to their final type and assign them. # Also inject non-Python default arguments, which do cannot # live in the values[] array. for i, arg in enumerate(all_args): self.generate_arg_assignment(arg, "values[%d]" % i, code) code.putln('}') # end of the whole argument unpacking block if code.label_used(argtuple_error_label): code.put_goto(success_label) code.put_label(argtuple_error_label) code.globalstate.use_utility_code( UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c")) code.put('__Pyx_RaiseArgtupleInvalid(%s, %d, %d, %d, %s); ' % ( self_name_csafe, has_fixed_positional_count, min_positional_args, max_positional_args, Naming.nargs_cname)) code.putln(code.error_goto(self.pos)) def generate_arg_assignment(self, arg, item, code): if arg.type.is_pyobject: # Python default arguments were already stored in 'item' at the very beginning if arg.is_generic: item = PyrexTypes.typecast(arg.type, PyrexTypes.py_object_type, item) entry = arg.entry code.putln("%s = %s;" % (entry.cname, item)) else: if arg.type.from_py_function: if arg.default: # C-typed default arguments must be handled here code.putln('if (%s) {' % item) code.putln(arg.type.from_py_call_code( item, arg.entry.cname, arg.pos, code)) if arg.default: code.putln('} else {') code.putln("%s = %s;" % ( arg.entry.cname, arg.calculate_default_value_code(code))) if arg.type.is_memoryviewslice: code.put_var_incref_memoryviewslice(arg.entry, have_gil=True) code.putln('}') else: error(arg.pos, "Cannot convert Python object argument to type '%s'" % arg.type) def generate_stararg_init_code(self, max_positional_args, code): if self.starstar_arg: self.starstar_arg.entry.xdecref_cleanup = 0 code.putln('%s = PyDict_New(); if (unlikely(!%s)) return %s;' % ( self.starstar_arg.entry.cname, self.starstar_arg.entry.cname, self.error_value())) code.put_var_gotref(self.starstar_arg.entry) if self.star_arg: self.star_arg.entry.xdecref_cleanup = 0 if max_positional_args == 0: # If there are no positional arguments, use the args tuple # directly assert not self.signature.use_fastcall code.put_incref(Naming.args_cname, py_object_type) code.putln("%s = %s;" % (self.star_arg.entry.cname, Naming.args_cname)) else: # It is possible that this is a slice of "negative" length, # as in args[5:3]. That's not a problem, the function below # handles that efficiently and returns the empty tuple. code.putln('%s = __Pyx_ArgsSlice_%s(%s, %d, %s);' % ( self.star_arg.entry.cname, self.signature.fastvar, Naming.args_cname, max_positional_args, Naming.nargs_cname)) code.putln("if (unlikely(!%s)) {" % self.star_arg.entry.type.nullcheck_string(self.star_arg.entry.cname)) if self.starstar_arg: code.put_var_decref_clear(self.starstar_arg.entry) code.put_finish_refcount_context() code.putln('return %s;' % self.error_value()) code.putln('}') code.put_var_gotref(self.star_arg.entry) def generate_argument_values_setup_code(self, args, code): max_args = len(args) # the 'values' array collects borrowed references to arguments # before doing any type coercion etc. code.putln("PyObject* values[%d] = {%s};" % ( max_args, ','.join('0'*max_args))) if self.target.defaults_struct: code.putln('%s *%s = __Pyx_CyFunction_Defaults(%s, %s);' % ( self.target.defaults_struct, Naming.dynamic_args_cname, self.target.defaults_struct, Naming.self_cname)) # assign borrowed Python default values to the values array, # so that they can be overwritten by received arguments below for i, arg in enumerate(args): if arg.default and arg.type.is_pyobject: default_value = arg.calculate_default_value_code(code) code.putln('values[%d] = %s;' % (i, arg.type.as_pyobject(default_value))) def generate_keyword_unpacking_code(self, min_positional_args, max_positional_args, has_fixed_positional_count, has_kw_only_args, all_args, argtuple_error_label, code): # First we count how many arguments must be passed as positional num_required_posonly_args = num_pos_only_args = 0 for i, arg in enumerate(all_args): if arg.pos_only: num_pos_only_args += 1 if not arg.default: num_required_posonly_args += 1 code.putln('Py_ssize_t kw_args;') # copy the values from the args tuple and check that it's not too long code.putln('switch (%s) {' % Naming.nargs_cname) if self.star_arg: code.putln('default:') for i in range(max_positional_args-1, num_required_posonly_args-1, -1): code.put('case %2d: ' % (i+1)) code.putln("values[%d] = __Pyx_Arg_%s(%s, %d);" % ( i, self.signature.fastvar, Naming.args_cname, i)) code.putln('CYTHON_FALLTHROUGH;') if num_required_posonly_args > 0: code.put('case %2d: ' % num_required_posonly_args) for i in range(num_required_posonly_args-1, -1, -1): code.putln("values[%d] = __Pyx_Arg_%s(%s, %d);" % ( i, self.signature.fastvar, Naming.args_cname, i)) code.putln('break;') for i in range(num_required_posonly_args-2, -1, -1): code.put('case %2d: ' % (i+1)) code.putln('CYTHON_FALLTHROUGH;') code.put('case 0: ') if num_required_posonly_args == 0: code.putln('break;') else: # catch-all for not enough pos-only args passed code.put_goto(argtuple_error_label) if not self.star_arg: code.put('default: ') # more arguments than allowed code.put_goto(argtuple_error_label) code.putln('}') # The code above is very often (but not always) the same as # the optimised non-kwargs tuple unpacking code, so we keep # the code block above at the very top, before the following # 'external' PyDict_Size() call, to make it easy for the C # compiler to merge the two separate tuple unpacking # implementations into one when they turn out to be identical. # If we received kwargs, fill up the positional/required # arguments with values from the kw dict self_name_csafe = self.name.as_c_string_literal() code.putln('kw_args = __Pyx_NumKwargs_%s(%s);' % ( self.signature.fastvar, Naming.kwds_cname)) if self.num_required_args or max_positional_args > 0: last_required_arg = -1 for i, arg in enumerate(all_args): if not arg.default: last_required_arg = i if last_required_arg < max_positional_args: last_required_arg = max_positional_args-1 if max_positional_args > num_pos_only_args: code.putln('switch (%s) {' % Naming.nargs_cname) for i, arg in enumerate(all_args[num_pos_only_args:last_required_arg+1], num_pos_only_args): if max_positional_args > num_pos_only_args and i <= max_positional_args: if i != num_pos_only_args: code.putln('CYTHON_FALLTHROUGH;') if self.star_arg and i == max_positional_args: code.putln('default:') else: code.putln('case %2d:' % i) pystring_cname = code.intern_identifier(arg.entry.name) if arg.default: if arg.kw_only: # optional kw-only args are handled separately below continue code.putln('if (kw_args > 0) {') # don't overwrite default argument code.putln('PyObject* value = __Pyx_GetKwValue_%s(%s, %s, %s);' % ( self.signature.fastvar, Naming.kwds_cname, Naming.kwvalues_cname, pystring_cname)) code.putln('if (value) { values[%d] = value; kw_args--; }' % i) code.putln('else if (unlikely(PyErr_Occurred())) %s' % code.error_goto(self.pos)) code.putln('}') else: code.putln('if (likely((values[%d] = __Pyx_GetKwValue_%s(%s, %s, %s)) != 0)) kw_args--;' % ( i, self.signature.fastvar, Naming.kwds_cname, Naming.kwvalues_cname, pystring_cname)) code.putln('else if (unlikely(PyErr_Occurred())) %s' % code.error_goto(self.pos)) if i < min_positional_args: if i == 0: # special case: we know arg 0 is missing code.put('else ') code.put_goto(argtuple_error_label) else: # print the correct number of values (args or # kwargs) that were passed into positional # arguments up to this point code.putln('else {') code.globalstate.use_utility_code( UtilityCode.load_cached("RaiseArgTupleInvalid", "FunctionArguments.c")) code.put('__Pyx_RaiseArgtupleInvalid(%s, %d, %d, %d, %d); ' % ( self_name_csafe, has_fixed_positional_count, min_positional_args, max_positional_args, i)) code.putln(code.error_goto(self.pos)) code.putln('}') elif arg.kw_only: code.putln('else {') code.globalstate.use_utility_code( UtilityCode.load_cached("RaiseKeywordRequired", "FunctionArguments.c")) code.put('__Pyx_RaiseKeywordRequired(%s, %s); ' % ( self_name_csafe, pystring_cname)) code.putln(code.error_goto(self.pos)) code.putln('}') if max_positional_args > num_pos_only_args: code.putln('}') if has_kw_only_args: # unpack optional keyword-only arguments separately because # checking for interned strings in a dict is faster than iterating self.generate_optional_kwonly_args_unpacking_code(all_args, code) code.putln('if (unlikely(kw_args > 0)) {') # non-positional/-required kw args left in dict: default args, # kw-only args, **kwargs or error # # This is sort of a catch-all: except for checking required # arguments, this will always do the right thing for unpacking # keyword arguments, so that we can concentrate on optimising # common cases above. # # ParseOptionalKeywords() needs to know how many of the arguments # that could be passed as keywords have in fact been passed as # positional args. if num_pos_only_args > 0: # There are positional-only arguments which we don't want to count, # since they cannot be keyword arguments. Subtract the number of # pos-only arguments from the number of positional arguments we got. # If we get a negative number then none of the keyword arguments were # passed as positional args. code.putln('const Py_ssize_t kwd_pos_args = (unlikely(%s < %d)) ? 0 : %s - %d;' % ( Naming.nargs_cname, num_pos_only_args, Naming.nargs_cname, num_pos_only_args, )) elif max_positional_args > 0: code.putln('const Py_ssize_t kwd_pos_args = %s;' % Naming.nargs_cname) if max_positional_args == 0: pos_arg_count = "0" elif self.star_arg: # If there is a *arg, the number of used positional args could be larger than # the number of possible keyword arguments. But ParseOptionalKeywords() uses the # number of positional args as an index into the keyword argument name array, # if this is larger than the number of kwd args we get a segfault. So round # this down to max_positional_args - num_pos_only_args (= num possible kwd args). code.putln("const Py_ssize_t used_pos_args = (kwd_pos_args < %d) ? kwd_pos_args : %d;" % ( max_positional_args - num_pos_only_args, max_positional_args - num_pos_only_args)) pos_arg_count = "used_pos_args" else: pos_arg_count = "kwd_pos_args" if num_pos_only_args < len(all_args): values_array = 'values + %d' % num_pos_only_args else: values_array = 'values' code.globalstate.use_utility_code( UtilityCode.load_cached("ParseKeywords", "FunctionArguments.c")) code.putln('if (unlikely(__Pyx_ParseOptionalKeywords(%s, %s, %s, %s, %s, %s, %s) < 0)) %s' % ( Naming.kwds_cname, Naming.kwvalues_cname, Naming.pykwdlist_cname, self.starstar_arg and self.starstar_arg.entry.cname or '0', values_array, pos_arg_count, self_name_csafe, code.error_goto(self.pos))) code.putln('}') def generate_optional_kwonly_args_unpacking_code(self, all_args, code): optional_args = [] first_optional_arg = -1 num_posonly_args = 0 for i, arg in enumerate(all_args): if arg.pos_only: num_posonly_args += 1 if not arg.kw_only or not arg.default: continue if not optional_args: first_optional_arg = i optional_args.append(arg.name) if num_posonly_args > 0: posonly_correction = '-%d' % num_posonly_args else: posonly_correction = '' if optional_args: if len(optional_args) > 1: # if we receive more than the named kwargs, we either have **kwargs # (in which case we must iterate anyway) or it's an error (which we # also handle during iteration) => skip this part if there are more code.putln('if (kw_args > 0 && %s(kw_args <= %d)) {' % ( not self.starstar_arg and 'likely' or '', len(optional_args))) code.putln('Py_ssize_t index;') # not unrolling the loop here reduces the C code overhead code.putln('for (index = %d; index < %d && kw_args > 0; index++) {' % ( first_optional_arg, first_optional_arg + len(optional_args))) else: code.putln('if (kw_args == 1) {') code.putln('const Py_ssize_t index = %d;' % first_optional_arg) code.putln('PyObject* value = __Pyx_GetKwValue_%s(%s, %s, *%s[index%s]);' % ( self.signature.fastvar, Naming.kwds_cname, Naming.kwvalues_cname, Naming.pykwdlist_cname, posonly_correction)) code.putln('if (value) { values[index] = value; kw_args--; }') code.putln('else if (unlikely(PyErr_Occurred())) %s' % code.error_goto(self.pos)) if len(optional_args) > 1: code.putln('}') code.putln('}') def generate_argument_conversion_code(self, code): # Generate code to convert arguments from signature type to # declared type, if needed. Also copies signature arguments # into closure fields. for arg in self.args: if arg.needs_conversion: self.generate_arg_conversion(arg, code) def generate_arg_conversion(self, arg, code): # Generate conversion code for one argument. old_type = arg.hdr_type new_type = arg.type if old_type.is_pyobject: if arg.default: code.putln("if (%s) {" % arg.hdr_cname) else: code.putln("assert(%s); {" % arg.hdr_cname) self.generate_arg_conversion_from_pyobject(arg, code) code.putln("}") elif new_type.is_pyobject: self.generate_arg_conversion_to_pyobject(arg, code) else: if new_type.assignable_from(old_type): code.putln("%s = %s;" % (arg.entry.cname, arg.hdr_cname)) else: error(arg.pos, "Cannot convert 1 argument from '%s' to '%s'" % (old_type, new_type)) def generate_arg_conversion_from_pyobject(self, arg, code): new_type = arg.type # copied from CoerceFromPyTypeNode if new_type.from_py_function: code.putln(new_type.from_py_call_code( arg.hdr_cname, arg.entry.cname, arg.pos, code, )) else: error(arg.pos, "Cannot convert Python object argument to type '%s'" % new_type) def generate_arg_conversion_to_pyobject(self, arg, code): old_type = arg.hdr_type func = old_type.to_py_function if func: code.putln("%s = %s(%s); %s" % ( arg.entry.cname, func, arg.hdr_cname, code.error_goto_if_null(arg.entry.cname, arg.pos))) code.put_var_gotref(arg.entry) else: error(arg.pos, "Cannot convert argument of type '%s' to Python object" % old_type) def generate_argument_type_tests(self, code): # Generate type tests for args whose signature # type is PyObject * and whose declared type is # a subtype thereof. for arg in self.args: if arg.needs_type_test: self.generate_arg_type_test(arg, code) elif not arg.accept_none and (arg.type.is_pyobject or arg.type.is_buffer or arg.type.is_memoryviewslice): self.generate_arg_none_check(arg, code) def error_value(self): return self.signature.error_value class GeneratorDefNode(DefNode): # Generator function node that creates a new generator instance when called. # # gbody GeneratorBodyDefNode the function implementing the generator # is_generator = True is_iterable_coroutine = False gen_type_name = 'Generator' needs_closure = True child_attrs = DefNode.child_attrs + ["gbody"] def __init__(self, pos, **kwargs): # XXX: don't actually needs a body kwargs['body'] = StatListNode(pos, stats=[], is_terminator=True) super(GeneratorDefNode, self).__init__(pos, **kwargs) def analyse_declarations(self, env): super(GeneratorDefNode, self).analyse_declarations(env) self.gbody.local_scope = self.local_scope self.gbody.analyse_declarations(env) def generate_function_body(self, env, code): body_cname = self.gbody.entry.func_cname name = code.intern_identifier(self.name) qualname = code.intern_identifier(self.qualname) module_name = code.intern_identifier(self.module_name) code.putln('{') code.putln('__pyx_CoroutineObject *gen = __Pyx_%s_New(' '(__pyx_coroutine_body_t) %s, %s, (PyObject *) %s, %s, %s, %s); %s' % ( self.gen_type_name, body_cname, self.code_object.calculate_result_code(code) if self.code_object else 'NULL', Naming.cur_scope_cname, name, qualname, module_name, code.error_goto_if_null('gen', self.pos))) code.put_decref(Naming.cur_scope_cname, py_object_type) if self.requires_classobj: classobj_cname = 'gen->classobj' code.putln('%s = __Pyx_CyFunction_GetClassObj(%s);' % ( classobj_cname, Naming.self_cname)) code.put_incref(classobj_cname, py_object_type) code.put_giveref(classobj_cname, py_object_type) code.put_finish_refcount_context() code.putln('return (PyObject *) gen;') code.putln('}') def generate_function_definitions(self, env, code): env.use_utility_code(UtilityCode.load_cached(self.gen_type_name, "Coroutine.c")) self.gbody.generate_function_header(code, proto=True) super(GeneratorDefNode, self).generate_function_definitions(env, code) self.gbody.generate_function_definitions(env, code) class AsyncDefNode(GeneratorDefNode): gen_type_name = 'Coroutine' is_coroutine = True class IterableAsyncDefNode(AsyncDefNode): gen_type_name = 'IterableCoroutine' is_iterable_coroutine = True class AsyncGenNode(AsyncDefNode): gen_type_name = 'AsyncGen' is_asyncgen = True class GeneratorBodyDefNode(DefNode): # Main code body of a generator implemented as a DefNode. # is_generator_body = True is_inlined = False is_async_gen_body = False inlined_comprehension_type = None # container type for inlined comprehensions def __init__(self, pos=None, name=None, body=None, is_async_gen_body=False): super(GeneratorBodyDefNode, self).__init__( pos=pos, body=body, name=name, is_async_gen_body=is_async_gen_body, doc=None, args=[], star_arg=None, starstar_arg=None) def declare_generator_body(self, env): prefix = env.next_id(env.scope_prefix) name = env.next_id('generator') cname = Naming.genbody_prefix + prefix + name entry = env.declare_var(None, py_object_type, self.pos, cname=cname, visibility='private') entry.func_cname = cname entry.qualified_name = EncodedString(self.name) # Work-around for https://github.com/cython/cython/issues/1699 # We don't currently determine whether the generator entry is used or not, # so mark it as used to avoid false warnings. entry.used = True self.entry = entry def analyse_declarations(self, env): self.analyse_argument_types(env) self.declare_generator_body(env) def generate_function_header(self, code, proto=False): header = "static PyObject *%s(__pyx_CoroutineObject *%s, CYTHON_UNUSED PyThreadState *%s, PyObject *%s)" % ( self.entry.func_cname, Naming.generator_cname, Naming.local_tstate_cname, Naming.sent_value_cname) if proto: code.putln('%s; /* proto */' % header) else: code.putln('%s /* generator body */\n{' % header) def generate_function_definitions(self, env, code): lenv = self.local_scope # Generate closure function definitions self.body.generate_function_definitions(lenv, code) # Generate C code for header and body of function code.enter_cfunc_scope(lenv) code.return_from_error_cleanup_label = code.new_label() # ----- Top-level constants used by this function code.mark_pos(self.pos) self.generate_cached_builtins_decls(lenv, code) # ----- Function header code.putln("") self.generate_function_header(code) closure_init_code = code.insertion_point() # ----- Local variables code.putln("PyObject *%s = NULL;" % Naming.retval_cname) tempvardecl_code = code.insertion_point() code.put_declare_refcount_context() code.put_setup_refcount_context(self.entry.name or self.entry.qualified_name) profile = code.globalstate.directives['profile'] linetrace = code.globalstate.directives['linetrace'] if profile or linetrace: tempvardecl_code.put_trace_declarations() code.funcstate.can_trace = True code_object = self.code_object.calculate_result_code(code) if self.code_object else None code.put_trace_frame_init(code_object) # ----- Resume switch point. code.funcstate.init_closure_temps(lenv.scope_class.type.scope) resume_code = code.insertion_point() first_run_label = code.new_label('first_run') code.use_label(first_run_label) code.put_label(first_run_label) code.putln('%s' % (code.error_goto_if_null(Naming.sent_value_cname, self.pos))) # ----- prepare target container for inlined comprehension if self.is_inlined and self.inlined_comprehension_type is not None: target_type = self.inlined_comprehension_type if target_type is Builtin.list_type: comp_init = 'PyList_New(0)' elif target_type is Builtin.set_type: comp_init = 'PySet_New(NULL)' elif target_type is Builtin.dict_type: comp_init = 'PyDict_New()' else: raise InternalError( "invalid type of inlined comprehension: %s" % target_type) code.putln("%s = %s; %s" % ( Naming.retval_cname, comp_init, code.error_goto_if_null(Naming.retval_cname, self.pos))) code.put_gotref(Naming.retval_cname, py_object_type) # ----- Function body self.generate_function_body(env, code) # ----- Closure initialization if lenv.scope_class.type.scope.var_entries: closure_init_code.putln('%s = %s;' % ( lenv.scope_class.type.declaration_code(Naming.cur_scope_cname), lenv.scope_class.type.cast_code('%s->closure' % Naming.generator_cname))) # FIXME: this silences a potential "unused" warning => try to avoid unused closures in more cases code.putln("CYTHON_MAYBE_UNUSED_VAR(%s);" % Naming.cur_scope_cname) if profile or linetrace: code.funcstate.can_trace = False code.mark_pos(self.pos) code.putln("") code.putln("/* function exit code */") # on normal generator termination, we do not take the exception propagation # path: no traceback info is required and not creating it is much faster if not self.is_inlined and not self.body.is_terminator: if self.is_async_gen_body: code.globalstate.use_utility_code( UtilityCode.load_cached("StopAsyncIteration", "Coroutine.c")) code.putln('PyErr_SetNone(%s);' % ( '__Pyx_PyExc_StopAsyncIteration' if self.is_async_gen_body else 'PyExc_StopIteration')) # ----- Error cleanup if code.label_used(code.error_label): if not self.body.is_terminator: code.put_goto(code.return_label) code.put_label(code.error_label) if self.is_inlined and self.inlined_comprehension_type is not None: code.put_xdecref_clear(Naming.retval_cname, py_object_type) if Future.generator_stop in env.global_scope().context.future_directives: # PEP 479: turn accidental StopIteration exceptions into a RuntimeError code.globalstate.use_utility_code(UtilityCode.load_cached("pep479", "Coroutine.c")) code.putln("__Pyx_Generator_Replace_StopIteration(%d);" % bool(self.is_async_gen_body)) for cname, type in code.funcstate.all_managed_temps(): code.put_xdecref(cname, type) code.put_add_traceback(self.entry.qualified_name) # ----- Non-error return cleanup code.put_label(code.return_label) if self.is_inlined: code.put_xgiveref(Naming.retval_cname, py_object_type) else: code.put_xdecref_clear(Naming.retval_cname, py_object_type) # For Py3.7, clearing is already done below. code.putln("#if !CYTHON_USE_EXC_INFO_STACK") code.putln("__Pyx_Coroutine_ResetAndClearException(%s);" % Naming.generator_cname) code.putln("#endif") code.putln('%s->resume_label = -1;' % Naming.generator_cname) # clean up as early as possible to help breaking any reference cycles code.putln('__Pyx_Coroutine_clear((PyObject*)%s);' % Naming.generator_cname) if profile or linetrace: code.put_trace_return(Naming.retval_cname, nogil=not code.funcstate.gil_owned) code.put_finish_refcount_context() code.putln("return %s;" % Naming.retval_cname) code.putln("}") # ----- Go back and insert temp variable declarations tempvardecl_code.put_temp_declarations(code.funcstate) # ----- Generator resume code if profile or linetrace: resume_code.put_trace_call(self.entry.qualified_name, self.pos, nogil=not code.funcstate.gil_owned) resume_code.putln("switch (%s->resume_label) {" % ( Naming.generator_cname)) resume_code.putln("case 0: goto %s;" % first_run_label) for i, label in code.yield_labels: resume_code.putln("case %d: goto %s;" % (i, label)) resume_code.putln("default: /* CPython raises the right error here */") if profile or linetrace: resume_code.put_trace_return("Py_None", nogil=not code.funcstate.gil_owned) resume_code.put_finish_refcount_context() resume_code.putln("return NULL;") resume_code.putln("}") code.exit_cfunc_scope() class OverrideCheckNode(StatNode): # A Node for dispatching to the def method if it # is overridden. # # py_func # # args # func_temp # body child_attrs = ['body'] body = None def analyse_expressions(self, env): self.args = env.arg_entries if self.py_func.is_module_scope: first_arg = 0 else: first_arg = 1 from . import ExprNodes self.func_node = ExprNodes.RawCNameExprNode(self.pos, py_object_type) call_node = ExprNodes.SimpleCallNode( self.pos, function=self.func_node, args=[ExprNodes.NameNode(self.pos, name=arg.name) for arg in self.args[first_arg:]]) if env.return_type.is_void or env.return_type.is_returncode: self.body = StatListNode(self.pos, stats=[ ExprStatNode(self.pos, expr=call_node), ReturnStatNode(self.pos, value=None)]) else: self.body = ReturnStatNode(self.pos, value=call_node) self.body = self.body.analyse_expressions(env) return self def generate_execution_code(self, code): # For fused functions, look up the dispatch function, not the specialisation. method_entry = self.py_func.fused_py_func.entry if self.py_func.fused_py_func else self.py_func.entry interned_attr_cname = code.intern_identifier(method_entry.name) # Check to see if we are an extension type if self.py_func.is_module_scope: self_arg = "((PyObject *)%s)" % Naming.module_cname else: self_arg = "((PyObject *)%s)" % self.args[0].cname code.putln("/* Check if called by wrapper */") code.putln("if (unlikely(%s)) ;" % Naming.skip_dispatch_cname) code.putln("/* Check if overridden in Python */") if self.py_func.is_module_scope: code.putln("else {") else: code.putln("else if (unlikely((Py_TYPE(%s)->tp_dictoffset != 0) || " "__Pyx_PyType_HasFeature(Py_TYPE(%s), (Py_TPFLAGS_IS_ABSTRACT | Py_TPFLAGS_HEAPTYPE)))) {" % ( self_arg, self_arg)) code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS") code.globalstate.use_utility_code( UtilityCode.load_cached("PyDictVersioning", "ObjectHandling.c")) # TODO: remove the object dict version check by 'inlining' the getattr implementation for methods. # This would allow checking the dict versions around _PyType_Lookup() if it returns a descriptor, # and would (tada!) make this check a pure type based thing instead of supporting only a single # instance at a time. code.putln("static PY_UINT64_T %s = __PYX_DICT_VERSION_INIT, %s = __PYX_DICT_VERSION_INIT;" % ( Naming.tp_dict_version_temp, Naming.obj_dict_version_temp)) code.putln("if (unlikely(!__Pyx_object_dict_version_matches(%s, %s, %s))) {" % ( self_arg, Naming.tp_dict_version_temp, Naming.obj_dict_version_temp)) code.putln("PY_UINT64_T %s = __Pyx_get_tp_dict_version(%s);" % ( Naming.type_dict_guard_temp, self_arg)) code.putln("#endif") func_node_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True) self.func_node.set_cname(func_node_temp) # need to get attribute manually--scope would return cdef method code.globalstate.use_utility_code( UtilityCode.load_cached("PyObjectGetAttrStr", "ObjectHandling.c")) err = code.error_goto_if_null(func_node_temp, self.pos) code.putln("%s = __Pyx_PyObject_GetAttrStr(%s, %s); %s" % ( func_node_temp, self_arg, interned_attr_cname, err)) code.put_gotref(func_node_temp, py_object_type) is_overridden = "(PyCFunction_GET_FUNCTION(%s) != (PyCFunction)(void*)%s)" % ( func_node_temp, method_entry.func_cname) code.putln("#ifdef __Pyx_CyFunction_USED") code.putln("if (!__Pyx_IsCyOrPyCFunction(%s)" % func_node_temp) code.putln("#else") code.putln("if (!PyCFunction_Check(%s)" % func_node_temp) code.putln("#endif") code.putln(" || %s) {" % is_overridden) self.body.generate_execution_code(code) code.putln("}") # NOTE: it's not 100% sure that we catch the exact versions here that were used for the lookup, # but it is very unlikely that the versions change during lookup, and the type dict safe guard # should increase the chance of detecting such a case. code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS") code.putln("%s = __Pyx_get_tp_dict_version(%s);" % ( Naming.tp_dict_version_temp, self_arg)) code.putln("%s = __Pyx_get_object_dict_version(%s);" % ( Naming.obj_dict_version_temp, self_arg)) # Safety check that the type dict didn't change during the lookup. Since CPython looks up the # attribute (descriptor) first in the type dict and then in the instance dict or through the # descriptor, the only really far-away lookup when we get here is one in the type dict. So we # double check the type dict version before and afterwards to guard against later changes of # the type dict during the lookup process. code.putln("if (unlikely(%s != %s)) {" % ( Naming.type_dict_guard_temp, Naming.tp_dict_version_temp)) code.putln("%s = %s = __PYX_DICT_VERSION_INIT;" % ( Naming.tp_dict_version_temp, Naming.obj_dict_version_temp)) code.putln("}") code.putln("#endif") code.put_decref_clear(func_node_temp, PyrexTypes.py_object_type) code.funcstate.release_temp(func_node_temp) code.putln("#if CYTHON_USE_DICT_VERSIONS && CYTHON_USE_PYTYPE_LOOKUP && CYTHON_USE_TYPE_SLOTS") code.putln("}") code.putln("#endif") code.putln("}") class ClassDefNode(StatNode, BlockNode): pass class PyClassDefNode(ClassDefNode): # A Python class definition. # # name EncodedString Name of the class # doc string or None The class docstring # body StatNode Attribute definition code # entry Symtab.Entry # scope PyClassScope # decorators [DecoratorNode] list of decorators or None # bases ExprNode Expression that evaluates to a tuple of base classes # # The following subnodes are constructed internally: # # doc_node NameNode '__doc__' name that is made available to the class body # dict DictNode Class dictionary or Py3 namespace # classobj ClassNode Class object # target NameNode Variable to assign class object to # orig_bases None or ExprNode "bases" before transformation by PEP560 __mro_entries__, # used to create the __orig_bases__ attribute child_attrs = ["doc_node", "body", "dict", "metaclass", "mkw", "bases", "class_result", "target", "class_cell", "decorators", "orig_bases"] decorators = None class_result = None is_py3_style_class = False # Python3 style class (kwargs) metaclass = None mkw = None doc_node = None orig_bases = None def __init__(self, pos, name, bases, doc, body, decorators=None, keyword_args=None, force_py3_semantics=False): StatNode.__init__(self, pos) self.name = name self.doc = doc self.body = body self.decorators = decorators self.bases = bases from . import ExprNodes if self.doc and Options.docstrings: doc = embed_position(self.pos, self.doc) doc_node = ExprNodes.StringNode(pos, value=doc) self.doc_node = ExprNodes.NameNode(name=EncodedString('__doc__'), type=py_object_type, pos=pos) else: doc_node = None allow_py2_metaclass = not force_py3_semantics if keyword_args: allow_py2_metaclass = False self.is_py3_style_class = True if keyword_args.is_dict_literal: if keyword_args.key_value_pairs: for i, item in list(enumerate(keyword_args.key_value_pairs))[::-1]: if item.key.value == 'metaclass': if self.metaclass is not None: error(item.pos, "keyword argument 'metaclass' passed multiple times") # special case: we already know the metaclass, # so we don't need to do the "build kwargs, # find metaclass" dance at runtime self.metaclass = item.value del keyword_args.key_value_pairs[i] self.mkw = keyword_args else: assert self.metaclass is not None else: # MergedDictNode self.mkw = ExprNodes.ProxyNode(keyword_args) if force_py3_semantics or self.bases or self.mkw or self.metaclass: if self.metaclass is None: if keyword_args and not keyword_args.is_dict_literal: # **kwargs may contain 'metaclass' arg mkdict = self.mkw else: mkdict = None if (not mkdict and self.bases.is_sequence_constructor and not self.bases.args): pass # no base classes => no inherited metaclass else: self.metaclass = ExprNodes.PyClassMetaclassNode( pos, class_def_node=self) needs_metaclass_calculation = False else: needs_metaclass_calculation = True self.dict = ExprNodes.PyClassNamespaceNode( pos, name=name, doc=doc_node, class_def_node=self) self.classobj = ExprNodes.Py3ClassNode( pos, name=name, class_def_node=self, doc=doc_node, calculate_metaclass=needs_metaclass_calculation, allow_py2_metaclass=allow_py2_metaclass, force_type=force_py3_semantics, ) else: # no bases, no metaclass => old style class creation self.dict = ExprNodes.DictNode(pos, key_value_pairs=[]) self.classobj = ExprNodes.ClassNode( pos, name=name, class_def_node=self, doc=doc_node) self.target = ExprNodes.NameNode(pos, name=name) self.class_cell = ExprNodes.ClassCellInjectorNode(self.pos) def as_cclass(self): """ Return this node as if it were declared as an extension class """ if self.is_py3_style_class: error(self.classobj.pos, "Python3 style class could not be represented as C class") return from . import ExprNodes return CClassDefNode(self.pos, visibility='private', module_name=None, class_name=self.name, bases=self.bases or ExprNodes.TupleNode(self.pos, args=[]), decorators=self.decorators, body=self.body, in_pxd=False, doc=self.doc) def create_scope(self, env): genv = env while genv.is_py_class_scope or genv.is_c_class_scope: genv = genv.outer_scope cenv = self.scope = PyClassScope(name=self.name, outer_scope=genv) return cenv def analyse_declarations(self, env): unwrapped_class_result = class_result = self.classobj if self.decorators: from .ExprNodes import SimpleCallNode for decorator in self.decorators[::-1]: class_result = SimpleCallNode( decorator.pos, function=decorator.decorator, args=[class_result]) self.decorators = None self.class_result = class_result if self.bases: self.bases.analyse_declarations(env) if self.mkw: self.mkw.analyse_declarations(env) self.class_result.analyse_declarations(env) self.target.analyse_target_declaration(env) cenv = self.create_scope(env) cenv.directives = env.directives cenv.class_obj_cname = self.target.entry.cname if self.doc_node: self.doc_node.analyse_target_declaration(cenv) self.body.analyse_declarations(cenv) unwrapped_class_result.analyse_annotations(cenv) update_bases_functype = PyrexTypes.CFuncType( PyrexTypes.py_object_type, [ PyrexTypes.CFuncTypeArg("bases", PyrexTypes.py_object_type, None) ]) def analyse_expressions(self, env): if self.bases and not (self.bases.is_sequence_constructor and len(self.bases.args) == 0): from .ExprNodes import PythonCapiCallNode, CloneNode # handle the Python 3.7 __mro_entries__ transformation orig_bases = self.bases.analyse_expressions(env) self.bases = PythonCapiCallNode(orig_bases.pos, function_name="__Pyx_PEP560_update_bases", func_type=self.update_bases_functype, utility_code=UtilityCode.load_cached('Py3UpdateBases', 'ObjectHandling.c'), args=[CloneNode(orig_bases)]) self.orig_bases = orig_bases if self.bases: self.bases = self.bases.analyse_expressions(env) if self.mkw: self.mkw = self.mkw.analyse_expressions(env) if self.metaclass: self.metaclass = self.metaclass.analyse_expressions(env) self.dict = self.dict.analyse_expressions(env) self.class_result = self.class_result.analyse_expressions(env) cenv = self.scope self.body = self.body.analyse_expressions(cenv) self.target = self.target.analyse_target_expression(env, self.classobj) self.class_cell = self.class_cell.analyse_expressions(cenv) return self def generate_function_definitions(self, env, code): self.generate_lambda_definitions(self.scope, code) self.body.generate_function_definitions(self.scope, code) def generate_execution_code(self, code): code.mark_pos(self.pos) code.pyclass_stack.append(self) cenv = self.scope if self.orig_bases: self.orig_bases.generate_evaluation_code(code) if self.bases: self.bases.generate_evaluation_code(code) if self.mkw: self.mkw.generate_evaluation_code(code) if self.metaclass: self.metaclass.generate_evaluation_code(code) self.dict.generate_evaluation_code(code) if self.orig_bases: # update __orig_bases__ if needed code.putln("if (%s != %s) {" % (self.bases.result(), self.orig_bases.result())) code.putln( code.error_goto_if_neg('PyDict_SetItemString(%s, "__orig_bases__", %s)' % ( self.dict.result(), self.orig_bases.result()), self.pos )) code.putln("}") self.orig_bases.generate_disposal_code(code) self.orig_bases.free_temps(code) cenv.namespace_cname = cenv.class_obj_cname = self.dict.result() class_cell = self.class_cell if class_cell is not None and not class_cell.is_active: class_cell = None if class_cell is not None: class_cell.generate_evaluation_code(code) self.body.generate_execution_code(code) self.class_result.generate_evaluation_code(code) if class_cell is not None: class_cell.generate_injection_code( code, self.class_result.result()) if class_cell is not None: class_cell.generate_disposal_code(code) class_cell.free_temps(code) cenv.namespace_cname = cenv.class_obj_cname = self.classobj.result() self.target.generate_assignment_code(self.class_result, code) self.dict.generate_disposal_code(code) self.dict.free_temps(code) if self.metaclass: self.metaclass.generate_disposal_code(code) self.metaclass.free_temps(code) if self.mkw: self.mkw.generate_disposal_code(code) self.mkw.free_temps(code) if self.bases: self.bases.generate_disposal_code(code) self.bases.free_temps(code) code.pyclass_stack.pop() class CClassDefNode(ClassDefNode): # An extension type definition. # # visibility 'private' or 'public' or 'extern' # typedef_flag boolean # api boolean # module_name string or None For import of extern type objects # class_name string Unqualified name of class # as_name string or None Name to declare as in this scope # bases TupleNode Base class(es) # objstruct_name string or None Specified C name of object struct # typeobj_name string or None Specified C name of type object # check_size 'warn', 'error', 'ignore' What to do if tp_basicsize does not match # in_pxd boolean Is in a .pxd file # decorators [DecoratorNode] list of decorators or None # doc string or None # body StatNode or None # entry Symtab.Entry # base_type PyExtensionType or None # buffer_defaults_node DictNode or None Declares defaults for a buffer # buffer_defaults_pos child_attrs = ["body"] buffer_defaults_node = None buffer_defaults_pos = None typedef_flag = False api = False objstruct_name = None typeobj_name = None check_size = None decorators = None shadow = False @property def punycode_class_name(self): return punycodify_name(self.class_name) def buffer_defaults(self, env): if not hasattr(self, '_buffer_defaults'): from . import Buffer if self.buffer_defaults_node: self._buffer_defaults = Buffer.analyse_buffer_options( self.buffer_defaults_pos, env, [], self.buffer_defaults_node, need_complete=False) else: self._buffer_defaults = None return self._buffer_defaults def declare(self, env): if self.module_name and self.visibility != 'extern': module_path = self.module_name.split(".") home_scope = env.find_imported_module(module_path, self.pos) if not home_scope: return None else: home_scope = env self.entry = home_scope.declare_c_class( name=self.class_name, pos=self.pos, defining=0, implementing=0, module_name=self.module_name, base_type=None, objstruct_cname=self.objstruct_name, typeobj_cname=self.typeobj_name, visibility=self.visibility, typedef_flag=self.typedef_flag, check_size = self.check_size, api=self.api, buffer_defaults=self.buffer_defaults(env), shadow=self.shadow) if self.bases and len(self.bases.args) > 1: self.entry.type.multiple_bases = True def analyse_declarations(self, env): #print "CClassDefNode.analyse_declarations:", self.class_name #print "...visibility =", self.visibility #print "...module_name =", self.module_name if env.in_cinclude and not self.objstruct_name: error(self.pos, "Object struct name specification required for C class defined in 'extern from' block") if self.decorators: error(self.pos, "Decorators not allowed on cdef classes (used on type '%s')" % self.class_name) self.base_type = None # Now that module imports are cached, we need to # import the modules for extern classes. if self.module_name: self.module = None for module in env.cimported_modules: if module.name == self.module_name: self.module = module if self.module is None: self.module = ModuleScope(self.module_name, None, env.context) self.module.has_extern_class = 1 env.add_imported_module(self.module) if self.bases.args: base = self.bases.args[0] base_type = base.analyse_as_type(env) if base_type in (PyrexTypes.c_int_type, PyrexTypes.c_long_type, PyrexTypes.c_float_type): # Use the Python rather than C variant of these types. base_type = env.lookup(base_type.sign_and_name()).type if base_type is None: error(base.pos, "First base of '%s' is not an extension type" % self.class_name) elif base_type == PyrexTypes.py_object_type: base_class_scope = None elif not base_type.is_extension_type and \ not (base_type.is_builtin_type and base_type.objstruct_cname): error(base.pos, "'%s' is not an extension type" % base_type) elif not base_type.is_complete(): error(base.pos, "Base class '%s' of type '%s' is incomplete" % ( base_type.name, self.class_name)) elif base_type.scope and base_type.scope.directives and \ base_type.is_final_type: error(base.pos, "Base class '%s' of type '%s' is final" % ( base_type, self.class_name)) elif base_type.is_builtin_type and \ base_type.name in ('tuple', 'bytes'): # str in Py2 is also included in this, but now checked at run-time error(base.pos, "inheritance from PyVarObject types like '%s' is not currently supported" % base_type.name) else: self.base_type = base_type if env.directives.get('freelist', 0) > 0 and base_type != PyrexTypes.py_object_type: warning(self.pos, "freelists cannot be used on subtypes, only the base class can manage them", 1) has_body = self.body is not None if has_body and self.base_type and not self.base_type.scope: # To properly initialize inherited attributes, the base type must # be analysed before this type. self.base_type.defered_declarations.append(lambda : self.analyse_declarations(env)) return if self.module_name and self.visibility != 'extern': module_path = self.module_name.split(".") home_scope = env.find_imported_module(module_path, self.pos) if not home_scope: return else: home_scope = env if self.visibility == 'extern': if (self.module_name == '__builtin__' and self.class_name in Builtin.builtin_types and env.qualified_name[:8] != 'cpython.'): # allow overloaded names for cimporting from cpython warning(self.pos, "%s already a builtin Cython type" % self.class_name, 1) self.entry = home_scope.declare_c_class( name=self.class_name, pos=self.pos, defining=has_body and self.in_pxd, implementing=has_body and not self.in_pxd, module_name=self.module_name, base_type=self.base_type, objstruct_cname=self.objstruct_name, typeobj_cname=self.typeobj_name, check_size=self.check_size, visibility=self.visibility, typedef_flag=self.typedef_flag, api=self.api, buffer_defaults=self.buffer_defaults(env), shadow=self.shadow) if self.bases and len(self.bases.args) > 1: self.entry.type.multiple_bases = True if self.shadow: home_scope.lookup(self.class_name).as_variable = self.entry if home_scope is not env and self.visibility == 'extern': env.add_imported_entry(self.class_name, self.entry, self.pos) self.scope = scope = self.entry.type.scope if scope is not None: scope.directives = env.directives if "dataclasses.dataclass" in env.directives: is_frozen = False # Retrieve the @dataclass config (args, kwargs), as passed into the decorator. dataclass_config = env.directives["dataclasses.dataclass"] if dataclass_config: decorator_kwargs = dataclass_config[1] frozen_flag = decorator_kwargs.get('frozen') is_frozen = frozen_flag and frozen_flag.is_literal and frozen_flag.value scope.is_c_dataclass_scope = "frozen" if is_frozen else True if self.doc and Options.docstrings: scope.doc = embed_position(self.pos, self.doc) if has_body: self.body.analyse_declarations(scope) dict_entry = self.scope.lookup_here("__dict__") if dict_entry and dict_entry.is_variable and (not scope.defined and not scope.implemented): dict_entry.getter_cname = self.scope.mangle_internal("__dict__getter") self.scope.declare_property("__dict__", dict_entry.doc, dict_entry.pos) if self.in_pxd: scope.defined = 1 else: scope.implemented = 1 if len(self.bases.args) > 1: if not has_body or self.in_pxd: error(self.bases.args[1].pos, "Only declare first base in declaration.") # At runtime, we check that the other bases are heap types # and that a __dict__ is added if required. for other_base in self.bases.args[1:]: if other_base.analyse_as_type(env): error(other_base.pos, "Only one extension type base class allowed.") self.entry.type.early_init = 0 from . import ExprNodes self.type_init_args = ExprNodes.TupleNode( self.pos, args=[ExprNodes.IdentifierStringNode(self.pos, value=self.class_name), self.bases, ExprNodes.DictNode(self.pos, key_value_pairs=[])]) elif self.base_type: self.entry.type.early_init = self.base_type.is_external or self.base_type.early_init self.type_init_args = None else: self.entry.type.early_init = 1 self.type_init_args = None env.allocate_vtable_names(self.entry) for thunk in self.entry.type.defered_declarations: thunk() def analyse_expressions(self, env): if self.body: scope = self.entry.type.scope self.body = self.body.analyse_expressions(scope) if self.type_init_args: self.type_init_args.analyse_expressions(env) return self def generate_function_definitions(self, env, code): if self.body: self.generate_lambda_definitions(self.scope, code) self.body.generate_function_definitions(self.scope, code) def generate_execution_code(self, code): # This is needed to generate evaluation code for # default values of method arguments. code.mark_pos(self.pos) if not self.entry.type.early_init: bases = None if self.type_init_args: # Extract bases tuple and validate 'best base' by actually calling 'type()'. bases = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True) self.type_init_args.generate_evaluation_code(code) code.putln("%s = PyTuple_GET_ITEM(%s, 1);" % (bases, self.type_init_args.result())) code.put_incref(bases, PyrexTypes.py_object_type) first_base = "((PyTypeObject*)PyTuple_GET_ITEM(%s, 0))" % bases # Let Python do the base types compatibility checking. trial_type = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True) code.putln("%s = __Pyx_PyType_GetSlot(&PyType_Type, tp_new, newfunc)(&PyType_Type, %s, NULL);" % ( trial_type, self.type_init_args.result())) code.putln(code.error_goto_if_null(trial_type, self.pos)) code.put_gotref(trial_type, py_object_type) code.putln("if (__Pyx_PyType_GetSlot((PyTypeObject*) %s, tp_base, PyTypeObject*) != %s) {" % ( trial_type, first_base)) trial_type_base = "__Pyx_PyType_GetSlot((PyTypeObject*) %s, tp_base, PyTypeObject*)" % trial_type code.putln("__Pyx_TypeName base_name = __Pyx_PyType_GetName(%s);" % trial_type_base) code.putln("__Pyx_TypeName type_name = __Pyx_PyType_GetName(%s);" % first_base) code.putln("PyErr_Format(PyExc_TypeError, " "\"best base '\" __Pyx_FMT_TYPENAME \"' must be equal to first base '\" __Pyx_FMT_TYPENAME \"'\",") code.putln(" base_name, type_name);") code.putln("__Pyx_DECREF_TypeName(base_name);") code.putln("__Pyx_DECREF_TypeName(type_name);") code.putln(code.error_goto(self.pos)) code.putln("}") code.put_decref_clear(trial_type, PyrexTypes.py_object_type) code.funcstate.release_temp(trial_type) self.type_init_args.generate_disposal_code(code) self.type_init_args.free_temps(code) self.generate_type_ready_code(self.entry, code, bases_tuple_cname=bases, check_heap_type_bases=True) if bases is not None: code.put_decref_clear(bases, PyrexTypes.py_object_type) code.funcstate.release_temp(bases) if self.body: self.body.generate_execution_code(code) # Also called from ModuleNode for early init types. @staticmethod def generate_type_ready_code(entry, code, bases_tuple_cname=None, check_heap_type_bases=False): # Generate a call to PyType_Ready for an extension # type defined in this module. type = entry.type typeptr_cname = type.typeptr_cname scope = type.scope if not scope: # could be None if there was an error return if entry.visibility == 'extern': # Generate code to initialise the typeptr of an external extension # type defined in this module to point to its type object. if type.typeobj_cname: # FIXME: this should not normally be set :-? assert not type.typeobj_cname code.putln("%s = &%s;" % ( type.typeptr_cname, type.typeobj_cname, )) return # TODO: remove 'else:' and dedent else: assert typeptr_cname assert type.typeobj_cname typespec_cname = "%s_spec" % type.typeobj_cname code.putln("#if CYTHON_USE_TYPE_SPECS") tuple_temp = None if not bases_tuple_cname and scope.parent_type.base_type: tuple_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True) code.putln("%s = PyTuple_Pack(1, (PyObject *)%s); %s" % ( tuple_temp, scope.parent_type.base_type.typeptr_cname, code.error_goto_if_null(tuple_temp, entry.pos), )) code.put_gotref(tuple_temp, py_object_type) if bases_tuple_cname or tuple_temp: if check_heap_type_bases: code.globalstate.use_utility_code( UtilityCode.load_cached('ValidateBasesTuple', 'ExtensionTypes.c')) code.put_error_if_neg(entry.pos, "__Pyx_validate_bases_tuple(%s.name, %s, %s)" % ( typespec_cname, TypeSlots.get_slot_by_name("tp_dictoffset", scope.directives).slot_code(scope), bases_tuple_cname or tuple_temp, )) code.putln("%s = (PyTypeObject *) __Pyx_PyType_FromModuleAndSpec(%s, &%s, %s);" % ( typeptr_cname, Naming.module_cname, typespec_cname, bases_tuple_cname or tuple_temp, )) if tuple_temp: code.put_xdecref_clear(tuple_temp, type=py_object_type) code.funcstate.release_temp(tuple_temp) code.putln(code.error_goto_if_null(typeptr_cname, entry.pos)) else: code.putln( "%s = (PyTypeObject *) __Pyx_PyType_FromModuleAndSpec(%s, &%s, NULL); %s" % ( typeptr_cname, Naming.module_cname, typespec_cname, code.error_goto_if_null(typeptr_cname, entry.pos), )) # The buffer interface is not currently supported by PyType_FromSpec(). buffer_slot = TypeSlots.get_slot_by_name("tp_as_buffer", code.globalstate.directives) if not buffer_slot.is_empty(scope): code.putln("#if !CYTHON_COMPILING_IN_LIMITED_API") code.putln("%s->%s = %s;" % ( typeptr_cname, buffer_slot.slot_name, buffer_slot.slot_code(scope), )) # Still need to inherit buffer methods since PyType_Ready() didn't do it for us. for buffer_method_name in ("__getbuffer__", "__releasebuffer__"): buffer_slot = TypeSlots.get_slot_table( code.globalstate.directives).get_slot_by_method_name(buffer_method_name) if buffer_slot.slot_code(scope) == "0" and not TypeSlots.get_base_slot_function(scope, buffer_slot): code.putln("if (!%s->tp_as_buffer->%s &&" " %s->tp_base->tp_as_buffer &&" " %s->tp_base->tp_as_buffer->%s) {" % ( typeptr_cname, buffer_slot.slot_name, typeptr_cname, typeptr_cname, buffer_slot.slot_name, )) code.putln("%s->tp_as_buffer->%s = %s->tp_base->tp_as_buffer->%s;" % ( typeptr_cname, buffer_slot.slot_name, typeptr_cname, buffer_slot.slot_name, )) code.putln("}") code.putln("#elif defined(_MSC_VER)") code.putln("#pragma message (\"The buffer protocol is not supported in the Limited C-API.\")") code.putln("#else") code.putln("#warning \"The buffer protocol is not supported in the Limited C-API.\"") code.putln("#endif") code.globalstate.use_utility_code( UtilityCode.load_cached("FixUpExtensionType", "ExtensionTypes.c")) code.put_error_if_neg(entry.pos, "__Pyx_fix_up_extension_type_from_spec(&%s, %s)" % ( typespec_cname, typeptr_cname)) code.putln("#else") if bases_tuple_cname: code.put_incref(bases_tuple_cname, py_object_type) code.put_giveref(bases_tuple_cname, py_object_type) code.putln("%s.tp_bases = %s;" % (type.typeobj_cname, bases_tuple_cname)) code.putln("%s = &%s;" % ( typeptr_cname, type.typeobj_cname, )) code.putln("#endif") # if CYTHON_USE_TYPE_SPECS base_type = type.base_type while base_type: if base_type.is_external and not base_type.objstruct_cname == "PyTypeObject": # 'type' is special-cased because it is actually based on PyHeapTypeObject # Variable length bases are allowed if the current class doesn't grow code.putln("if (sizeof(%s%s) != sizeof(%s%s)) {" % ( "" if type.typedef_flag else "struct ", type.objstruct_cname, "" if base_type.typedef_flag else "struct ", base_type.objstruct_cname)) code.globalstate.use_utility_code( UtilityCode.load_cached("ValidateExternBase", "ExtensionTypes.c")) code.put_error_if_neg(entry.pos, "__Pyx_validate_extern_base(%s)" % ( type.base_type.typeptr_cname)) code.putln("}") break base_type = base_type.base_type code.putln("#if !CYTHON_COMPILING_IN_LIMITED_API") # FIXME: these still need to get initialised even with the limited-API for slot in TypeSlots.get_slot_table(code.globalstate.directives): slot.generate_dynamic_init_code(scope, code) code.putln("#endif") code.putln("#if !CYTHON_USE_TYPE_SPECS") code.globalstate.use_utility_code( UtilityCode.load_cached('PyType_Ready', 'ExtensionTypes.c')) code.put_error_if_neg(entry.pos, "__Pyx_PyType_Ready(%s)" % typeptr_cname) code.putln("#endif") # Don't inherit tp_print from builtin types in Python 2, restoring the # behavior of using tp_repr or tp_str instead. # ("tp_print" was renamed to "tp_vectorcall_offset" in Py3.8b1) code.putln("#if PY_MAJOR_VERSION < 3") code.putln("%s->tp_print = 0;" % typeptr_cname) code.putln("#endif") # Use specialised attribute lookup for types with generic lookup but no instance dict. getattr_slot_func = TypeSlots.get_slot_code_by_name(scope, 'tp_getattro') dictoffset_slot_func = TypeSlots.get_slot_code_by_name(scope, 'tp_dictoffset') if getattr_slot_func == '0' and dictoffset_slot_func == '0': code.putln("#if !CYTHON_COMPILING_IN_LIMITED_API") # FIXME if type.is_final_type: py_cfunc = "__Pyx_PyObject_GenericGetAttrNoDict" # grepable utility_func = "PyObject_GenericGetAttrNoDict" else: py_cfunc = "__Pyx_PyObject_GenericGetAttr" utility_func = "PyObject_GenericGetAttr" code.globalstate.use_utility_code(UtilityCode.load_cached(utility_func, "ObjectHandling.c")) code.putln("if ((CYTHON_USE_TYPE_SLOTS && CYTHON_USE_PYTYPE_LOOKUP) &&" " likely(!%s->tp_dictoffset && %s->tp_getattro == PyObject_GenericGetAttr)) {" % ( typeptr_cname, typeptr_cname)) code.putln("%s->tp_getattro = %s;" % ( typeptr_cname, py_cfunc)) code.putln("}") code.putln("#endif") # if !CYTHON_COMPILING_IN_LIMITED_API # Fix special method docstrings. This is a bit of a hack, but # unless we let PyType_Ready create the slot wrappers we have # a significant performance hit. (See trac #561.) for func in entry.type.scope.pyfunc_entries: is_buffer = func.name in ('__getbuffer__', '__releasebuffer__') if (func.is_special and Options.docstrings and func.wrapperbase_cname and not is_buffer): slot = TypeSlots.get_slot_table( entry.type.scope.directives).get_slot_by_method_name(func.name) preprocessor_guard = slot.preprocessor_guard_code() if slot else None if preprocessor_guard: code.putln(preprocessor_guard) code.putln('#if CYTHON_UPDATE_DESCRIPTOR_DOC') code.putln("{") code.putln( 'PyObject *wrapper = PyObject_GetAttrString((PyObject *)%s, "%s"); %s' % ( typeptr_cname, func.name, code.error_goto_if_null('wrapper', entry.pos))) code.putln( "if (__Pyx_IS_TYPE(wrapper, &PyWrapperDescr_Type)) {") code.putln( "%s = *((PyWrapperDescrObject *)wrapper)->d_base;" % ( func.wrapperbase_cname)) code.putln( "%s.doc = %s;" % (func.wrapperbase_cname, func.doc_cname)) code.putln( "((PyWrapperDescrObject *)wrapper)->d_base = &%s;" % ( func.wrapperbase_cname)) code.putln("}") code.putln("}") code.putln('#endif') if preprocessor_guard: code.putln('#endif') if type.vtable_cname: code.globalstate.use_utility_code( UtilityCode.load_cached('SetVTable', 'ImportExport.c')) code.put_error_if_neg(entry.pos, "__Pyx_SetVtable(%s, %s)" % ( typeptr_cname, type.vtabptr_cname, )) # TODO: find a way to make this work with the Limited API! code.putln("#if !CYTHON_COMPILING_IN_LIMITED_API") code.globalstate.use_utility_code( UtilityCode.load_cached('MergeVTables', 'ImportExport.c')) code.put_error_if_neg(entry.pos, "__Pyx_MergeVtables(%s)" % typeptr_cname) code.putln("#endif") if not type.scope.is_internal and not type.scope.directives.get('internal'): # scope.is_internal is set for types defined by # Cython (such as closures), the 'internal' # directive is set by users code.put_error_if_neg(entry.pos, "PyObject_SetAttr(%s, %s, (PyObject *) %s)" % ( Naming.module_cname, code.intern_identifier(scope.class_name), typeptr_cname, )) weakref_entry = scope.lookup_here("__weakref__") if not scope.is_closure_class_scope else None if weakref_entry: if weakref_entry.type is py_object_type: tp_weaklistoffset = "%s->tp_weaklistoffset" % typeptr_cname if type.typedef_flag: objstruct = type.objstruct_cname else: objstruct = "struct %s" % type.objstruct_cname code.putln("if (%s == 0) %s = offsetof(%s, %s);" % ( tp_weaklistoffset, tp_weaklistoffset, objstruct, weakref_entry.cname)) else: error(weakref_entry.pos, "__weakref__ slot must be of type 'object'") if scope.lookup_here("__reduce_cython__") if not scope.is_closure_class_scope else None: # Unfortunately, we cannot reliably detect whether a # superclass defined __reduce__ at compile time, so we must # do so at runtime. code.globalstate.use_utility_code( UtilityCode.load_cached('SetupReduce', 'ExtensionTypes.c')) code.putln("#if !CYTHON_COMPILING_IN_LIMITED_API") # FIXME code.put_error_if_neg(entry.pos, "__Pyx_setup_reduce((PyObject *) %s)" % typeptr_cname) code.putln("#endif") def annotate(self, code): if self.type_init_args: self.type_init_args.annotate(code) if self.body: self.body.annotate(code) class PropertyNode(StatNode): # Definition of a property in an extension type. # # name string # doc EncodedString or None Doc string # entry Symtab.Entry The Entry of the property attribute # body StatListNode child_attrs = ["body"] def analyse_declarations(self, env): self.entry = env.declare_property(self.name, self.doc, self.pos) self.body.analyse_declarations(self.entry.scope) def analyse_expressions(self, env): self.body = self.body.analyse_expressions(env) return self def generate_function_definitions(self, env, code): self.body.generate_function_definitions(env, code) def generate_execution_code(self, code): pass def annotate(self, code): self.body.annotate(code) class CPropertyNode(StatNode): """Definition of a C property, backed by a CFuncDefNode getter. """ # name string # doc EncodedString or None Doc string of the property # entry Symtab.Entry The Entry of the property attribute # body StatListNode[CFuncDefNode] (for compatibility with PropertyNode) child_attrs = ["body"] is_cproperty = True @property def cfunc(self): stats = self.body.stats assert stats and isinstance(stats[0], CFuncDefNode), stats return stats[0] def analyse_declarations(self, env): scope = PropertyScope(self.name, class_scope=env) self.body.analyse_declarations(scope) entry = self.entry = env.declare_property( self.name, self.doc, self.pos, ctype=self.cfunc.return_type, property_scope=scope) entry.getter_cname = self.cfunc.entry.cname def analyse_expressions(self, env): self.body = self.body.analyse_expressions(env) return self def generate_function_definitions(self, env, code): self.body.generate_function_definitions(env, code) def generate_execution_code(self, code): pass def annotate(self, code): self.body.annotate(code) class GlobalNode(StatNode): # Global variable declaration. # # names [string] child_attrs = [] def analyse_declarations(self, env): for name in self.names: env.declare_global(name, self.pos) def analyse_expressions(self, env): return self def generate_execution_code(self, code): pass class NonlocalNode(StatNode): # Nonlocal variable declaration via the 'nonlocal' keyword. # # names [string] child_attrs = [] def analyse_declarations(self, env): for name in self.names: env.declare_nonlocal(name, self.pos) def analyse_expressions(self, env): return self def generate_execution_code(self, code): pass class ExprStatNode(StatNode): # Expression used as a statement. # # expr ExprNode child_attrs = ["expr"] def analyse_declarations(self, env): from . import ExprNodes expr = self.expr if isinstance(expr, ExprNodes.GeneralCallNode): func = expr.function.as_cython_attribute() if func == u'declare': args, kwds = expr.explicit_args_kwds() if len(args): error(expr.pos, "Variable names must be specified.") for var, type_node in kwds.key_value_pairs: type = type_node.analyse_as_type(env) if type is None: error(type_node.pos, "Unknown type") else: env.declare_var(var.value, type, var.pos, is_cdef=True) self.__class__ = PassStatNode elif getattr(expr, 'annotation', None) is not None: if expr.is_name: # non-code variable annotation, e.g. "name: type" expr.declare_from_annotation(env) self.__class__ = PassStatNode elif expr.is_attribute or expr.is_subscript: # unused expression with annotation, e.g. "a[0]: type" or "a.xyz : type" self.__class__ = PassStatNode def analyse_expressions(self, env): self.expr.result_is_used = False # hint that .result() may safely be left empty self.expr = self.expr.analyse_expressions(env) # Repeat in case of node replacement. self.expr.result_is_used = False # hint that .result() may safely be left empty return self def nogil_check(self, env): if self.expr.type.is_pyobject and self.expr.is_temp: self.gil_error() gil_message = "Discarding owned Python object" def generate_execution_code(self, code): code.mark_pos(self.pos) self.expr.result_is_used = False # hint that .result() may safely be left empty self.expr.generate_evaluation_code(code) if not self.expr.is_temp and self.expr.result(): result = self.expr.result() if not self.expr.type.is_void: result = "(void)(%s)" % result code.putln("%s;" % result) self.expr.generate_disposal_code(code) self.expr.free_temps(code) def generate_function_definitions(self, env, code): self.expr.generate_function_definitions(env, code) def annotate(self, code): self.expr.annotate(code) class AssignmentNode(StatNode): # Abstract base class for assignment nodes. # # The analyse_expressions and generate_execution_code # phases of assignments are split into two sub-phases # each, to enable all the right hand sides of a # parallel assignment to be evaluated before assigning # to any of the left hand sides. def analyse_expressions(self, env): node = self.analyse_types(env) if isinstance(node, AssignmentNode) and not isinstance(node, ParallelAssignmentNode): if node.rhs.type.is_ptr and node.rhs.is_ephemeral(): error(self.pos, "Storing unsafe C derivative of temporary Python reference") return node # def analyse_expressions(self, env): # self.analyse_expressions_1(env) # self.analyse_expressions_2(env) def generate_execution_code(self, code): code.mark_pos(self.pos) self.generate_rhs_evaluation_code(code) self.generate_assignment_code(code) class SingleAssignmentNode(AssignmentNode): # The simplest case: # # a = b # # lhs ExprNode Left hand side # rhs ExprNode Right hand side # first bool Is this guaranteed the first assignment to lhs? # is_overloaded_assignment bool Is this assignment done via an overloaded operator= # is_assignment_expression bool Internally SingleAssignmentNode is used to implement assignment expressions # exception_check # exception_value child_attrs = ["lhs", "rhs"] first = False is_overloaded_assignment = False is_assignment_expression = False declaration_only = False def analyse_declarations(self, env): from . import ExprNodes # handle declarations of the form x = cython.foo() if isinstance(self.rhs, ExprNodes.CallNode): func_name = self.rhs.function.as_cython_attribute() if func_name: args, kwds = self.rhs.explicit_args_kwds() if func_name in ['declare', 'typedef']: if len(args) > 2: error(args[2].pos, "Invalid positional argument.") return if kwds is not None: kwdict = kwds.compile_time_value(None) if func_name == 'typedef' or 'visibility' not in kwdict: error(kwds.pos, "Invalid keyword argument.") return visibility = kwdict['visibility'] else: visibility = 'private' type = args[0].analyse_as_type(env) if type is None: error(args[0].pos, "Unknown type") return lhs = self.lhs if func_name == 'declare': if isinstance(lhs, ExprNodes.NameNode): vars = [(lhs.name, lhs.pos)] elif isinstance(lhs, ExprNodes.TupleNode): vars = [(var.name, var.pos) for var in lhs.args] else: error(lhs.pos, "Invalid declaration") return for var, pos in vars: env.declare_var(var, type, pos, is_cdef=True, visibility=visibility) if len(args) == 2: # we have a value self.rhs = args[1] else: self.declaration_only = True else: self.declaration_only = True if not isinstance(lhs, ExprNodes.NameNode): error(lhs.pos, "Invalid declaration.") env.declare_typedef(lhs.name, type, self.pos, visibility='private') elif func_name in ['struct', 'union']: self.declaration_only = True if len(args) > 0 or kwds is None: error(self.rhs.pos, "Struct or union members must be given by name.") return members = [] for member, type_node in kwds.key_value_pairs: type = type_node.analyse_as_type(env) if type is None: error(type_node.pos, "Unknown type") else: members.append((member.value, type, member.pos)) if len(members) < len(kwds.key_value_pairs): return if not isinstance(self.lhs, ExprNodes.NameNode): error(self.lhs.pos, "Invalid declaration.") name = self.lhs.name scope = StructOrUnionScope(name) env.declare_struct_or_union(name, func_name, scope, False, self.rhs.pos) for member, type, pos in members: scope.declare_var(member, type, pos) elif func_name == 'fused_type': # dtype = cython.fused_type(...) self.declaration_only = True if kwds: error(self.rhs.function.pos, "fused_type does not take keyword arguments") fusednode = FusedTypeNode(self.rhs.pos, name=self.lhs.name, types=args) fusednode.analyse_declarations(env) if self.declaration_only: return else: if self.is_assignment_expression: self.lhs.analyse_assignment_expression_target_declaration(env) else: self.lhs.analyse_target_declaration(env) # if an entry doesn't exist that just implies that lhs isn't made up purely # of AttributeNodes and NameNodes - it isn't useful as a known path to # a standard library module if (self.lhs.is_attribute or self.lhs.is_name) and self.lhs.entry and not self.lhs.entry.known_standard_library_import: stdlib_import_name = self.rhs.get_known_standard_library_import() if stdlib_import_name: self.lhs.entry.known_standard_library_import = stdlib_import_name def analyse_types(self, env, use_temp=0): from . import ExprNodes self.rhs = self.rhs.analyse_types(env) unrolled_assignment = self.unroll_rhs(env) if unrolled_assignment: return unrolled_assignment self.lhs = self.lhs.analyse_target_types(env) self.lhs.gil_assignment_check(env) unrolled_assignment = self.unroll_lhs(env) if unrolled_assignment: return unrolled_assignment if isinstance(self.lhs, ExprNodes.MemoryViewIndexNode): self.lhs.analyse_broadcast_operation(self.rhs) self.lhs = self.lhs.analyse_as_memview_scalar_assignment(self.rhs) elif self.lhs.type.is_array: if not isinstance(self.lhs, ExprNodes.SliceIndexNode): # cannot assign to C array, only to its full slice lhs = ExprNodes.SliceIndexNode(self.lhs.pos, base=self.lhs, start=None, stop=None) self.lhs = lhs.analyse_target_types(env) if self.lhs.type.is_cpp_class: op = env.lookup_operator_for_types(self.pos, '=', [self.lhs.type, self.rhs.type]) if op: rhs = self.rhs self.is_overloaded_assignment = True self.exception_check = op.type.exception_check self.exception_value = op.type.exception_value if self.exception_check == '+' and self.exception_value is None: env.use_utility_code(UtilityCode.load_cached("CppExceptionConversion", "CppSupport.cpp")) else: rhs = self.rhs.coerce_to(self.lhs.type, env) else: rhs = self.rhs.coerce_to(self.lhs.type, env) if use_temp or rhs.is_attribute or ( not rhs.is_name and not rhs.is_literal and rhs.type.is_pyobject): # things like (cdef) attribute access are not safe (traverses pointers) rhs = rhs.coerce_to_temp(env) elif rhs.type.is_pyobject: rhs = rhs.coerce_to_simple(env) self.rhs = rhs return self def unroll(self, node, target_size, env): from . import ExprNodes, UtilNodes base = node start_node = stop_node = step_node = check_node = None if node.type.is_ctuple: slice_size = node.type.size elif node.type.is_ptr or node.type.is_array: while isinstance(node, ExprNodes.SliceIndexNode) and not (node.start or node.stop): base = node = node.base if isinstance(node, ExprNodes.SliceIndexNode): base = node.base start_node = node.start if start_node: start_node = start_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env) stop_node = node.stop if stop_node: stop_node = stop_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env) else: if node.type.is_array and node.type.size: stop_node = ExprNodes.IntNode( self.pos, value=str(node.type.size), constant_result=(node.type.size if isinstance(node.type.size, _py_int_types) else ExprNodes.constant_value_not_set)) else: error(self.pos, "C array iteration requires known end index") return step_node = None #node.step if step_node: step_node = step_node.coerce_to(PyrexTypes.c_py_ssize_t_type, env) # TODO: Factor out SliceIndexNode.generate_slice_guard_code() for use here. def get_const(node, none_value): if node is None: return none_value elif node.has_constant_result(): return node.constant_result else: raise ValueError("Not a constant.") try: slice_size = (get_const(stop_node, None) - get_const(start_node, 0)) / get_const(step_node, 1) except ValueError: error(self.pos, "C array assignment currently requires known endpoints") return elif node.type.is_array: slice_size = node.type.size if not isinstance(slice_size, _py_int_types): return # might still work when coercing to Python else: return else: return if slice_size != target_size: error(self.pos, "Assignment to/from slice of wrong length, expected %s, got %s" % ( slice_size, target_size)) return items = [] base = UtilNodes.LetRefNode(base) refs = [base] if start_node and not start_node.is_literal: start_node = UtilNodes.LetRefNode(start_node) refs.append(start_node) if stop_node and not stop_node.is_literal: stop_node = UtilNodes.LetRefNode(stop_node) refs.append(stop_node) if step_node and not step_node.is_literal: step_node = UtilNodes.LetRefNode(step_node) refs.append(step_node) for ix in range(target_size): ix_node = ExprNodes.IntNode(self.pos, value=str(ix), constant_result=ix, type=PyrexTypes.c_py_ssize_t_type) if step_node is not None: if step_node.has_constant_result(): step_value = ix_node.constant_result * step_node.constant_result ix_node = ExprNodes.IntNode(self.pos, value=str(step_value), constant_result=step_value) else: ix_node = ExprNodes.MulNode(self.pos, operator='*', operand1=step_node, operand2=ix_node) if start_node is not None: if start_node.has_constant_result() and ix_node.has_constant_result(): index_value = ix_node.constant_result + start_node.constant_result ix_node = ExprNodes.IntNode(self.pos, value=str(index_value), constant_result=index_value) else: ix_node = ExprNodes.AddNode( self.pos, operator='+', operand1=start_node, operand2=ix_node) items.append(ExprNodes.IndexNode(self.pos, base=base, index=ix_node.analyse_types(env))) return check_node, refs, items def unroll_assignments(self, refs, check_node, lhs_list, rhs_list, env): from . import UtilNodes assignments = [] for lhs, rhs in zip(lhs_list, rhs_list): assignments.append(SingleAssignmentNode(self.pos, lhs=lhs, rhs=rhs, first=self.first)) node = ParallelAssignmentNode(pos=self.pos, stats=assignments).analyse_expressions(env) if check_node: node = StatListNode(pos=self.pos, stats=[check_node, node]) for ref in refs[::-1]: node = UtilNodes.LetNode(ref, node) return node def unroll_rhs(self, env): from . import ExprNodes if not isinstance(self.lhs, ExprNodes.TupleNode): return if any(arg.is_starred for arg in self.lhs.args): return unrolled = self.unroll(self.rhs, len(self.lhs.args), env) if not unrolled: return check_node, refs, rhs = unrolled return self.unroll_assignments(refs, check_node, self.lhs.args, rhs, env) def unroll_lhs(self, env): if self.lhs.type.is_ctuple: # Handled directly. return from . import ExprNodes if not isinstance(self.rhs, ExprNodes.TupleNode): return unrolled = self.unroll(self.lhs, len(self.rhs.args), env) if not unrolled: return check_node, refs, lhs = unrolled return self.unroll_assignments(refs, check_node, lhs, self.rhs.args, env) def generate_rhs_evaluation_code(self, code): self.rhs.generate_evaluation_code(code) def generate_assignment_code(self, code, overloaded_assignment=False): if self.is_overloaded_assignment: self.lhs.generate_assignment_code( self.rhs, code, overloaded_assignment=self.is_overloaded_assignment, exception_check=self.exception_check, exception_value=self.exception_value) else: self.lhs.generate_assignment_code(self.rhs, code) def generate_function_definitions(self, env, code): self.rhs.generate_function_definitions(env, code) def annotate(self, code): self.lhs.annotate(code) self.rhs.annotate(code) class CascadedAssignmentNode(AssignmentNode): # An assignment with multiple left hand sides: # # a = b = c # # lhs_list [ExprNode] Left hand sides # rhs ExprNode Right hand sides # # Used internally: # # coerced_values [ExprNode] RHS coerced to all distinct LHS types # cloned_values [ExprNode] cloned RHS value for each LHS # assignment_overloads [Bool] If each assignment uses a C++ operator= child_attrs = ["lhs_list", "rhs", "coerced_values", "cloned_values"] cloned_values = None coerced_values = None assignment_overloads = None def analyse_declarations(self, env): for lhs in self.lhs_list: lhs.analyse_target_declaration(env) def analyse_types(self, env, use_temp=0): from .ExprNodes import CloneNode, ProxyNode # collect distinct types used on the LHS lhs_types = set() for i, lhs in enumerate(self.lhs_list): lhs = self.lhs_list[i] = lhs.analyse_target_types(env) lhs.gil_assignment_check(env) lhs_types.add(lhs.type) rhs = self.rhs.analyse_types(env) # common special case: only one type needed on the LHS => coerce only once if len(lhs_types) == 1: # Avoid coercion for overloaded assignment operators. if next(iter(lhs_types)).is_cpp_class: op = env.lookup_operator('=', [lhs, self.rhs]) if not op: rhs = rhs.coerce_to(lhs_types.pop(), env) else: rhs = rhs.coerce_to(lhs_types.pop(), env) if not rhs.is_name and not rhs.is_literal and ( use_temp or rhs.is_attribute or rhs.type.is_pyobject): rhs = rhs.coerce_to_temp(env) else: rhs = rhs.coerce_to_simple(env) self.rhs = ProxyNode(rhs) if rhs.is_temp else rhs # clone RHS and coerce it to all distinct LHS types self.coerced_values = [] coerced_values = {} self.assignment_overloads = [] for lhs in self.lhs_list: overloaded = lhs.type.is_cpp_class and env.lookup_operator('=', [lhs, self.rhs]) self.assignment_overloads.append(overloaded) if lhs.type not in coerced_values and lhs.type != rhs.type: rhs = CloneNode(self.rhs) if not overloaded: rhs = rhs.coerce_to(lhs.type, env) self.coerced_values.append(rhs) coerced_values[lhs.type] = rhs # clone coerced values for all LHS assignments self.cloned_values = [] for lhs in self.lhs_list: rhs = coerced_values.get(lhs.type, self.rhs) self.cloned_values.append(CloneNode(rhs)) return self def generate_rhs_evaluation_code(self, code): self.rhs.generate_evaluation_code(code) def generate_assignment_code(self, code, overloaded_assignment=False): # prepare all coercions for rhs in self.coerced_values: rhs.generate_evaluation_code(code) # assign clones to LHS for lhs, rhs, overload in zip(self.lhs_list, self.cloned_values, self.assignment_overloads): rhs.generate_evaluation_code(code) lhs.generate_assignment_code(rhs, code, overloaded_assignment=overload) # dispose of coerced values and original RHS for rhs_value in self.coerced_values: rhs_value.generate_disposal_code(code) rhs_value.free_temps(code) self.rhs.generate_disposal_code(code) self.rhs.free_temps(code) def generate_function_definitions(self, env, code): self.rhs.generate_function_definitions(env, code) def annotate(self, code): for rhs in self.coerced_values: rhs.annotate(code) for lhs, rhs in zip(self.lhs_list, self.cloned_values): lhs.annotate(code) rhs.annotate(code) self.rhs.annotate(code) class ParallelAssignmentNode(AssignmentNode): # A combined packing/unpacking assignment: # # a, b, c = d, e, f # # This has been rearranged by the parser into # # a = d ; b = e ; c = f # # but we must evaluate all the right hand sides # before assigning to any of the left hand sides. # # stats [AssignmentNode] The constituent assignments child_attrs = ["stats"] def analyse_declarations(self, env): for stat in self.stats: stat.analyse_declarations(env) def analyse_expressions(self, env): self.stats = [stat.analyse_types(env, use_temp=1) for stat in self.stats] return self # def analyse_expressions(self, env): # for stat in self.stats: # stat.analyse_expressions_1(env, use_temp=1) # for stat in self.stats: # stat.analyse_expressions_2(env) def generate_execution_code(self, code): code.mark_pos(self.pos) for stat in self.stats: stat.generate_rhs_evaluation_code(code) for stat in self.stats: stat.generate_assignment_code(code) def generate_function_definitions(self, env, code): for stat in self.stats: stat.generate_function_definitions(env, code) def annotate(self, code): for stat in self.stats: stat.annotate(code) class InPlaceAssignmentNode(AssignmentNode): # An in place arithmetic operand: # # a += b # a -= b # ... # # lhs ExprNode Left hand side # rhs ExprNode Right hand side # operator char one of "+-*/%^&|" # # This code is a bit tricky because in order to obey Python # semantics the sub-expressions (e.g. indices) of the lhs must # not be evaluated twice. So we must re-use the values calculated # in evaluation phase for the assignment phase as well. # Fortunately, the type of the lhs node is fairly constrained # (it must be a NameNode, AttributeNode, or IndexNode). child_attrs = ["lhs", "rhs"] def analyse_declarations(self, env): self.lhs.analyse_target_declaration(env) def analyse_types(self, env): self.rhs = self.rhs.analyse_types(env) self.lhs = self.lhs.analyse_target_types(env) # When assigning to a fully indexed buffer or memoryview, coerce the rhs if self.lhs.is_memview_index or self.lhs.is_buffer_access: self.rhs = self.rhs.coerce_to(self.lhs.type, env) elif self.lhs.type.is_string and self.operator in '+-': # use pointer arithmetic for char* LHS instead of string concat self.rhs = self.rhs.coerce_to(PyrexTypes.c_py_ssize_t_type, env) return self def generate_execution_code(self, code): code.mark_pos(self.pos) lhs, rhs = self.lhs, self.rhs rhs.generate_evaluation_code(code) lhs.generate_subexpr_evaluation_code(code) c_op = self.operator if c_op == "//": c_op = "/" elif c_op == "**": error(self.pos, "No C inplace power operator") if lhs.is_buffer_access or lhs.is_memview_index: if lhs.type.is_pyobject: error(self.pos, "In-place operators not allowed on object buffers in this release.") if c_op in ('/', '%') and lhs.type.is_int and not code.globalstate.directives['cdivision']: error(self.pos, "In-place non-c divide operators not allowed on int buffers.") lhs.generate_buffer_setitem_code(rhs, code, c_op) elif lhs.is_memview_slice: error(self.pos, "Inplace operators not supported on memoryview slices") else: # C++ # TODO: make sure overload is declared code.putln("%s %s= %s;" % (lhs.result(), c_op, rhs.result())) lhs.generate_subexpr_disposal_code(code) lhs.free_subexpr_temps(code) rhs.generate_disposal_code(code) rhs.free_temps(code) def annotate(self, code): self.lhs.annotate(code) self.rhs.annotate(code) def create_binop_node(self): from . import ExprNodes return ExprNodes.binop_node(self.pos, self.operator, self.lhs, self.rhs) class PrintStatNode(StatNode): # print statement # # arg_tuple TupleNode # stream ExprNode or None (stdout) # append_newline boolean child_attrs = ["arg_tuple", "stream"] def analyse_expressions(self, env): if self.stream: stream = self.stream.analyse_expressions(env) self.stream = stream.coerce_to_pyobject(env) arg_tuple = self.arg_tuple.analyse_expressions(env) self.arg_tuple = arg_tuple.coerce_to_pyobject(env) env.use_utility_code(printing_utility_code) if len(self.arg_tuple.args) == 1 and self.append_newline: env.use_utility_code(printing_one_utility_code) return self nogil_check = Node.gil_error gil_message = "Python print statement" def generate_execution_code(self, code): code.mark_pos(self.pos) if self.stream: self.stream.generate_evaluation_code(code) stream_result = self.stream.py_result() else: stream_result = '0' if len(self.arg_tuple.args) == 1 and self.append_newline: arg = self.arg_tuple.args[0] arg.generate_evaluation_code(code) code.putln( "if (__Pyx_PrintOne(%s, %s) < 0) %s" % ( stream_result, arg.py_result(), code.error_goto(self.pos))) arg.generate_disposal_code(code) arg.free_temps(code) else: self.arg_tuple.generate_evaluation_code(code) code.putln( "if (__Pyx_Print(%s, %s, %d) < 0) %s" % ( stream_result, self.arg_tuple.py_result(), self.append_newline, code.error_goto(self.pos))) self.arg_tuple.generate_disposal_code(code) self.arg_tuple.free_temps(code) if self.stream: self.stream.generate_disposal_code(code) self.stream.free_temps(code) def generate_function_definitions(self, env, code): if self.stream: self.stream.generate_function_definitions(env, code) self.arg_tuple.generate_function_definitions(env, code) def annotate(self, code): if self.stream: self.stream.annotate(code) self.arg_tuple.annotate(code) class ExecStatNode(StatNode): # exec statement # # args [ExprNode] child_attrs = ["args"] def analyse_expressions(self, env): for i, arg in enumerate(self.args): arg = arg.analyse_expressions(env) arg = arg.coerce_to_pyobject(env) self.args[i] = arg env.use_utility_code(Builtin.pyexec_utility_code) return self nogil_check = Node.gil_error gil_message = "Python exec statement" def generate_execution_code(self, code): code.mark_pos(self.pos) args = [] for arg in self.args: arg.generate_evaluation_code(code) args.append(arg.py_result()) args = tuple(args + ['0', '0'][:3-len(args)]) temp_result = code.funcstate.allocate_temp(PyrexTypes.py_object_type, manage_ref=True) code.putln("%s = __Pyx_PyExec3(%s, %s, %s);" % ((temp_result,) + args)) for arg in self.args: arg.generate_disposal_code(code) arg.free_temps(code) code.putln( code.error_goto_if_null(temp_result, self.pos)) code.put_gotref(temp_result, py_object_type) code.put_decref_clear(temp_result, py_object_type) code.funcstate.release_temp(temp_result) def annotate(self, code): for arg in self.args: arg.annotate(code) class DelStatNode(StatNode): # del statement # # args [ExprNode] child_attrs = ["args"] ignore_nonexisting = False def analyse_declarations(self, env): for arg in self.args: arg.analyse_target_declaration(env) def analyse_expressions(self, env): for i, arg in enumerate(self.args): arg = self.args[i] = arg.analyse_target_expression(env, None) if arg.type.is_pyobject or (arg.is_name and arg.type.is_memoryviewslice): if arg.is_name and arg.entry.is_cglobal: error(arg.pos, "Deletion of global C variable") elif arg.type.is_ptr and arg.type.base_type.is_cpp_class: self.cpp_check(env) elif arg.type.is_cpp_class: error(arg.pos, "Deletion of non-heap C++ object") elif arg.is_subscript and arg.base.type is Builtin.bytearray_type: pass # del ba[i] else: error(arg.pos, "Deletion of non-Python, non-C++ object") #arg.release_target_temp(env) return self def nogil_check(self, env): for arg in self.args: if arg.type.is_pyobject: self.gil_error() gil_message = "Deleting Python object" def generate_execution_code(self, code): code.mark_pos(self.pos) for arg in self.args: if (arg.type.is_pyobject or arg.type.is_memoryviewslice or arg.is_subscript and arg.base.type is Builtin.bytearray_type): arg.generate_deletion_code( code, ignore_nonexisting=self.ignore_nonexisting) elif arg.type.is_ptr and arg.type.base_type.is_cpp_class: arg.generate_evaluation_code(code) code.putln("delete %s;" % arg.result()) arg.generate_disposal_code(code) arg.free_temps(code) # else error reported earlier def annotate(self, code): for arg in self.args: arg.annotate(code) class PassStatNode(StatNode): # pass statement child_attrs = [] def analyse_expressions(self, env): return self def generate_execution_code(self, code): pass class IndirectionNode(StatListNode): """ This adds an indirection so that the node can be shared and a subtree can be removed at any time by clearing self.stats. """ def __init__(self, stats): super(IndirectionNode, self).__init__(stats[0].pos, stats=stats) class BreakStatNode(StatNode): child_attrs = [] is_terminator = True def analyse_expressions(self, env): return self def generate_execution_code(self, code): code.mark_pos(self.pos) if not code.break_label: error(self.pos, "break statement not inside loop") else: code.put_goto(code.break_label) class ContinueStatNode(StatNode): child_attrs = [] is_terminator = True def analyse_expressions(self, env): return self def generate_execution_code(self, code): if not code.continue_label: error(self.pos, "continue statement not inside loop") return code.mark_pos(self.pos) code.put_goto(code.continue_label) class ReturnStatNode(StatNode): # return statement # # value ExprNode or None # return_type PyrexType # in_generator return inside of generator => raise StopIteration # in_async_gen return inside of async generator child_attrs = ["value"] is_terminator = True in_generator = False in_async_gen = False # Whether we are in a parallel section in_parallel = False def analyse_expressions(self, env): return_type = env.return_type self.return_type = return_type if not return_type: error(self.pos, "Return not inside a function body") return self if self.value: if self.in_async_gen: error(self.pos, "Return with value in async generator") self.value = self.value.analyse_types(env) if return_type.is_void or return_type.is_returncode: error(self.value.pos, "Return with value in void function") else: self.value = self.value.coerce_to(env.return_type, env) else: if (not return_type.is_void and not return_type.is_pyobject and not return_type.is_returncode): error(self.pos, "Return value required") return self def nogil_check(self, env): if self.return_type.is_pyobject: self.gil_error() gil_message = "Returning Python object" def generate_execution_code(self, code): code.mark_pos(self.pos) if not self.return_type: # error reported earlier return value = self.value if self.return_type.is_pyobject: code.put_xdecref(Naming.retval_cname, self.return_type) if value and value.is_none: # Use specialised default handling for "return None". value = None if value: value.generate_evaluation_code(code) if self.return_type.is_memoryviewslice: from . import MemoryView MemoryView.put_acquire_memoryviewslice( lhs_cname=Naming.retval_cname, lhs_type=self.return_type, lhs_pos=value.pos, rhs=value, code=code, have_gil=self.in_nogil_context) value.generate_post_assignment_code(code) elif self.in_generator: # return value == raise StopIteration(value), but uncatchable code.globalstate.use_utility_code( UtilityCode.load_cached("ReturnWithStopIteration", "Coroutine.c")) code.putln("%s = NULL; __Pyx_ReturnWithStopIteration(%s);" % ( Naming.retval_cname, value.py_result())) value.generate_disposal_code(code) else: value.make_owned_reference(code) code.putln("%s = %s;" % ( Naming.retval_cname, value.result_as(self.return_type))) value.generate_post_assignment_code(code) value.free_temps(code) else: if self.return_type.is_pyobject: if self.in_generator: if self.in_async_gen: code.globalstate.use_utility_code( UtilityCode.load_cached("StopAsyncIteration", "Coroutine.c")) code.put("PyErr_SetNone(__Pyx_PyExc_StopAsyncIteration); ") code.putln("%s = NULL;" % Naming.retval_cname) else: code.put_init_to_py_none(Naming.retval_cname, self.return_type) elif self.return_type.is_returncode: self.put_return(code, self.return_type.default_value) for cname, type in code.funcstate.temps_holding_reference(): code.put_decref_clear(cname, type) code.put_goto(code.return_label) def put_return(self, code, value): if self.in_parallel: code.putln_openmp("#pragma omp critical(__pyx_returning)") code.putln("%s = %s;" % (Naming.retval_cname, value)) def generate_function_definitions(self, env, code): if self.value is not None: self.value.generate_function_definitions(env, code) def annotate(self, code): if self.value: self.value.annotate(code) class RaiseStatNode(StatNode): # raise statement # # exc_type ExprNode or None # exc_value ExprNode or None # exc_tb ExprNode or None # cause ExprNode or None # # set in FlowControl # in_try_block bool child_attrs = ["exc_type", "exc_value", "exc_tb", "cause"] is_terminator = True builtin_exc_name = None wrap_tuple_value = False in_try_block = False def analyse_expressions(self, env): if self.exc_type: exc_type = self.exc_type.analyse_types(env) self.exc_type = exc_type.coerce_to_pyobject(env) if self.exc_value: exc_value = self.exc_value.analyse_types(env) if self.wrap_tuple_value: if exc_value.type is Builtin.tuple_type or not exc_value.type.is_builtin_type: # prevent tuple values from being interpreted as argument value tuples from .ExprNodes import TupleNode exc_value = TupleNode(exc_value.pos, args=[exc_value.coerce_to_pyobject(env)], slow=True) exc_value = exc_value.analyse_types(env, skip_children=True) self.exc_value = exc_value.coerce_to_pyobject(env) if self.exc_tb: exc_tb = self.exc_tb.analyse_types(env) self.exc_tb = exc_tb.coerce_to_pyobject(env) if self.cause: cause = self.cause.analyse_types(env) self.cause = cause.coerce_to_pyobject(env) # special cases for builtin exceptions if self.exc_type and not self.exc_value and not self.exc_tb: exc = self.exc_type from . import ExprNodes if (isinstance(exc, ExprNodes.SimpleCallNode) and not (exc.args or (exc.arg_tuple is not None and exc.arg_tuple.args))): exc = exc.function # extract the exception type if exc.is_name and exc.entry.is_builtin: from . import Symtab self.builtin_exc_name = exc.name if self.builtin_exc_name == 'MemoryError': self.exc_type = None # has a separate implementation elif (self.builtin_exc_name == 'StopIteration' and env.is_local_scope and env.name == "__next__" and env.parent_scope and env.parent_scope.is_c_class_scope and not self.in_try_block): # tp_iternext is allowed to return NULL without raising StopIteration. # For the sake of simplicity, only allow this to happen when not in # a try block self.exc_type = None return self nogil_check = Node.gil_error gil_message = "Raising exception" def generate_execution_code(self, code): code.mark_pos(self.pos) if self.builtin_exc_name == 'MemoryError': code.putln('PyErr_NoMemory(); %s' % code.error_goto(self.pos)) return elif self.builtin_exc_name == 'StopIteration' and not self.exc_type: code.putln('%s = 1;' % Naming.error_without_exception_cname) code.putln('%s;' % code.error_goto(None)) code.funcstate.error_without_exception = True return if self.exc_type: self.exc_type.generate_evaluation_code(code) type_code = self.exc_type.py_result() if self.exc_type.is_name: code.globalstate.use_entry_utility_code(self.exc_type.entry) else: type_code = "0" if self.exc_value: self.exc_value.generate_evaluation_code(code) value_code = self.exc_value.py_result() else: value_code = "0" if self.exc_tb: self.exc_tb.generate_evaluation_code(code) tb_code = self.exc_tb.py_result() else: tb_code = "0" if self.cause: self.cause.generate_evaluation_code(code) cause_code = self.cause.py_result() else: cause_code = "0" code.globalstate.use_utility_code(raise_utility_code) code.putln( "__Pyx_Raise(%s, %s, %s, %s);" % ( type_code, value_code, tb_code, cause_code)) for obj in (self.exc_type, self.exc_value, self.exc_tb, self.cause): if obj: obj.generate_disposal_code(code) obj.free_temps(code) code.putln( code.error_goto(self.pos)) def generate_function_definitions(self, env, code): if self.exc_type is not None: self.exc_type.generate_function_definitions(env, code) if self.exc_value is not None: self.exc_value.generate_function_definitions(env, code) if self.exc_tb is not None: self.exc_tb.generate_function_definitions(env, code) if self.cause is not None: self.cause.generate_function_definitions(env, code) def annotate(self, code): if self.exc_type: self.exc_type.annotate(code) if self.exc_value: self.exc_value.annotate(code) if self.exc_tb: self.exc_tb.annotate(code) if self.cause: self.cause.annotate(code) class ReraiseStatNode(StatNode): child_attrs = [] is_terminator = True def analyse_expressions(self, env): return self nogil_check = Node.gil_error gil_message = "Raising exception" def generate_execution_code(self, code): code.mark_pos(self.pos) vars = code.funcstate.exc_vars if vars: code.globalstate.use_utility_code(restore_exception_utility_code) code.put_giveref(vars[0], py_object_type) code.put_giveref(vars[1], py_object_type) # fresh exceptions may not have a traceback yet (-> finally!) code.put_xgiveref(vars[2], py_object_type) code.putln("__Pyx_ErrRestoreWithState(%s, %s, %s);" % tuple(vars)) for varname in vars: code.put("%s = 0; " % varname) code.putln() code.putln(code.error_goto(self.pos)) else: code.globalstate.use_utility_code( UtilityCode.load_cached("ReRaiseException", "Exceptions.c")) code.putln("__Pyx_ReraiseException(); %s" % code.error_goto(self.pos)) class AssertStatNode(StatNode): # assert statement # # condition ExprNode # value ExprNode or None # exception (Raise/GIL)StatNode created from 'value' in PostParse transform child_attrs = ["condition", "value", "exception"] exception = None def analyse_declarations(self, env): assert self.value is None, "Message should have been replaced in PostParse()" assert self.exception is not None, "Message should have been replaced in PostParse()" self.exception.analyse_declarations(env) def analyse_expressions(self, env): self.condition = self.condition.analyse_temp_boolean_expression(env) self.exception = self.exception.analyse_expressions(env) return self def generate_execution_code(self, code): code.putln("#ifndef CYTHON_WITHOUT_ASSERTIONS") code.putln("if (unlikely(!Py_OptimizeFlag)) {") code.mark_pos(self.pos) self.condition.generate_evaluation_code(code) code.putln( "if (unlikely(!%s)) {" % self.condition.result()) self.exception.generate_execution_code(code) code.putln( "}") self.condition.generate_disposal_code(code) self.condition.free_temps(code) code.putln( "}") code.putln("#else") # avoid unused labels etc. code.putln("if ((1)); else %s" % code.error_goto(self.pos, used=False)) code.putln("#endif") def generate_function_definitions(self, env, code): self.condition.generate_function_definitions(env, code) self.exception.generate_function_definitions(env, code) def annotate(self, code): self.condition.annotate(code) self.exception.annotate(code) class IfStatNode(StatNode): # if statement # # if_clauses [IfClauseNode] # else_clause StatNode or None child_attrs = ["if_clauses", "else_clause"] def analyse_declarations(self, env): for if_clause in self.if_clauses: if_clause.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): self.if_clauses = [if_clause.analyse_expressions(env) for if_clause in self.if_clauses] if self.else_clause: self.else_clause = self.else_clause.analyse_expressions(env) return self def generate_execution_code(self, code): code.mark_pos(self.pos) end_label = code.new_label() last = len(self.if_clauses) if not self.else_clause: last -= 1 # avoid redundant goto at end of last if-clause for i, if_clause in enumerate(self.if_clauses): if_clause.generate_execution_code(code, end_label, is_last=i == last) if self.else_clause: code.mark_pos(self.else_clause.pos) code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(end_label) def generate_function_definitions(self, env, code): for clause in self.if_clauses: clause.generate_function_definitions(env, code) if self.else_clause is not None: self.else_clause.generate_function_definitions(env, code) def annotate(self, code): for if_clause in self.if_clauses: if_clause.annotate(code) if self.else_clause: self.else_clause.annotate(code) class IfClauseNode(Node): # if or elif clause in an if statement # # condition ExprNode # body StatNode child_attrs = ["condition", "body"] branch_hint = None def analyse_declarations(self, env): self.body.analyse_declarations(env) def analyse_expressions(self, env): self.condition = self.condition.analyse_temp_boolean_expression(env) self.body = self.body.analyse_expressions(env) return self def generate_execution_code(self, code, end_label, is_last): self.condition.generate_evaluation_code(code) code.mark_pos(self.pos) condition = self.condition.result() if self.branch_hint: condition = '%s(%s)' % (self.branch_hint, condition) code.putln("if (%s) {" % condition) self.condition.generate_disposal_code(code) self.condition.free_temps(code) self.body.generate_execution_code(code) code.mark_pos(self.pos, trace=False) if not (is_last or self.body.is_terminator): code.put_goto(end_label) code.putln("}") def generate_function_definitions(self, env, code): self.condition.generate_function_definitions(env, code) self.body.generate_function_definitions(env, code) def annotate(self, code): self.condition.annotate(code) self.body.annotate(code) class SwitchCaseNode(StatNode): # Generated in the optimization of an if-elif-else node # # conditions [ExprNode] # body StatNode child_attrs = ['conditions', 'body'] def generate_condition_evaluation_code(self, code): for cond in self.conditions: cond.generate_evaluation_code(code) def generate_execution_code(self, code): num_conditions = len(self.conditions) line_tracing_enabled = code.globalstate.directives['linetrace'] for i, cond in enumerate(self.conditions, 1): code.putln("case %s:" % cond.result()) code.mark_pos(cond.pos) # Tracing code must appear *after* the 'case' statement. if line_tracing_enabled and i < num_conditions: # Allow fall-through after the line tracing code. code.putln('CYTHON_FALLTHROUGH;') self.body.generate_execution_code(code) code.mark_pos(self.pos, trace=False) code.putln("break;") def generate_function_definitions(self, env, code): for cond in self.conditions: cond.generate_function_definitions(env, code) self.body.generate_function_definitions(env, code) def annotate(self, code): for cond in self.conditions: cond.annotate(code) self.body.annotate(code) class SwitchStatNode(StatNode): # Generated in the optimization of an if-elif-else node # # test ExprNode # cases [SwitchCaseNode] # else_clause StatNode or None child_attrs = ['test', 'cases', 'else_clause'] def generate_execution_code(self, code): self.test.generate_evaluation_code(code) # Make sure all conditions are evaluated before going into the switch() statement. # This is required in order to prevent any execution code from leaking into the space between the cases. for case in self.cases: case.generate_condition_evaluation_code(code) code.mark_pos(self.pos) code.putln("switch (%s) {" % self.test.result()) for case in self.cases: case.generate_execution_code(code) if self.else_clause is not None: code.putln("default:") self.else_clause.generate_execution_code(code) code.putln("break;") else: # Always generate a default clause to prevent C compiler warnings # about unmatched enum values (it was not the user who decided to # generate the switch statement, so shouldn't be bothered). code.putln("default: break;") code.putln("}") self.test.generate_disposal_code(code) self.test.free_temps(code) def generate_function_definitions(self, env, code): self.test.generate_function_definitions(env, code) for case in self.cases: case.generate_function_definitions(env, code) if self.else_clause is not None: self.else_clause.generate_function_definitions(env, code) def annotate(self, code): self.test.annotate(code) for case in self.cases: case.annotate(code) if self.else_clause is not None: self.else_clause.annotate(code) class LoopNode(object): pass class WhileStatNode(LoopNode, StatNode): # while statement # # condition ExprNode # body StatNode # else_clause StatNode child_attrs = ["condition", "body", "else_clause"] def analyse_declarations(self, env): self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): if self.condition: self.condition = self.condition.analyse_temp_boolean_expression(env) self.body = self.body.analyse_expressions(env) if self.else_clause: self.else_clause = self.else_clause.analyse_expressions(env) return self def generate_execution_code(self, code): code.mark_pos(self.pos) old_loop_labels = code.new_loop_labels() code.putln( "while (1) {") if self.condition: self.condition.generate_evaluation_code(code) self.condition.generate_disposal_code(code) code.putln( "if (!%s) break;" % self.condition.result()) self.condition.free_temps(code) self.body.generate_execution_code(code) code.put_label(code.continue_label) code.putln("}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.mark_pos(self.else_clause.pos) code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) def generate_function_definitions(self, env, code): if self.condition: self.condition.generate_function_definitions(env, code) self.body.generate_function_definitions(env, code) if self.else_clause is not None: self.else_clause.generate_function_definitions(env, code) def annotate(self, code): if self.condition: self.condition.annotate(code) self.body.annotate(code) if self.else_clause: self.else_clause.annotate(code) class DictIterationNextNode(Node): # Helper node for calling PyDict_Next() inside of a WhileStatNode # and checking the dictionary size for changes. Created in # Optimize.py. child_attrs = ['dict_obj', 'expected_size', 'pos_index_var', 'coerced_key_var', 'coerced_value_var', 'coerced_tuple_var', 'key_target', 'value_target', 'tuple_target', 'is_dict_flag'] coerced_key_var = key_ref = None coerced_value_var = value_ref = None coerced_tuple_var = tuple_ref = None def __init__(self, dict_obj, expected_size, pos_index_var, key_target, value_target, tuple_target, is_dict_flag): Node.__init__( self, dict_obj.pos, dict_obj=dict_obj, expected_size=expected_size, pos_index_var=pos_index_var, key_target=key_target, value_target=value_target, tuple_target=tuple_target, is_dict_flag=is_dict_flag, is_temp=True, type=PyrexTypes.c_bint_type) def analyse_expressions(self, env): from . import ExprNodes self.dict_obj = self.dict_obj.analyse_types(env) self.expected_size = self.expected_size.analyse_types(env) if self.pos_index_var: self.pos_index_var = self.pos_index_var.analyse_types(env) if self.key_target: self.key_target = self.key_target.analyse_target_types(env) self.key_ref = ExprNodes.TempNode(self.key_target.pos, PyrexTypes.py_object_type) self.coerced_key_var = self.key_ref.coerce_to(self.key_target.type, env) if self.value_target: self.value_target = self.value_target.analyse_target_types(env) self.value_ref = ExprNodes.TempNode(self.value_target.pos, type=PyrexTypes.py_object_type) self.coerced_value_var = self.value_ref.coerce_to(self.value_target.type, env) if self.tuple_target: self.tuple_target = self.tuple_target.analyse_target_types(env) self.tuple_ref = ExprNodes.TempNode(self.tuple_target.pos, PyrexTypes.py_object_type) self.coerced_tuple_var = self.tuple_ref.coerce_to(self.tuple_target.type, env) self.is_dict_flag = self.is_dict_flag.analyse_types(env) return self def generate_function_definitions(self, env, code): self.dict_obj.generate_function_definitions(env, code) def generate_execution_code(self, code): code.globalstate.use_utility_code(UtilityCode.load_cached("dict_iter", "Optimize.c")) self.dict_obj.generate_evaluation_code(code) assignments = [] temp_addresses = [] for var, result, target in [(self.key_ref, self.coerced_key_var, self.key_target), (self.value_ref, self.coerced_value_var, self.value_target), (self.tuple_ref, self.coerced_tuple_var, self.tuple_target)]: if target is None: addr = 'NULL' else: assignments.append((var, result, target)) var.allocate(code) addr = '&%s' % var.result() temp_addresses.append(addr) result_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False) code.putln("%s = __Pyx_dict_iter_next(%s, %s, &%s, %s, %s, %s, %s);" % ( result_temp, self.dict_obj.py_result(), self.expected_size.result(), self.pos_index_var.result(), temp_addresses[0], temp_addresses[1], temp_addresses[2], self.is_dict_flag.result() )) code.putln("if (unlikely(%s == 0)) break;" % result_temp) code.putln(code.error_goto_if("%s == -1" % result_temp, self.pos)) code.funcstate.release_temp(result_temp) # evaluate all coercions before the assignments for var, result, target in assignments: var.generate_gotref(code) for var, result, target in assignments: result.generate_evaluation_code(code) for var, result, target in assignments: target.generate_assignment_code(result, code) var.release(code) class SetIterationNextNode(Node): # Helper node for calling _PySet_NextEntry() inside of a WhileStatNode # and checking the set size for changes. Created in Optimize.py. child_attrs = ['set_obj', 'expected_size', 'pos_index_var', 'coerced_value_var', 'value_target', 'is_set_flag'] coerced_value_var = value_ref = None def __init__(self, set_obj, expected_size, pos_index_var, value_target, is_set_flag): Node.__init__( self, set_obj.pos, set_obj=set_obj, expected_size=expected_size, pos_index_var=pos_index_var, value_target=value_target, is_set_flag=is_set_flag, is_temp=True, type=PyrexTypes.c_bint_type) def analyse_expressions(self, env): from . import ExprNodes self.set_obj = self.set_obj.analyse_types(env) self.expected_size = self.expected_size.analyse_types(env) self.pos_index_var = self.pos_index_var.analyse_types(env) self.value_target = self.value_target.analyse_target_types(env) self.value_ref = ExprNodes.TempNode(self.value_target.pos, type=PyrexTypes.py_object_type) self.coerced_value_var = self.value_ref.coerce_to(self.value_target.type, env) self.is_set_flag = self.is_set_flag.analyse_types(env) return self def generate_function_definitions(self, env, code): self.set_obj.generate_function_definitions(env, code) def generate_execution_code(self, code): code.globalstate.use_utility_code(UtilityCode.load_cached("set_iter", "Optimize.c")) self.set_obj.generate_evaluation_code(code) value_ref = self.value_ref value_ref.allocate(code) result_temp = code.funcstate.allocate_temp(PyrexTypes.c_int_type, False) code.putln("%s = __Pyx_set_iter_next(%s, %s, &%s, &%s, %s);" % ( result_temp, self.set_obj.py_result(), self.expected_size.result(), self.pos_index_var.result(), value_ref.result(), self.is_set_flag.result() )) code.putln("if (unlikely(%s == 0)) break;" % result_temp) code.putln(code.error_goto_if("%s == -1" % result_temp, self.pos)) code.funcstate.release_temp(result_temp) # evaluate all coercions before the assignments value_ref.generate_gotref(code) self.coerced_value_var.generate_evaluation_code(code) self.value_target.generate_assignment_code(self.coerced_value_var, code) value_ref.release(code) def ForStatNode(pos, **kw): if 'iterator' in kw: if kw['iterator'].is_async: return AsyncForStatNode(pos, **kw) else: return ForInStatNode(pos, **kw) else: return ForFromStatNode(pos, **kw) class _ForInStatNode(LoopNode, StatNode): # Base class of 'for-in' statements. # # target ExprNode # iterator IteratorNode | AIterAwaitExprNode(AsyncIteratorNode) # body StatNode # else_clause StatNode # item NextNode | AwaitExprNode(AsyncNextNode) # is_async boolean true for 'async for' statements child_attrs = ["target", "item", "iterator", "body", "else_clause"] item = None is_async = False def _create_item_node(self): raise NotImplementedError("must be implemented by subclasses") def analyse_declarations(self, env): self.target.analyse_target_declaration(env) self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) self._create_item_node() def analyse_expressions(self, env): self.target = self.target.analyse_target_types(env) self.iterator = self.iterator.analyse_expressions(env) self._create_item_node() # must rewrap self.item after analysis self.item = self.item.analyse_expressions(env) if (not self.is_async and (self.iterator.type.is_ptr or self.iterator.type.is_array) and self.target.type.assignable_from(self.iterator.type)): # C array slice optimization. pass else: self.item = self.item.coerce_to(self.target.type, env) self.body = self.body.analyse_expressions(env) if self.else_clause: self.else_clause = self.else_clause.analyse_expressions(env) return self def generate_execution_code(self, code): code.mark_pos(self.pos) old_loop_labels = code.new_loop_labels() self.iterator.generate_evaluation_code(code) code.putln("for (;;) {") self.item.generate_evaluation_code(code) self.target.generate_assignment_code(self.item, code) self.body.generate_execution_code(code) code.mark_pos(self.pos) code.put_label(code.continue_label) code.putln("}") break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: # in nested loops, the 'else' block can contain a # 'continue' statement for the outer loop, but we may need # to generate cleanup code before taking that path, so we # intercept it here orig_continue_label = code.continue_label code.continue_label = code.new_label('outer_continue') code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") if code.label_used(code.continue_label): code.put_goto(break_label) code.mark_pos(self.pos) code.put_label(code.continue_label) self.iterator.generate_disposal_code(code) code.put_goto(orig_continue_label) code.set_loop_labels(old_loop_labels) code.mark_pos(self.pos) if code.label_used(break_label): code.put_label(break_label) self.iterator.generate_disposal_code(code) self.iterator.free_temps(code) def generate_function_definitions(self, env, code): self.target.generate_function_definitions(env, code) self.iterator.generate_function_definitions(env, code) self.body.generate_function_definitions(env, code) if self.else_clause is not None: self.else_clause.generate_function_definitions(env, code) def annotate(self, code): self.target.annotate(code) self.iterator.annotate(code) self.body.annotate(code) if self.else_clause: self.else_clause.annotate(code) self.item.annotate(code) class ForInStatNode(_ForInStatNode): # 'for' statement is_async = False def _create_item_node(self): from .ExprNodes import NextNode self.item = NextNode(self.iterator) class AsyncForStatNode(_ForInStatNode): # 'async for' statement # # iterator AIterAwaitExprNode(AsyncIteratorNode) # item AwaitIterNextExprNode(AsyncIteratorNode) is_async = True def __init__(self, pos, **kw): assert 'item' not in kw from . import ExprNodes # AwaitExprNodes must appear before running MarkClosureVisitor kw['item'] = ExprNodes.AwaitIterNextExprNode(kw['iterator'].pos, arg=None) _ForInStatNode.__init__(self, pos, **kw) def _create_item_node(self): from . import ExprNodes self.item.arg = ExprNodes.AsyncNextNode(self.iterator) class ForFromStatNode(LoopNode, StatNode): # for name from expr rel name rel expr # # target NameNode # bound1 ExprNode # relation1 string # relation2 string # bound2 ExprNode # step ExprNode or None # body StatNode # else_clause StatNode or None # # Used internally: # # from_range bool # is_py_target bool # loopvar_node ExprNode (usually a NameNode or temp node) # py_loopvar_node PyTempNode or None child_attrs = ["target", "bound1", "bound2", "step", "body", "else_clause"] is_py_target = False loopvar_node = None py_loopvar_node = None from_range = False gil_message = "For-loop using object bounds or target" def nogil_check(self, env): for x in (self.target, self.bound1, self.bound2): if x.type.is_pyobject: self.gil_error() def analyse_declarations(self, env): self.target.analyse_target_declaration(env) self.body.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): from . import ExprNodes self.target = self.target.analyse_target_types(env) self.bound1 = self.bound1.analyse_types(env) self.bound2 = self.bound2.analyse_types(env) if self.step is not None: if isinstance(self.step, ExprNodes.UnaryMinusNode): warning(self.step.pos, "Probable infinite loop in for-from-by statement. " "Consider switching the directions of the relations.", 2) self.step = self.step.analyse_types(env) self.set_up_loop(env) target_type = self.target.type if not (target_type.is_pyobject or target_type.is_numeric): error(self.target.pos, "for-from loop variable must be c numeric type or Python object") self.body = self.body.analyse_expressions(env) if self.else_clause: self.else_clause = self.else_clause.analyse_expressions(env) return self def set_up_loop(self, env): from . import ExprNodes target_type = self.target.type if target_type.is_numeric: loop_type = target_type else: if target_type.is_enum: warning(self.target.pos, "Integer loops over enum values are fragile. Please cast to a safe integer type instead.") loop_type = PyrexTypes.c_long_type if target_type.is_pyobject else PyrexTypes.c_int_type if not self.bound1.type.is_pyobject: loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound1.type) if not self.bound2.type.is_pyobject: loop_type = PyrexTypes.widest_numeric_type(loop_type, self.bound2.type) if self.step is not None and not self.step.type.is_pyobject: loop_type = PyrexTypes.widest_numeric_type(loop_type, self.step.type) self.bound1 = self.bound1.coerce_to(loop_type, env) self.bound2 = self.bound2.coerce_to(loop_type, env) if not self.bound2.is_literal: self.bound2 = self.bound2.coerce_to_temp(env) if self.step is not None: self.step = self.step.coerce_to(loop_type, env) if not self.step.is_literal: self.step = self.step.coerce_to_temp(env) if target_type.is_numeric or target_type.is_enum: self.is_py_target = False if isinstance(self.target, ExprNodes.BufferIndexNode): raise error(self.pos, "Buffer or memoryview slicing/indexing not allowed as for-loop target.") self.loopvar_node = self.target self.py_loopvar_node = None else: self.is_py_target = True c_loopvar_node = ExprNodes.TempNode(self.pos, loop_type, env) self.loopvar_node = c_loopvar_node self.py_loopvar_node = ExprNodes.CloneNode(c_loopvar_node).coerce_to_pyobject(env) def generate_execution_code(self, code): code.mark_pos(self.pos) old_loop_labels = code.new_loop_labels() from_range = self.from_range self.bound1.generate_evaluation_code(code) self.bound2.generate_evaluation_code(code) offset, incop = self.relation_table[self.relation1] if self.step is not None: self.step.generate_evaluation_code(code) step = self.step.result() incop = "%s=%s" % (incop[0], step) # e.g. '++' => '+= STEP' else: step = '1' from . import ExprNodes if isinstance(self.loopvar_node, ExprNodes.TempNode): self.loopvar_node.allocate(code) if isinstance(self.py_loopvar_node, ExprNodes.TempNode): self.py_loopvar_node.allocate(code) loopvar_type = PyrexTypes.c_long_type if self.target.type.is_enum else self.target.type if from_range and not self.is_py_target: loopvar_name = code.funcstate.allocate_temp(loopvar_type, False) else: loopvar_name = self.loopvar_node.result() if loopvar_type.is_int and not loopvar_type.signed and self.relation2[0] == '>': # Handle the case where the endpoint of an unsigned int iteration # is within step of 0. code.putln("for (%s = %s%s + %s; %s %s %s + %s; ) { %s%s;" % ( loopvar_name, self.bound1.result(), offset, step, loopvar_name, self.relation2, self.bound2.result(), step, loopvar_name, incop)) else: code.putln("for (%s = %s%s; %s %s %s; %s%s) {" % ( loopvar_name, self.bound1.result(), offset, loopvar_name, self.relation2, self.bound2.result(), loopvar_name, incop)) coerced_loopvar_node = self.py_loopvar_node if coerced_loopvar_node is None and from_range: coerced_loopvar_node = ExprNodes.RawCNameExprNode(self.target.pos, loopvar_type, loopvar_name) if coerced_loopvar_node is not None: coerced_loopvar_node.generate_evaluation_code(code) self.target.generate_assignment_code(coerced_loopvar_node, code) self.body.generate_execution_code(code) code.put_label(code.continue_label) if not from_range and self.py_loopvar_node: # This mess is to make for..from loops with python targets behave # exactly like those with C targets with regards to re-assignment # of the loop variable. if self.target.entry.is_pyglobal: # We know target is a NameNode, this is the only ugly case. target_node = ExprNodes.PyTempNode(self.target.pos, None) target_node.allocate(code) interned_cname = code.intern_identifier(self.target.entry.name) if self.target.entry.scope.is_module_scope: code.globalstate.use_utility_code( UtilityCode.load_cached("GetModuleGlobalName", "ObjectHandling.c")) lookup_func = '__Pyx_GetModuleGlobalName(%s, %s); %s' else: code.globalstate.use_utility_code( UtilityCode.load_cached("GetNameInClass", "ObjectHandling.c")) lookup_func = '__Pyx_GetNameInClass(%s, {}, %s); %s'.format( self.target.entry.scope.namespace_cname) code.putln(lookup_func % ( target_node.result(), interned_cname, code.error_goto_if_null(target_node.result(), self.target.pos))) target_node.generate_gotref(code) else: target_node = self.target from_py_node = ExprNodes.CoerceFromPyTypeNode( self.loopvar_node.type, target_node, self.target.entry.scope) from_py_node.temp_code = loopvar_name from_py_node.generate_result_code(code) if self.target.entry.is_pyglobal: code.put_decref(target_node.result(), target_node.type) target_node.release(code) code.putln("}") if not from_range and self.py_loopvar_node: # This is potentially wasteful, but we don't want the semantics to # depend on whether or not the loop is a python type. self.py_loopvar_node.generate_evaluation_code(code) self.target.generate_assignment_code(self.py_loopvar_node, code) if from_range and not self.is_py_target: code.funcstate.release_temp(loopvar_name) break_label = code.break_label code.set_loop_labels(old_loop_labels) if self.else_clause: code.putln("/*else*/ {") self.else_clause.generate_execution_code(code) code.putln("}") code.put_label(break_label) self.bound1.generate_disposal_code(code) self.bound1.free_temps(code) self.bound2.generate_disposal_code(code) self.bound2.free_temps(code) if isinstance(self.loopvar_node, ExprNodes.TempNode): self.loopvar_node.release(code) if isinstance(self.py_loopvar_node, ExprNodes.TempNode): self.py_loopvar_node.release(code) if self.step is not None: self.step.generate_disposal_code(code) self.step.free_temps(code) relation_table = { # {relop : (initial offset, increment op)} '<=': ("", "++"), '<' : ("+1", "++"), '>=': ("", "--"), '>' : ("-1", "--"), } def generate_function_definitions(self, env, code): self.target.generate_function_definitions(env, code) self.bound1.generate_function_definitions(env, code) self.bound2.generate_function_definitions(env, code) if self.step is not None: self.step.generate_function_definitions(env, code) self.body.generate_function_definitions(env, code) if self.else_clause is not None: self.else_clause.generate_function_definitions(env, code) def annotate(self, code): self.target.annotate(code) self.bound1.annotate(code) self.bound2.annotate(code) if self.step: self.step.annotate(code) self.body.annotate(code) if self.else_clause: self.else_clause.annotate(code) class WithStatNode(StatNode): """ Represents a Python with statement. Implemented by the WithTransform as follows: MGR = EXPR EXIT = MGR.__exit__ VALUE = MGR.__enter__() EXC = True try: try: TARGET = VALUE # optional BODY except: EXC = False if not EXIT(*EXCINFO): raise finally: if EXC: EXIT(None, None, None) MGR = EXIT = VALUE = None """ # manager The with statement manager object # target ExprNode the target lhs of the __enter__() call # body StatNode # enter_call ExprNode the call to the __enter__() method # exit_var String the cname of the __exit__() method reference child_attrs = ["manager", "enter_call", "target", "body"] enter_call = None target_temp = None def analyse_declarations(self, env): self.manager.analyse_declarations(env) self.enter_call.analyse_declarations(env) self.body.analyse_declarations(env) def analyse_expressions(self, env): self.manager = self.manager.analyse_types(env) self.enter_call = self.enter_call.analyse_types(env) if self.target: # set up target_temp before descending into body (which uses it) from .ExprNodes import TempNode self.target_temp = TempNode(self.enter_call.pos, self.enter_call.type) self.body = self.body.analyse_expressions(env) return self def generate_function_definitions(self, env, code): self.manager.generate_function_definitions(env, code) self.enter_call.generate_function_definitions(env, code) self.body.generate_function_definitions(env, code) def generate_execution_code(self, code): code.mark_pos(self.pos) code.putln("/*with:*/ {") self.manager.generate_evaluation_code(code) self.exit_var = code.funcstate.allocate_temp(py_object_type, manage_ref=False) code.globalstate.use_utility_code( UtilityCode.load_cached("PyObjectLookupSpecial", "ObjectHandling.c")) code.putln("%s = __Pyx_PyObject_LookupSpecial(%s, %s); %s" % ( self.exit_var, self.manager.py_result(), code.intern_identifier(EncodedString('__aexit__' if self.is_async else '__exit__')), code.error_goto_if_null(self.exit_var, self.pos), )) code.put_gotref(self.exit_var, py_object_type) # need to free exit_var in the face of exceptions during setup old_error_label = code.new_error_label() intermediate_error_label = code.error_label self.enter_call.generate_evaluation_code(code) if self.target: # The temp result will be cleaned up by the WithTargetAssignmentStatNode # after assigning its result to the target of the 'with' statement. self.target_temp.allocate(code) self.enter_call.make_owned_reference(code) code.putln("%s = %s;" % (self.target_temp.result(), self.enter_call.result())) self.enter_call.generate_post_assignment_code(code) else: self.enter_call.generate_disposal_code(code) self.enter_call.free_temps(code) self.manager.generate_disposal_code(code) self.manager.free_temps(code) code.error_label = old_error_label self.body.generate_execution_code(code) if code.label_used(intermediate_error_label): step_over_label = code.new_label() code.put_goto(step_over_label) code.put_label(intermediate_error_label) code.put_decref_clear(self.exit_var, py_object_type) code.put_goto(old_error_label) code.put_label(step_over_label) code.funcstate.release_temp(self.exit_var) code.putln('}') class WithTargetAssignmentStatNode(AssignmentNode): # The target assignment of the 'with' statement value (return # value of the __enter__() call). # # This is a special cased assignment that properly cleans up the RHS. # # lhs ExprNode the assignment target # rhs ExprNode a (coerced) TempNode for the rhs (from WithStatNode) # with_node WithStatNode the surrounding with-statement child_attrs = ["rhs", "lhs"] with_node = None rhs = None def analyse_declarations(self, env): self.lhs.analyse_target_declaration(env) def analyse_expressions(self, env): self.lhs = self.lhs.analyse_target_types(env) self.lhs.gil_assignment_check(env) self.rhs = self.with_node.target_temp.coerce_to(self.lhs.type, env) return self def generate_execution_code(self, code): self.rhs.generate_evaluation_code(code) self.lhs.generate_assignment_code(self.rhs, code) self.with_node.target_temp.release(code) def annotate(self, code): self.lhs.annotate(code) self.rhs.annotate(code) class TryExceptStatNode(StatNode): # try .. except statement # # body StatNode # except_clauses [ExceptClauseNode] # else_clause StatNode or None child_attrs = ["body", "except_clauses", "else_clause"] in_generator = False def analyse_declarations(self, env): self.body.analyse_declarations(env) for except_clause in self.except_clauses: except_clause.analyse_declarations(env) if self.else_clause: self.else_clause.analyse_declarations(env) def analyse_expressions(self, env): self.body = self.body.analyse_expressions(env) default_clause_seen = 0 for i, except_clause in enumerate(self.except_clauses): except_clause = self.except_clauses[i] = except_clause.analyse_expressions(env) if default_clause_seen: error(except_clause.pos, "default 'except:' must be last") if not except_clause.pattern: default_clause_seen = 1 self.has_default_clause = default_clause_seen if self.else_clause: self.else_clause = self.else_clause.analyse_expressions(env) return self nogil_check = Node.gil_error gil_message = "Try-except statement" def generate_execution_code(self, code): code.mark_pos(self.pos) # before changing the error label, in case of tracing errors code.putln("{") old_return_label = code.return_label old_break_label = code.break_label old_continue_label = code.continue_label old_error_label = code.new_error_label() our_error_label = code.error_label except_end_label = code.new_label('exception_handled') except_error_label = code.new_label('except_error') except_return_label = code.new_label('except_return') try_return_label = code.new_label('try_return') try_break_label = code.new_label('try_break') if old_break_label else None try_continue_label = code.new_label('try_continue') if old_continue_label else None try_end_label = code.new_label('try_end') exc_save_vars = [code.funcstate.allocate_temp(py_object_type, False) for _ in range(3)] save_exc = code.insertion_point() code.putln( "/*try:*/ {") code.return_label = try_return_label code.break_label = try_break_label code.continue_label = try_continue_label self.body.generate_execution_code(code) code.mark_pos(self.pos, trace=False) code.putln( "}") temps_to_clean_up = code.funcstate.all_free_managed_temps() can_raise = code.label_used(our_error_label) if can_raise: # inject code before the try block to save away the exception state code.globalstate.use_utility_code(reset_exception_utility_code) if not self.in_generator: save_exc.putln("__Pyx_PyThreadState_declare") save_exc.putln("__Pyx_PyThreadState_assign") save_exc.putln("__Pyx_ExceptionSave(%s);" % ( ', '.join(['&%s' % var for var in exc_save_vars]))) for var in exc_save_vars: save_exc.put_xgotref(var, py_object_type) def restore_saved_exception(): for name in exc_save_vars: code.put_xgiveref(name, py_object_type) code.putln("__Pyx_ExceptionReset(%s);" % ', '.join(exc_save_vars)) else: # try block cannot raise exceptions, but we had to allocate the temps above, # so just keep the C compiler from complaining about them being unused mark_vars_used = ["(void)%s;" % var for var in exc_save_vars] save_exc.putln("%s /* mark used */" % ' '.join(mark_vars_used)) def restore_saved_exception(): pass code.error_label = except_error_label code.return_label = except_return_label normal_case_terminates = self.body.is_terminator if self.else_clause: code.mark_pos(self.else_clause.pos) code.putln( "/*else:*/ {") self.else_clause.generate_execution_code(code) code.putln( "}") if not normal_case_terminates: normal_case_terminates = self.else_clause.is_terminator if can_raise: if not normal_case_terminates: for var in exc_save_vars: code.put_xdecref_clear(var, py_object_type) code.put_goto(try_end_label) code.put_label(our_error_label) for temp_name, temp_type in temps_to_clean_up: code.put_xdecref_clear(temp_name, temp_type) outer_except = code.funcstate.current_except # Currently points to self, but the ExceptClauseNode would also be ok. Change if needed. code.funcstate.current_except = self for except_clause in self.except_clauses: except_clause.generate_handling_code(code, except_end_label) code.funcstate.current_except = outer_except if not self.has_default_clause: code.put_goto(except_error_label) for exit_label, old_label in [(except_error_label, old_error_label), (try_break_label, old_break_label), (try_continue_label, old_continue_label), (try_return_label, old_return_label), (except_return_label, old_return_label)]: if code.label_used(exit_label): if not normal_case_terminates and not code.label_used(try_end_label): code.put_goto(try_end_label) code.put_label(exit_label) code.mark_pos(self.pos, trace=False) if can_raise: restore_saved_exception() code.put_goto(old_label) if code.label_used(except_end_label): if not normal_case_terminates and not code.label_used(try_end_label): code.put_goto(try_end_label) code.put_label(except_end_label) if can_raise: restore_saved_exception() if code.label_used(try_end_label): code.put_label(try_end_label) code.putln("}") for cname in exc_save_vars: code.funcstate.release_temp(cname) code.return_label = old_return_label code.break_label = old_break_label code.continue_label = old_continue_label code.error_label = old_error_label def generate_function_definitions(self, env, code): self.body.generate_function_definitions(env, code) for except_clause in self.except_clauses: except_clause.generate_function_definitions(env, code) if self.else_clause is not None: self.else_clause.generate_function_definitions(env, code) def annotate(self, code): self.body.annotate(code) for except_node in self.except_clauses: except_node.annotate(code) if self.else_clause: self.else_clause.annotate(code) class ExceptClauseNode(Node): # Part of try ... except statement. # # pattern [ExprNode] # target ExprNode or None # body StatNode # excinfo_target TupleNode(3*ResultRefNode) or None optional target for exception info (not owned here!) # match_flag string result of exception match # exc_value ExcValueNode used internally # function_name string qualified name of enclosing function # exc_vars (string * 3) local exception variables # is_except_as bool Py3-style "except ... as xyz" # excinfo_target is never set by the parser, but can be set by a transform # in order to extract more extensive information about the exception as a # sys.exc_info()-style tuple into a target variable child_attrs = ["pattern", "target", "body", "exc_value"] exc_value = None excinfo_target = None is_except_as = False def analyse_declarations(self, env): if self.target: self.target.analyse_target_declaration(env) self.body.analyse_declarations(env) def analyse_expressions(self, env): self.function_name = env.qualified_name if self.pattern: # normalise/unpack self.pattern into a list for i, pattern in enumerate(self.pattern): pattern = pattern.analyse_expressions(env) self.pattern[i] = pattern.coerce_to_pyobject(env) if self.target: from . import ExprNodes self.exc_value = ExprNodes.ExcValueNode(self.pos) self.target = self.target.analyse_target_expression(env, self.exc_value) self.body = self.body.analyse_expressions(env) return self def generate_handling_code(self, code, end_label): code.mark_pos(self.pos) if self.pattern: has_non_literals = not all( pattern.is_literal or pattern.is_simple() and not pattern.is_temp for pattern in self.pattern) if has_non_literals: # For non-trivial exception check expressions, hide the live exception from C-API calls. exc_vars = [code.funcstate.allocate_temp(py_object_type, manage_ref=True) for _ in range(3)] code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c")) code.putln("__Pyx_ErrFetch(&%s, &%s, &%s);" % tuple(exc_vars)) exc_type = exc_vars[0] else: exc_vars = exc_type = None for pattern in self.pattern: pattern.generate_evaluation_code(code) patterns = [pattern.py_result() for pattern in self.pattern] exc_tests = [] if exc_type: code.globalstate.use_utility_code( UtilityCode.load_cached("FastTypeChecks", "ModuleSetupCode.c")) if len(patterns) == 2: exc_tests.append("__Pyx_PyErr_GivenExceptionMatches2(%s, %s, %s)" % ( exc_type, patterns[0], patterns[1], )) else: exc_tests.extend( "__Pyx_PyErr_GivenExceptionMatches(%s, %s)" % (exc_type, pattern) for pattern in patterns ) elif len(patterns) == 2: code.globalstate.use_utility_code( UtilityCode.load_cached("FastTypeChecks", "ModuleSetupCode.c")) exc_tests.append("__Pyx_PyErr_ExceptionMatches2(%s, %s)" % ( patterns[0], patterns[1], )) else: code.globalstate.use_utility_code( UtilityCode.load_cached("PyErrExceptionMatches", "Exceptions.c")) exc_tests.extend( "__Pyx_PyErr_ExceptionMatches(%s)" % pattern for pattern in patterns ) match_flag = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False) code.putln("%s = %s;" % (match_flag, ' || '.join(exc_tests))) for pattern in self.pattern: pattern.generate_disposal_code(code) pattern.free_temps(code) if exc_vars: code.putln("__Pyx_ErrRestore(%s, %s, %s);" % tuple(exc_vars)) code.putln(' '.join(["%s = 0;" % var for var in exc_vars])) for temp in exc_vars: code.funcstate.release_temp(temp) code.putln( "if (%s) {" % match_flag) code.funcstate.release_temp(match_flag) else: code.putln("/*except:*/ {") if (not getattr(self.body, 'stats', True) and self.excinfo_target is None and self.target is None): # most simple case: no exception variable, empty body (pass) # => reset the exception state, done code.globalstate.use_utility_code(UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c")) code.putln("__Pyx_ErrRestore(0,0,0);") code.put_goto(end_label) code.putln("}") return exc_vars = [code.funcstate.allocate_temp(py_object_type, manage_ref=True) for _ in range(3)] code.put_add_traceback(self.function_name) # We always have to fetch the exception value even if # there is no target, because this also normalises the # exception and stores it in the thread state. code.globalstate.use_utility_code(get_exception_utility_code) exc_args = "&%s, &%s, &%s" % tuple(exc_vars) code.putln("if (__Pyx_GetException(%s) < 0) %s" % ( exc_args, code.error_goto(self.pos))) for var in exc_vars: code.put_gotref(var, py_object_type) if self.target: self.exc_value.set_var(exc_vars[1]) self.exc_value.generate_evaluation_code(code) self.target.generate_assignment_code(self.exc_value, code) if self.excinfo_target is not None: for tempvar, node in zip(exc_vars, self.excinfo_target.args): node.set_var(tempvar) old_break_label, old_continue_label = code.break_label, code.continue_label code.break_label = code.new_label('except_break') code.continue_label = code.new_label('except_continue') old_exc_vars = code.funcstate.exc_vars code.funcstate.exc_vars = exc_vars self.body.generate_execution_code(code) code.funcstate.exc_vars = old_exc_vars if not self.body.is_terminator: for var in exc_vars: # FIXME: XDECREF() is needed to allow re-raising (which clears the exc_vars), # but I don't think it's the right solution. code.put_xdecref_clear(var, py_object_type) code.put_goto(end_label) for new_label, old_label in [(code.break_label, old_break_label), (code.continue_label, old_continue_label)]: if code.label_used(new_label): code.put_label(new_label) for var in exc_vars: code.put_decref_clear(var, py_object_type) code.put_goto(old_label) code.break_label = old_break_label code.continue_label = old_continue_label for temp in exc_vars: code.funcstate.release_temp(temp) code.putln( "}") def generate_function_definitions(self, env, code): if self.target is not None: self.target.generate_function_definitions(env, code) self.body.generate_function_definitions(env, code) def annotate(self, code): if self.pattern: for pattern in self.pattern: pattern.annotate(code) if self.target: self.target.annotate(code) self.body.annotate(code) class TryFinallyStatNode(StatNode): # try ... finally statement # # body StatNode # finally_clause StatNode # finally_except_clause deep-copy of finally_clause for exception case # in_generator inside of generator => must store away current exception also in return case # # Each of the continue, break, return and error gotos runs # into its own deep-copy of the finally block code. # In addition, if we're doing an error, we save the # exception on entry to the finally block and restore # it on exit. child_attrs = ["body", "finally_clause", "finally_except_clause"] preserve_exception = 1 # handle exception case, in addition to return/break/continue handle_error_case = True func_return_type = None finally_except_clause = None is_try_finally_in_nogil = False in_generator = False @staticmethod def create_analysed(pos, env, body, finally_clause): node = TryFinallyStatNode(pos, body=body, finally_clause=finally_clause) return node def analyse_declarations(self, env): self.body.analyse_declarations(env) self.finally_except_clause = copy.deepcopy(self.finally_clause) self.finally_except_clause.analyse_declarations(env) self.finally_clause.analyse_declarations(env) def analyse_expressions(self, env): self.body = self.body.analyse_expressions(env) self.finally_clause = self.finally_clause.analyse_expressions(env) self.finally_except_clause = self.finally_except_clause.analyse_expressions(env) if env.return_type and not env.return_type.is_void: self.func_return_type = env.return_type return self nogil_check = Node.gil_error gil_message = "Try-finally statement" def generate_execution_code(self, code): code.mark_pos(self.pos) # before changing the error label, in case of tracing errors code.putln("/*try:*/ {") old_error_label = code.error_label old_labels = code.all_new_labels() new_labels = code.get_all_labels() new_error_label = code.error_label if not self.handle_error_case: code.error_label = old_error_label catch_label = code.new_label() was_in_try_finally = code.funcstate.in_try_finally code.funcstate.in_try_finally = 1 self.body.generate_execution_code(code) code.funcstate.in_try_finally = was_in_try_finally code.putln("}") temps_to_clean_up = code.funcstate.all_free_managed_temps() code.mark_pos(self.finally_clause.pos) code.putln("/*finally:*/ {") # Reset labels only after writing out a potential line trace call for correct nogil error handling. code.set_all_labels(old_labels) def fresh_finally_clause(_next=[self.finally_clause]): # generate the original subtree once and always keep a fresh copy node = _next[0] node_copy = copy.deepcopy(node) if node is self.finally_clause: _next[0] = node_copy else: node = node_copy return node preserve_error = self.preserve_exception and code.label_used(new_error_label) needs_success_cleanup = not self.finally_clause.is_terminator if not self.body.is_terminator: code.putln('/*normal exit:*/{') fresh_finally_clause().generate_execution_code(code) if not self.finally_clause.is_terminator: code.put_goto(catch_label) code.putln('}') if preserve_error: code.put_label(new_error_label) code.putln('/*exception exit:*/{') if not self.in_generator: code.putln("__Pyx_PyThreadState_declare") if self.is_try_finally_in_nogil: code.declare_gilstate() if needs_success_cleanup: exc_lineno_cnames = tuple([ code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False) for _ in range(2)]) exc_filename_cname = code.funcstate.allocate_temp( PyrexTypes.CPtrType(PyrexTypes.c_const_type(PyrexTypes.c_char_type)), manage_ref=False) else: exc_lineno_cnames = exc_filename_cname = None exc_vars = tuple([ code.funcstate.allocate_temp(py_object_type, manage_ref=False) for _ in range(6)]) self.put_error_catcher( code, temps_to_clean_up, exc_vars, exc_lineno_cnames, exc_filename_cname) finally_old_labels = code.all_new_labels() code.putln('{') old_exc_vars = code.funcstate.exc_vars code.funcstate.exc_vars = exc_vars[:3] self.finally_except_clause.generate_execution_code(code) code.funcstate.exc_vars = old_exc_vars code.putln('}') if needs_success_cleanup: self.put_error_uncatcher(code, exc_vars, exc_lineno_cnames, exc_filename_cname) if exc_lineno_cnames: for cname in exc_lineno_cnames: code.funcstate.release_temp(cname) if exc_filename_cname: code.funcstate.release_temp(exc_filename_cname) code.put_goto(old_error_label) for new_label, old_label in zip(code.get_all_labels(), finally_old_labels): if not code.label_used(new_label): continue code.put_label(new_label) self.put_error_cleaner(code, exc_vars) code.put_goto(old_label) for cname in exc_vars: code.funcstate.release_temp(cname) code.putln('}') code.set_all_labels(old_labels) return_label = code.return_label exc_vars = () for i, (new_label, old_label) in enumerate(zip(new_labels, old_labels)): if not code.label_used(new_label): continue if new_label == new_error_label and preserve_error: continue # handled above code.putln('%s: {' % new_label) ret_temp = None if old_label == return_label: # return actually raises an (uncatchable) exception in generators that we must preserve if self.in_generator: exc_vars = tuple([ code.funcstate.allocate_temp(py_object_type, manage_ref=False) for _ in range(6)]) self.put_error_catcher(code, [], exc_vars) if not self.finally_clause.is_terminator: # store away return value for later reuse if (self.func_return_type and not self.is_try_finally_in_nogil and not isinstance(self.finally_clause, GILExitNode)): ret_temp = code.funcstate.allocate_temp( self.func_return_type, manage_ref=False) code.putln("%s = %s;" % (ret_temp, Naming.retval_cname)) if self.func_return_type.is_pyobject: code.putln("%s = 0;" % Naming.retval_cname) fresh_finally_clause().generate_execution_code(code) if old_label == return_label: if ret_temp: code.putln("%s = %s;" % (Naming.retval_cname, ret_temp)) if self.func_return_type.is_pyobject: code.putln("%s = 0;" % ret_temp) code.funcstate.release_temp(ret_temp) if self.in_generator: self.put_error_uncatcher(code, exc_vars) for cname in exc_vars: code.funcstate.release_temp(cname) if not self.finally_clause.is_terminator: code.put_goto(old_label) code.putln('}') # End finally code.put_label(catch_label) code.putln( "}") def generate_function_definitions(self, env, code): self.body.generate_function_definitions(env, code) self.finally_clause.generate_function_definitions(env, code) if self.finally_except_clause: self.finally_except_clause.generate_function_definitions(env, code) def put_error_catcher(self, code, temps_to_clean_up, exc_vars, exc_lineno_cnames=None, exc_filename_cname=None): code.globalstate.use_utility_code(restore_exception_utility_code) code.globalstate.use_utility_code(get_exception_utility_code) code.globalstate.use_utility_code(swap_exception_utility_code) if self.is_try_finally_in_nogil: code.put_ensure_gil(declare_gilstate=False) code.putln("__Pyx_PyThreadState_assign") code.putln(' '.join(["%s = 0;" % var for var in exc_vars])) for temp_name, type in temps_to_clean_up: code.put_xdecref_clear(temp_name, type) # not using preprocessor here to avoid warnings about # unused utility functions and/or temps code.putln("if (PY_MAJOR_VERSION >= 3)" " __Pyx_ExceptionSwap(&%s, &%s, &%s);" % exc_vars[3:]) code.putln("if ((PY_MAJOR_VERSION < 3) ||" # if __Pyx_GetException() fails in Py3, # store the newly raised exception instead " unlikely(__Pyx_GetException(&%s, &%s, &%s) < 0)) " "__Pyx_ErrFetch(&%s, &%s, &%s);" % (exc_vars[:3] * 2)) for var in exc_vars: code.put_xgotref(var, py_object_type) if exc_lineno_cnames: code.putln("%s = %s; %s = %s; %s = %s;" % ( exc_lineno_cnames[0], Naming.lineno_cname, exc_lineno_cnames[1], Naming.clineno_cname, exc_filename_cname, Naming.filename_cname)) if self.is_try_finally_in_nogil: code.put_release_ensured_gil() def put_error_uncatcher(self, code, exc_vars, exc_lineno_cnames=None, exc_filename_cname=None): code.globalstate.use_utility_code(restore_exception_utility_code) code.globalstate.use_utility_code(reset_exception_utility_code) if self.is_try_finally_in_nogil: code.put_ensure_gil(declare_gilstate=False) # not using preprocessor here to avoid warnings about # unused utility functions and/or temps code.putln("if (PY_MAJOR_VERSION >= 3) {") for var in exc_vars[3:]: code.put_xgiveref(var, py_object_type) code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:]) code.putln("}") for var in exc_vars[:3]: code.put_xgiveref(var, py_object_type) code.putln("__Pyx_ErrRestore(%s, %s, %s);" % exc_vars[:3]) if self.is_try_finally_in_nogil: code.put_release_ensured_gil() code.putln(' '.join(["%s = 0;" % var for var in exc_vars])) if exc_lineno_cnames: code.putln("%s = %s; %s = %s; %s = %s;" % ( Naming.lineno_cname, exc_lineno_cnames[0], Naming.clineno_cname, exc_lineno_cnames[1], Naming.filename_cname, exc_filename_cname)) def put_error_cleaner(self, code, exc_vars): code.globalstate.use_utility_code(reset_exception_utility_code) if self.is_try_finally_in_nogil: code.put_ensure_gil(declare_gilstate=False) # not using preprocessor here to avoid warnings about # unused utility functions and/or temps code.putln("if (PY_MAJOR_VERSION >= 3) {") for var in exc_vars[3:]: code.put_xgiveref(var, py_object_type) code.putln("__Pyx_ExceptionReset(%s, %s, %s);" % exc_vars[3:]) code.putln("}") for var in exc_vars[:3]: code.put_xdecref_clear(var, py_object_type) if self.is_try_finally_in_nogil: code.put_release_ensured_gil() code.putln(' '.join(["%s = 0;"]*3) % exc_vars[3:]) def annotate(self, code): self.body.annotate(code) self.finally_clause.annotate(code) class NogilTryFinallyStatNode(TryFinallyStatNode): """ A try/finally statement that may be used in nogil code sections. """ preserve_exception = False nogil_check = None class GILStatNode(NogilTryFinallyStatNode): # 'with gil' or 'with nogil' statement # # state string 'gil' or 'nogil' # scope_gil_state_known bool For nogil functions this can be False, since they can also be run with gil # set to False by GilCheck transform child_attrs = ["condition"] + NogilTryFinallyStatNode.child_attrs state_temp = None scope_gil_state_known = True def __init__(self, pos, state, body, condition=None): self.state = state self.condition = condition self.create_state_temp_if_needed(pos, state, body) TryFinallyStatNode.__init__( self, pos, body=body, finally_clause=GILExitNode( pos, state=state, state_temp=self.state_temp)) def create_state_temp_if_needed(self, pos, state, body): from .ParseTreeTransforms import YieldNodeCollector collector = YieldNodeCollector() collector.visitchildren(body) if not collector.yields: return if state == 'gil': temp_type = PyrexTypes.c_gilstate_type else: temp_type = PyrexTypes.c_threadstate_ptr_type from . import ExprNodes self.state_temp = ExprNodes.TempNode(pos, temp_type) def analyse_declarations(self, env): env._in_with_gil_block = (self.state == 'gil') if self.state == 'gil': env.has_with_gil_block = True if self.condition is not None: self.condition.analyse_declarations(env) return super(GILStatNode, self).analyse_declarations(env) def analyse_expressions(self, env): env.use_utility_code( UtilityCode.load_cached("ForceInitThreads", "ModuleSetupCode.c")) if self.condition is not None: self.condition = self.condition.analyse_expressions(env) was_nogil = env.nogil env.nogil = self.state == 'nogil' node = TryFinallyStatNode.analyse_expressions(self, env) env.nogil = was_nogil return node def generate_execution_code(self, code): code.mark_pos(self.pos) code.begin_block() if self.state_temp: self.state_temp.allocate(code) variable = self.state_temp.result() else: variable = None old_gil_config = code.funcstate.gil_owned if self.state == 'gil': code.put_ensure_gil(variable=variable) code.funcstate.gil_owned = True else: code.put_release_gil(variable=variable, unknown_gil_state=not self.scope_gil_state_known) code.funcstate.gil_owned = False TryFinallyStatNode.generate_execution_code(self, code) if self.state_temp: self.state_temp.release(code) code.funcstate.gil_owned = old_gil_config code.end_block() class GILExitNode(StatNode): """ Used as the 'finally' block in a GILStatNode state string 'gil' or 'nogil' # scope_gil_state_known bool For nogil functions this can be False, since they can also be run with gil # set to False by GilCheck transform """ child_attrs = [] state_temp = None scope_gil_state_known = True def analyse_expressions(self, env): return self def generate_execution_code(self, code): if self.state_temp: variable = self.state_temp.result() else: variable = None if self.state == 'gil': code.put_release_ensured_gil(variable) else: code.put_acquire_gil(variable, unknown_gil_state=not self.scope_gil_state_known) class EnsureGILNode(GILExitNode): """ Ensure the GIL in nogil functions for cleanup before returning. """ def generate_execution_code(self, code): code.put_ensure_gil(declare_gilstate=False) def cython_view_utility_code(): from . import MemoryView return MemoryView.view_utility_code utility_code_for_cimports = { # utility code (or inlining c) in a pxd (or pyx) file. # TODO: Consider a generic user-level mechanism for importing 'cpython.array' : lambda : UtilityCode.load_cached("ArrayAPI", "arrayarray.h"), 'cpython.array.array' : lambda : UtilityCode.load_cached("ArrayAPI", "arrayarray.h"), 'cython.view' : cython_view_utility_code, } utility_code_for_imports = { # utility code used when special modules are imported. # TODO: Consider a generic user-level mechanism for importing 'asyncio': ("__Pyx_patch_asyncio", "PatchAsyncIO", "Coroutine.c"), 'inspect': ("__Pyx_patch_inspect", "PatchInspect", "Coroutine.c"), } def cimport_numpy_check(node, code): # shared code between CImportStatNode and FromCImportStatNode # check to ensure that import_array is called for mod in code.globalstate.module_node.scope.cimported_modules: if mod.name != node.module_name: continue # there are sometimes several cimported modules with the same name # so complete the loop if necessary import_array = mod.lookup_here("import_array") _import_array = mod.lookup_here("_import_array") # at least one entry used used = (import_array and import_array.used) or (_import_array and _import_array.used) if ((import_array or _import_array) # at least one entry found and not used): # sanity check that this is actually numpy and not a user pxd called "numpy" if _import_array and _import_array.type.is_cfunction: # warning is mainly for the sake of testing warning(node.pos, "'numpy.import_array()' has been added automatically " "since 'numpy' was cimported but 'numpy.import_array' was not called.", 0) code.globalstate.use_utility_code( UtilityCode.load_cached("NumpyImportArray", "NumpyImportArray.c") ) return # no need to continue once the utility code is added class CImportStatNode(StatNode): # cimport statement # # module_name string Qualified name of module being imported # as_name string or None Name specified in "as" clause, if any # is_absolute bool True for absolute imports, False otherwise child_attrs = [] is_absolute = False def analyse_declarations(self, env): if not env.is_module_scope: error(self.pos, "cimport only allowed at module level") return module_scope = env.find_module( self.module_name, self.pos, relative_level=0 if self.is_absolute else -1) if "." in self.module_name: names = [EncodedString(name) for name in self.module_name.split(".")] top_name = names[0] top_module_scope = env.context.find_submodule(top_name) module_scope = top_module_scope for name in names[1:]: submodule_scope = module_scope.find_submodule(name) module_scope.declare_module(name, submodule_scope, self.pos) module_scope = submodule_scope if self.as_name: env.declare_module(self.as_name, module_scope, self.pos) else: env.add_imported_module(module_scope) env.declare_module(top_name, top_module_scope, self.pos) else: name = self.as_name or self.module_name entry = env.declare_module(name, module_scope, self.pos) entry.known_standard_library_import = self.module_name if self.module_name in utility_code_for_cimports: env.use_utility_code(utility_code_for_cimports[self.module_name]()) def analyse_expressions(self, env): return self def generate_execution_code(self, code): if self.module_name == "numpy": cimport_numpy_check(self, code) class FromCImportStatNode(StatNode): # from ... cimport statement # # module_name string Qualified name of module # relative_level int or None Relative import: number of dots before module_name # imported_names [(pos, name, as_name)] Names to be imported child_attrs = [] module_name = None relative_level = None imported_names = None def analyse_declarations(self, env): if not env.is_module_scope: error(self.pos, "cimport only allowed at module level") return qualified_name_components = env.qualified_name.count('.') + 1 if self.relative_level: if self.relative_level > qualified_name_components: # 1. case: importing beyond package: from .. import pkg error(self.pos, "relative cimport beyond main package is not allowed") return elif self.relative_level == qualified_name_components and not env.is_package: # 2. case: importing from same level but current dir is not package: from . import module error(self.pos, "relative cimport from non-package directory is not allowed") return module_scope = env.find_module(self.module_name, self.pos, relative_level=self.relative_level) module_name = module_scope.qualified_name env.add_imported_module(module_scope) for pos, name, as_name in self.imported_names: if name == "*": for local_name, entry in list(module_scope.entries.items()): env.add_imported_entry(local_name, entry, pos) else: entry = module_scope.lookup(name) if entry: entry.used = 1 else: submodule_scope = env.context.find_module( name, relative_to=module_scope, pos=self.pos, absolute_fallback=False) if submodule_scope.parent_module is module_scope: env.declare_module(as_name or name, submodule_scope, self.pos) else: error(pos, "Name '%s' not declared in module '%s'" % (name, module_name)) if entry: local_name = as_name or name env.add_imported_entry(local_name, entry, pos) if module_name.startswith('cpython') or module_name.startswith('cython'): # enough for now if module_name in utility_code_for_cimports: env.use_utility_code(utility_code_for_cimports[module_name]()) for _, name, _ in self.imported_names: fqname = '%s.%s' % (module_name, name) if fqname in utility_code_for_cimports: env.use_utility_code(utility_code_for_cimports[fqname]()) def declaration_matches(self, entry, kind): if not entry.is_type: return 0 type = entry.type if kind == 'class': if not type.is_extension_type: return 0 else: if not type.is_struct_or_union: return 0 if kind != type.kind: return 0 return 1 def analyse_expressions(self, env): return self def generate_execution_code(self, code): if self.module_name == "numpy": cimport_numpy_check(self, code) class FromImportStatNode(StatNode): # from ... import statement # # module ImportNode # items [(string, NameNode)] # interned_items [(string, NameNode, ExprNode)] # item PyTempNode used internally # import_star boolean used internally child_attrs = ["module"] import_star = 0 def analyse_declarations(self, env): for name, target in self.items: if name == "*": if not env.is_module_scope: error(self.pos, "import * only allowed at module level") return env.has_import_star = 1 self.import_star = 1 else: target.analyse_target_declaration(env) if target.entry: if target.get_known_standard_library_import() is None: target.entry.known_standard_library_import = EncodedString( "%s.%s" % (self.module.module_name.value, name)) else: # it isn't unambiguous target.entry.known_standard_library_import = "" def analyse_expressions(self, env): from . import ExprNodes self.module = self.module.analyse_expressions(env) self.item = ExprNodes.RawCNameExprNode(self.pos, py_object_type) self.interned_items = [] for name, target in self.items: if name == '*': for _, entry in env.entries.items(): if not entry.is_type and entry.type.is_extension_type: env.use_utility_code(UtilityCode.load_cached("ExtTypeTest", "ObjectHandling.c")) break else: entry = env.lookup(target.name) # check whether or not entry is already cimported if (entry.is_type and entry.type.name == name and hasattr(entry.type, 'module_name')): if entry.type.module_name == self.module.module_name.value: # cimported with absolute name continue try: # cimported with relative name module = env.find_module(self.module.module_name.value, pos=self.pos, relative_level=self.module.level) if entry.type.module_name == module.qualified_name: continue except AttributeError: pass target = target.analyse_target_expression(env, None) # FIXME? if target.type is py_object_type: coerced_item = None else: coerced_item = self.item.coerce_to(target.type, env) self.interned_items.append((name, target, coerced_item)) return self def generate_execution_code(self, code): code.mark_pos(self.pos) self.module.generate_evaluation_code(code) if self.import_star: code.putln( 'if (%s(%s) < 0) %s;' % ( Naming.import_star, self.module.py_result(), code.error_goto(self.pos))) item_temp = code.funcstate.allocate_temp(py_object_type, manage_ref=True) self.item.set_cname(item_temp) if self.interned_items: code.globalstate.use_utility_code( UtilityCode.load_cached("ImportFrom", "ImportExport.c")) for name, target, coerced_item in self.interned_items: code.putln( '%s = __Pyx_ImportFrom(%s, %s); %s' % ( item_temp, self.module.py_result(), code.intern_identifier(name), code.error_goto_if_null(item_temp, self.pos))) code.put_gotref(item_temp, py_object_type) if coerced_item is None: target.generate_assignment_code(self.item, code) else: coerced_item.allocate_temp_result(code) coerced_item.generate_result_code(code) target.generate_assignment_code(coerced_item, code) code.put_decref_clear(item_temp, py_object_type) code.funcstate.release_temp(item_temp) self.module.generate_disposal_code(code) self.module.free_temps(code) class ParallelNode(Node): """ Base class for cython.parallel constructs. """ nogil_check = None class ParallelStatNode(StatNode, ParallelNode): """ Base class for 'with cython.parallel.parallel():' and 'for i in prange():'. assignments { Entry(var) : (var.pos, inplace_operator_or_None) } assignments to variables in this parallel section parent parent ParallelStatNode or None is_parallel indicates whether this node is OpenMP parallel (true for #pragma omp parallel for and #pragma omp parallel) is_parallel is true for: #pragma omp parallel #pragma omp parallel for sections, but NOT for #pragma omp for We need this to determine the sharing attributes. privatization_insertion_point a code insertion point used to make temps private (esp. the "nsteps" temp) args tuple the arguments passed to the parallel construct kwargs DictNode the keyword arguments passed to the parallel construct (replaced by its compile time value) """ child_attrs = ['body', 'num_threads'] body = None is_prange = False is_nested_prange = False error_label_used = False num_threads = None chunksize = None parallel_exc = ( Naming.parallel_exc_type, Naming.parallel_exc_value, Naming.parallel_exc_tb, ) parallel_pos_info = ( Naming.parallel_filename, Naming.parallel_lineno, Naming.parallel_clineno, ) pos_info = ( Naming.filename_cname, Naming.lineno_cname, Naming.clineno_cname, ) critical_section_counter = 0 def __init__(self, pos, **kwargs): super(ParallelStatNode, self).__init__(pos, **kwargs) # All assignments in this scope self.assignments = kwargs.get('assignments') or {} # All seen closure cnames and their temporary cnames self.seen_closure_vars = set() # Dict of variables that should be declared (first|last|)private or # reduction { Entry: (op, lastprivate) }. # If op is not None, it's a reduction. self.privates = {} # [NameNode] self.assigned_nodes = [] def analyse_declarations(self, env): self.body.analyse_declarations(env) self.num_threads = None if self.kwargs: # Try to find num_threads and chunksize keyword arguments pairs = [] seen = set() for dictitem in self.kwargs.key_value_pairs: if dictitem.key.value in seen: error(self.pos, "Duplicate keyword argument found: %s" % dictitem.key.value) seen.add(dictitem.key.value) if dictitem.key.value == 'num_threads': if not dictitem.value.is_none: self.num_threads = dictitem.value elif self.is_prange and dictitem.key.value == 'chunksize': if not dictitem.value.is_none: self.chunksize = dictitem.value else: pairs.append(dictitem) self.kwargs.key_value_pairs = pairs try: self.kwargs = self.kwargs.compile_time_value(env) except Exception as e: error(self.kwargs.pos, "Only compile-time values may be " "supplied as keyword arguments") else: self.kwargs = {} for kw, val in self.kwargs.items(): if kw not in self.valid_keyword_arguments: error(self.pos, "Invalid keyword argument: %s" % kw) else: setattr(self, kw, val) def analyse_expressions(self, env): if self.num_threads: self.num_threads = self.num_threads.analyse_expressions(env) if self.chunksize: self.chunksize = self.chunksize.analyse_expressions(env) self.body = self.body.analyse_expressions(env) self.analyse_sharing_attributes(env) if self.num_threads is not None: if self.parent and self.parent.num_threads is not None and not self.parent.is_prange: error(self.pos, "num_threads already declared in outer section") elif self.parent and not self.parent.is_prange: error(self.pos, "num_threads must be declared in the parent parallel section") elif (self.num_threads.type.is_int and self.num_threads.is_literal and self.num_threads.compile_time_value(env) <= 0): error(self.pos, "argument to num_threads must be greater than 0") if not self.num_threads.is_simple() or self.num_threads.type.is_pyobject: self.num_threads = self.num_threads.coerce_to( PyrexTypes.c_int_type, env).coerce_to_temp(env) return self def analyse_sharing_attributes(self, env): """ Analyse the privates for this block and set them in self.privates. This should be called in a post-order fashion during the analyse_expressions phase """ for entry, (pos, op) in self.assignments.items(): if self.is_prange and not self.is_parallel: # closely nested prange in a with parallel block, disallow # assigning to privates in the with parallel block (we # consider it too implicit and magicky for users) if entry in self.parent.assignments: error(pos, "Cannot assign to private of outer parallel block") continue if not self.is_prange and op: # Again possible, but considered to magicky error(pos, "Reductions not allowed for parallel blocks") continue # By default all variables should have the same values as if # executed sequentially lastprivate = True self.propagate_var_privatization(entry, pos, op, lastprivate) def propagate_var_privatization(self, entry, pos, op, lastprivate): """ Propagate the sharing attributes of a variable. If the privatization is determined by a parent scope, done propagate further. If we are a prange, we propagate our sharing attributes outwards to other pranges. If we are a prange in parallel block and the parallel block does not determine the variable private, we propagate to the parent of the parent. Recursion stops at parallel blocks, as they have no concept of lastprivate or reduction. So the following cases propagate: sum is a reduction for all loops: for i in prange(n): for j in prange(n): for k in prange(n): sum += i * j * k sum is a reduction for both loops, local_var is private to the parallel with block: for i in prange(n): with parallel: local_var = ... # private to the parallel for j in prange(n): sum += i * j Nested with parallel blocks are disallowed, because they wouldn't allow you to propagate lastprivates or reductions: #pragma omp parallel for lastprivate(i) for i in prange(n): sum = 0 #pragma omp parallel private(j, sum) with parallel: #pragma omp parallel with parallel: #pragma omp for lastprivate(j) reduction(+:sum) for j in prange(n): sum += i # sum and j are well-defined here # sum and j are undefined here # sum and j are undefined here """ self.privates[entry] = (op, lastprivate) if entry.type.is_memoryviewslice: error(pos, "Memoryview slices can only be shared in parallel sections") return if self.is_prange: if not self.is_parallel and entry not in self.parent.assignments: # Parent is a parallel with block parent = self.parent.parent else: parent = self.parent # We don't need to propagate privates, only reductions and # lastprivates if parent and (op or lastprivate): parent.propagate_var_privatization(entry, pos, op, lastprivate) def _allocate_closure_temp(self, code, entry): """ Helper function that allocate a temporary for a closure variable that is assigned to. """ if self.parent: return self.parent._allocate_closure_temp(code, entry) if entry.cname in self.seen_closure_vars: return entry.cname cname = code.funcstate.allocate_temp(entry.type, True) # Add both the actual cname and the temp cname, as the actual cname # will be replaced with the temp cname on the entry self.seen_closure_vars.add(entry.cname) self.seen_closure_vars.add(cname) self.modified_entries.append((entry, entry.cname)) code.putln("%s = %s;" % (cname, entry.cname)) entry.cname = cname def initialize_privates_to_nan(self, code, exclude=None): first = True for entry, (op, lastprivate) in sorted(self.privates.items()): if not op and (not exclude or entry != exclude): invalid_value = entry.type.invalid_value() if invalid_value: if first: code.putln("/* Initialize private variables to " "invalid values */") first = False code.putln("%s = %s;" % (entry.cname, entry.type.cast_code(invalid_value))) def evaluate_before_block(self, code, expr): c = self.begin_of_parallel_control_block_point_after_decls # we need to set the owner to ourselves temporarily, as # allocate_temp may generate a comment in the middle of our pragma # otherwise when DebugFlags.debug_temp_code_comments is in effect owner = c.funcstate.owner c.funcstate.owner = c expr.generate_evaluation_code(c) c.funcstate.owner = owner return expr.result() def put_num_threads(self, code): """ Write self.num_threads if set as the num_threads OpenMP directive """ if self.num_threads is not None: code.put(" num_threads(%s)" % self.evaluate_before_block(code, self.num_threads)) def declare_closure_privates(self, code): """ If a variable is in a scope object, we need to allocate a temp and assign the value from the temp to the variable in the scope object after the parallel section. This kind of copying should be done only in the outermost parallel section. """ self.modified_entries = [] for entry in sorted(self.assignments): if entry.from_closure or entry.in_closure: self._allocate_closure_temp(code, entry) def release_closure_privates(self, code): """ Release any temps used for variables in scope objects. As this is the outermost parallel block, we don't need to delete the cnames from self.seen_closure_vars. """ for entry, original_cname in self.modified_entries: code.putln("%s = %s;" % (original_cname, entry.cname)) code.funcstate.release_temp(entry.cname) entry.cname = original_cname def privatize_temps(self, code, exclude_temps=()): """ Make any used temporaries private. Before the relevant code block code.start_collecting_temps() should have been called. """ c = self.privatization_insertion_point self.privatization_insertion_point = None if self.is_parallel: self.temps = temps = code.funcstate.stop_collecting_temps() privates, firstprivates = [], [] for temp, type in sorted(temps): if type.is_pyobject or type.is_memoryviewslice: firstprivates.append(temp) else: privates.append(temp) if privates: c.put(" private(%s)" % ", ".join(privates)) if firstprivates: c.put(" firstprivate(%s)" % ", ".join(firstprivates)) if self.breaking_label_used: shared_vars = [Naming.parallel_why] if self.error_label_used: shared_vars.extend(self.parallel_exc) c.put(" private(%s, %s, %s)" % self.pos_info) c.put(" shared(%s)" % ', '.join(shared_vars)) def cleanup_temps(self, code): # Now clean up any memoryview slice and object temporaries if self.is_parallel and not self.is_nested_prange: code.putln("/* Clean up any temporaries */") for temp, type in sorted(self.temps): code.put_xdecref_clear(temp, type, have_gil=False) def setup_parallel_control_flow_block(self, code): """ Sets up a block that surrounds the parallel block to determine how the parallel section was exited. Any kind of return is trapped (break, continue, return, exceptions). This is the idea: { int why = 0; #pragma omp parallel { return # -> goto new_return_label; goto end_parallel; new_return_label: why = 3; goto end_parallel; end_parallel:; #pragma omp flush(why) # we need to flush for every iteration } if (why == 3) goto old_return_label; } """ self.old_loop_labels = code.new_loop_labels() self.old_error_label = code.new_error_label() self.old_return_label = code.return_label code.return_label = code.new_label(name="return") code.begin_block() # parallel control flow block self.begin_of_parallel_control_block_point = code.insertion_point() self.begin_of_parallel_control_block_point_after_decls = code.insertion_point() self.undef_builtin_expect_apple_gcc_bug(code) def begin_parallel_block(self, code): """ Each OpenMP thread in a parallel section that contains a with gil block must have the thread-state initialized. The call to PyGILState_Release() then deallocates our threadstate. If we wouldn't do this, each with gil block would allocate and deallocate one, thereby losing exception information before it can be saved before leaving the parallel section. """ self.begin_of_parallel_block = code.insertion_point() def end_parallel_block(self, code): """ To ensure all OpenMP threads have thread states, we ensure the GIL in each thread (which creates a thread state if it doesn't exist), after which we release the GIL. On exit, reacquire the GIL and release the thread state. If compiled without OpenMP support (at the C level), then we still have to acquire the GIL to decref any object temporaries. """ begin_code = self.begin_of_parallel_block self.begin_of_parallel_block = None if self.error_label_used: end_code = code begin_code.putln("#ifdef _OPENMP") begin_code.put_ensure_gil(declare_gilstate=True) begin_code.putln("Py_BEGIN_ALLOW_THREADS") begin_code.putln("#endif /* _OPENMP */") end_code.putln("#ifdef _OPENMP") end_code.putln("Py_END_ALLOW_THREADS") end_code.putln("#else") end_code.put_safe("{\n") end_code.put_ensure_gil() end_code.putln("#endif /* _OPENMP */") self.cleanup_temps(end_code) end_code.put_release_ensured_gil() end_code.putln("#ifndef _OPENMP") end_code.put_safe("}\n") end_code.putln("#endif /* _OPENMP */") def trap_parallel_exit(self, code, should_flush=False): """ Trap any kind of return inside a parallel construct. 'should_flush' indicates whether the variable should be flushed, which is needed by prange to skip the loop. It also indicates whether we need to register a continue (we need this for parallel blocks, but not for prange loops, as it is a direct jump there). It uses the same mechanism as try/finally: 1 continue 2 break 3 return 4 error """ save_lastprivates_label = code.new_label() dont_return_label = code.new_label() self.any_label_used = False self.breaking_label_used = False self.error_label_used = False self.parallel_private_temps = [] all_labels = code.get_all_labels() # Figure this out before starting to generate any code for label in all_labels: if code.label_used(label): self.breaking_label_used = (self.breaking_label_used or label != code.continue_label) self.any_label_used = True if self.any_label_used: code.put_goto(dont_return_label) for i, label in enumerate(all_labels): if not code.label_used(label): continue is_continue_label = label == code.continue_label code.put_label(label) if not (should_flush and is_continue_label): if label == code.error_label: self.error_label_used = True self.fetch_parallel_exception(code) code.putln("%s = %d;" % (Naming.parallel_why, i + 1)) if (self.breaking_label_used and self.is_prange and not is_continue_label): code.put_goto(save_lastprivates_label) else: code.put_goto(dont_return_label) if self.any_label_used: if self.is_prange and self.breaking_label_used: # Don't rely on lastprivate, save our lastprivates code.put_label(save_lastprivates_label) self.save_parallel_vars(code) code.put_label(dont_return_label) if should_flush and self.breaking_label_used: code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_why) def save_parallel_vars(self, code): """ The following shenanigans are instated when we break, return or propagate errors from a prange. In this case we cannot rely on lastprivate() to do its job, as no iterations may have executed yet in the last thread, leaving the values undefined. It is most likely that the breaking thread has well-defined values of the lastprivate variables, so we keep those values. """ section_name = "__pyx_parallel_lastprivates%d" % self.critical_section_counter code.putln_openmp("#pragma omp critical(%s)" % section_name) ParallelStatNode.critical_section_counter += 1 code.begin_block() # begin critical section c = self.begin_of_parallel_control_block_point temp_count = 0 for entry, (op, lastprivate) in sorted(self.privates.items()): if not lastprivate or entry.type.is_pyobject: continue if entry.type.is_cpp_class and not entry.type.is_fake_reference and code.globalstate.directives['cpp_locals']: type_decl = entry.type.cpp_optional_declaration_code("") else: type_decl = entry.type.empty_declaration_code() temp_cname = "__pyx_parallel_temp%d" % temp_count private_cname = entry.cname temp_count += 1 invalid_value = entry.type.invalid_value() if invalid_value: init = ' = ' + entry.type.cast_code(invalid_value) else: init = '' # Declare the parallel private in the outer block c.putln("%s %s%s;" % (type_decl, temp_cname, init)) self.parallel_private_temps.append((temp_cname, private_cname, entry.type)) if entry.type.is_cpp_class: # moving is fine because we're quitting the loop and so won't be directly accessing the variable again code.globalstate.use_utility_code( UtilityCode.load_cached("MoveIfSupported", "CppSupport.cpp")) private_cname = "__PYX_STD_MOVE_IF_SUPPORTED(%s)" % private_cname # Initialize before escaping code.putln("%s = %s;" % (temp_cname, private_cname)) code.end_block() # end critical section def fetch_parallel_exception(self, code): """ As each OpenMP thread may raise an exception, we need to fetch that exception from the threadstate and save it for after the parallel section where it can be re-raised in the master thread. Although it would seem that __pyx_filename, __pyx_lineno and __pyx_clineno are only assigned to under exception conditions (i.e., when we have the GIL), and thus should be allowed to be shared without any race condition, they are in fact subject to the same race conditions that they were previously when they were global variables and functions were allowed to release the GIL: thread A thread B acquire set lineno release acquire set lineno release acquire fetch exception release skip the fetch deallocate threadstate deallocate threadstate """ code.begin_block() code.put_ensure_gil(declare_gilstate=True) code.putln_openmp("#pragma omp flush(%s)" % Naming.parallel_exc_type) code.putln( "if (!%s) {" % Naming.parallel_exc_type) code.putln("__Pyx_ErrFetchWithState(&%s, &%s, &%s);" % self.parallel_exc) pos_info = chain(*zip(self.parallel_pos_info, self.pos_info)) code.funcstate.uses_error_indicator = True code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info)) code.put_gotref(Naming.parallel_exc_type, py_object_type) code.putln( "}") code.put_release_ensured_gil() code.end_block() def restore_parallel_exception(self, code): "Re-raise a parallel exception" code.begin_block() code.put_ensure_gil(declare_gilstate=True) code.put_giveref(Naming.parallel_exc_type, py_object_type) code.putln("__Pyx_ErrRestoreWithState(%s, %s, %s);" % self.parallel_exc) pos_info = chain(*zip(self.pos_info, self.parallel_pos_info)) code.putln("%s = %s; %s = %s; %s = %s;" % tuple(pos_info)) code.put_release_ensured_gil() code.end_block() def restore_labels(self, code): """ Restore all old labels. Call this before the 'else' clause to for loops and always before ending the parallel control flow block. """ code.set_all_labels(self.old_loop_labels + (self.old_return_label, self.old_error_label)) def end_parallel_control_flow_block( self, code, break_=False, continue_=False, return_=False): """ This ends the parallel control flow block and based on how the parallel section was exited, takes the corresponding action. The break_ and continue_ parameters indicate whether these should be propagated outwards: for i in prange(...): with cython.parallel.parallel(): continue Here break should be trapped in the parallel block, and propagated to the for loop. """ c = self.begin_of_parallel_control_block_point self.begin_of_parallel_control_block_point = None self.begin_of_parallel_control_block_point_after_decls = None if self.num_threads is not None: # FIXME: is it the right place? should not normally produce code. self.num_threads.generate_disposal_code(code) self.num_threads.free_temps(code) # Firstly, always prefer errors over returning, continue or break if self.error_label_used: c.putln("const char *%s = NULL; int %s = 0, %s = 0;" % self.parallel_pos_info) c.putln("PyObject *%s = NULL, *%s = NULL, *%s = NULL;" % self.parallel_exc) code.putln( "if (%s) {" % Naming.parallel_exc_type) code.putln("/* This may have been overridden by a continue, " "break or return in another thread. Prefer the error. */") code.putln("%s = 4;" % Naming.parallel_why) code.putln( "}") if continue_: any_label_used = self.any_label_used else: any_label_used = self.breaking_label_used if any_label_used: # __pyx_parallel_why is used, declare and initialize c.putln("int %s;" % Naming.parallel_why) c.putln("%s = 0;" % Naming.parallel_why) code.putln( "if (%s) {" % Naming.parallel_why) for temp_cname, private_cname, temp_type in self.parallel_private_temps: if temp_type.is_cpp_class: # utility code was loaded earlier temp_cname = "__PYX_STD_MOVE_IF_SUPPORTED(%s)" % temp_cname code.putln("%s = %s;" % (private_cname, temp_cname)) code.putln("switch (%s) {" % Naming.parallel_why) if continue_: code.put(" case 1: ") code.put_goto(code.continue_label) if break_: code.put(" case 2: ") code.put_goto(code.break_label) if return_: code.put(" case 3: ") code.put_goto(code.return_label) if self.error_label_used: code.globalstate.use_utility_code(restore_exception_utility_code) code.putln(" case 4:") self.restore_parallel_exception(code) code.put_goto(code.error_label) code.putln("}") # end switch code.putln( "}") # end if code.end_block() # end parallel control flow block self.redef_builtin_expect_apple_gcc_bug(code) # FIXME: improve with version number for OS X Lion buggy_platform_macro_condition = "(defined(__APPLE__) || defined(__OSX__))" have_expect_condition = "(defined(__GNUC__) && " \ "(__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))))" redef_condition = "(%s && %s)" % (buggy_platform_macro_condition, have_expect_condition) def undef_builtin_expect_apple_gcc_bug(self, code): """ A bug on OS X Lion disallows __builtin_expect macros. This code avoids them """ if not self.parent: code.undef_builtin_expect(self.redef_condition) def redef_builtin_expect_apple_gcc_bug(self, code): if not self.parent: code.redef_builtin_expect(self.redef_condition) class ParallelWithBlockNode(ParallelStatNode): """ This node represents a 'with cython.parallel.parallel():' block """ valid_keyword_arguments = ['num_threads'] num_threads = None def analyse_declarations(self, env): super(ParallelWithBlockNode, self).analyse_declarations(env) if self.args: error(self.pos, "cython.parallel.parallel() does not take " "positional arguments") def generate_execution_code(self, code): self.declare_closure_privates(code) self.setup_parallel_control_flow_block(code) code.putln("#ifdef _OPENMP") code.put("#pragma omp parallel ") if self.privates: privates = [e.cname for e in self.privates if not e.type.is_pyobject] code.put('private(%s)' % ', '.join(sorted(privates))) self.privatization_insertion_point = code.insertion_point() self.put_num_threads(code) code.putln("") code.putln("#endif /* _OPENMP */") code.begin_block() # parallel block self.begin_parallel_block(code) self.initialize_privates_to_nan(code) code.funcstate.start_collecting_temps() self.body.generate_execution_code(code) self.trap_parallel_exit(code) self.privatize_temps(code) self.end_parallel_block(code) code.end_block() # end parallel block continue_ = code.label_used(code.continue_label) break_ = code.label_used(code.break_label) return_ = code.label_used(code.return_label) self.restore_labels(code) self.end_parallel_control_flow_block(code, break_=break_, continue_=continue_, return_=return_) self.release_closure_privates(code) class ParallelRangeNode(ParallelStatNode): """ This node represents a 'for i in cython.parallel.prange():' construct. target NameNode the target iteration variable else_clause Node or None the else clause of this loop """ child_attrs = ['body', 'target', 'else_clause', 'args', 'num_threads', 'chunksize'] body = target = else_clause = args = None start = stop = step = None is_prange = True nogil = None schedule = None valid_keyword_arguments = ['schedule', 'nogil', 'num_threads', 'chunksize'] def __init__(self, pos, **kwds): super(ParallelRangeNode, self).__init__(pos, **kwds) # Pretend to be a ForInStatNode for control flow analysis self.iterator = PassStatNode(pos) def analyse_declarations(self, env): super(ParallelRangeNode, self).analyse_declarations(env) self.target.analyse_target_declaration(env) if self.else_clause is not None: self.else_clause.analyse_declarations(env) if not self.args or len(self.args) > 3: error(self.pos, "Invalid number of positional arguments to prange") return if len(self.args) == 1: self.stop, = self.args elif len(self.args) == 2: self.start, self.stop = self.args else: self.start, self.stop, self.step = self.args if self.schedule not in (None, 'static', 'dynamic', 'guided', 'runtime'): error(self.pos, "Invalid schedule argument to prange: %s" % (self.schedule,)) def analyse_expressions(self, env): was_nogil = env.nogil if self.nogil: env.nogil = True if self.target is None: error(self.pos, "prange() can only be used as part of a for loop") return self self.target = self.target.analyse_target_types(env) if not self.target.type.is_numeric: # Not a valid type, assume one for now anyway if not self.target.type.is_pyobject: # nogil_check will catch the is_pyobject case error(self.target.pos, "Must be of numeric type, not %s" % self.target.type) self.index_type = PyrexTypes.c_py_ssize_t_type else: self.index_type = self.target.type # Setup start, stop and step, allocating temps if needed self.names = 'start', 'stop', 'step' start_stop_step = self.start, self.stop, self.step for node, name in zip(start_stop_step, self.names): if node is not None: node.analyse_types(env) if not node.type.is_numeric: error(node.pos, "%s argument must be numeric" % name) continue if not node.is_literal: node = node.coerce_to_temp(env) setattr(self, name, node) # As we range from 0 to nsteps, computing the index along the # way, we need a fitting type for 'i' and 'nsteps' self.index_type = PyrexTypes.widest_numeric_type( self.index_type, node.type) if self.else_clause is not None: self.else_clause = self.else_clause.analyse_expressions(env) # Although not actually an assignment in this scope, it should be # treated as such to ensure it is unpacked if a closure temp, and to # ensure lastprivate behaviour and propagation. If the target index is # not a NameNode, it won't have an entry, and an error was issued by # ParallelRangeTransform target_entry = getattr(self.target, 'entry', None) if target_entry: self.assignments[self.target.entry] = self.target.pos, None node = super(ParallelRangeNode, self).analyse_expressions(env) if node.chunksize: if not node.schedule: error(node.chunksize.pos, "Must provide schedule with chunksize") elif node.schedule == 'runtime': error(node.chunksize.pos, "Chunksize not valid for the schedule runtime") elif (node.chunksize.type.is_int and node.chunksize.is_literal and node.chunksize.compile_time_value(env) <= 0): error(node.chunksize.pos, "Chunksize must not be negative") node.chunksize = node.chunksize.coerce_to( PyrexTypes.c_int_type, env).coerce_to_temp(env) if node.nogil: env.nogil = was_nogil node.is_nested_prange = node.parent and node.parent.is_prange if node.is_nested_prange: parent = node while parent.parent and parent.parent.is_prange: parent = parent.parent parent.assignments.update(node.assignments) parent.privates.update(node.privates) parent.assigned_nodes.extend(node.assigned_nodes) return node def nogil_check(self, env): names = 'start', 'stop', 'step', 'target' nodes = self.start, self.stop, self.step, self.target for name, node in zip(names, nodes): if node is not None and node.type.is_pyobject: error(node.pos, "%s may not be a Python object " "as we don't have the GIL" % name) def generate_execution_code(self, code): """ Generate code in the following steps 1) copy any closure variables determined thread-private into temporaries 2) allocate temps for start, stop and step 3) generate a loop that calculates the total number of steps, which then computes the target iteration variable for every step: for i in prange(start, stop, step): ... becomes nsteps = (stop - start) / step; i = start; #pragma omp parallel for lastprivate(i) for (temp = 0; temp < nsteps; temp++) { i = start + step * temp; ... } Note that accumulation of 'i' would have a data dependency between iterations. Also, you can't do this for (i = start; i < stop; i += step) ... as the '<' operator should become '>' for descending loops. 'for i from x < i < y:' does not suffer from this problem as the relational operator is known at compile time! 4) release our temps and write back any private closure variables """ self.declare_closure_privates(code) # This can only be a NameNode target_index_cname = self.target.entry.cname # This will be used as the dict to format our code strings, holding # the start, stop , step, temps and target cnames fmt_dict = { 'target': target_index_cname, 'target_type': self.target.type.empty_declaration_code() } # Setup start, stop and step, allocating temps if needed start_stop_step = self.start, self.stop, self.step defaults = '0', '0', '1' for node, name, default in zip(start_stop_step, self.names, defaults): if node is None: result = default elif node.is_literal: result = node.get_constant_c_result_code() else: node.generate_evaluation_code(code) result = node.result() fmt_dict[name] = result fmt_dict['i'] = code.funcstate.allocate_temp(self.index_type, False) fmt_dict['nsteps'] = code.funcstate.allocate_temp(self.index_type, False) # TODO: check if the step is 0 and if so, raise an exception in a # 'with gil' block. For now, just abort if self.step is not None and self.step.has_constant_result() and self.step.constant_result == 0: error(node.pos, "Iteration with step 0 is invalid.") elif not fmt_dict['step'].isdigit() or int(fmt_dict['step']) == 0: code.putln("if (((%(step)s) == 0)) abort();" % fmt_dict) self.setup_parallel_control_flow_block(code) # parallel control flow block # Note: nsteps is private in an outer scope if present code.putln("%(nsteps)s = (%(stop)s - %(start)s + %(step)s - %(step)s/abs(%(step)s)) / %(step)s;" % fmt_dict) # The target iteration variable might not be initialized, do it only if # we are executing at least 1 iteration, otherwise we should leave the # target unaffected. The target iteration variable is firstprivate to # shut up compiler warnings caused by lastprivate, as the compiler # erroneously believes that nsteps may be <= 0, leaving the private # target index uninitialized code.putln("if (%(nsteps)s > 0)" % fmt_dict) code.begin_block() # if block self.generate_loop(code, fmt_dict) code.end_block() # end if block self.restore_labels(code) if self.else_clause: if self.breaking_label_used: code.put("if (%s < 2)" % Naming.parallel_why) code.begin_block() # else block code.putln("/* else */") self.else_clause.generate_execution_code(code) code.end_block() # end else block # ------ cleanup ------ self.end_parallel_control_flow_block(code) # end parallel control flow block # And finally, release our privates and write back any closure # variables for temp in start_stop_step + (self.chunksize,): if temp is not None: temp.generate_disposal_code(code) temp.free_temps(code) code.funcstate.release_temp(fmt_dict['i']) code.funcstate.release_temp(fmt_dict['nsteps']) self.release_closure_privates(code) def generate_loop(self, code, fmt_dict): if self.is_nested_prange: code.putln("#if 0") else: code.putln("#ifdef _OPENMP") if not self.is_parallel: code.put("#pragma omp for") self.privatization_insertion_point = code.insertion_point() reduction_codepoint = self.parent.privatization_insertion_point else: code.put("#pragma omp parallel") self.privatization_insertion_point = code.insertion_point() reduction_codepoint = self.privatization_insertion_point code.putln("") code.putln("#endif /* _OPENMP */") code.begin_block() # pragma omp parallel begin block # Initialize the GIL if needed for this thread self.begin_parallel_block(code) if self.is_nested_prange: code.putln("#if 0") else: code.putln("#ifdef _OPENMP") code.put("#pragma omp for") for entry, (op, lastprivate) in sorted(self.privates.items()): # Don't declare the index variable as a reduction if op and op in "+*-&^|" and entry != self.target.entry: if entry.type.is_pyobject: error(self.pos, "Python objects cannot be reductions") else: #code.put(" reduction(%s:%s)" % (op, entry.cname)) # This is the only way reductions + nesting works in gcc4.5 reduction_codepoint.put( " reduction(%s:%s)" % (op, entry.cname)) else: if entry == self.target.entry: code.put(" firstprivate(%s)" % entry.cname) code.put(" lastprivate(%s)" % entry.cname) continue if not entry.type.is_pyobject: if lastprivate: private = 'lastprivate' else: private = 'private' code.put(" %s(%s)" % (private, entry.cname)) if self.schedule: if self.chunksize: chunksize = ", %s" % self.evaluate_before_block(code, self.chunksize) else: chunksize = "" code.put(" schedule(%s%s)" % (self.schedule, chunksize)) self.put_num_threads(reduction_codepoint) code.putln("") code.putln("#endif /* _OPENMP */") code.put("for (%(i)s = 0; %(i)s < %(nsteps)s; %(i)s++)" % fmt_dict) code.begin_block() # for loop block guard_around_body_codepoint = code.insertion_point() # Start if guard block around the body. This may be unnecessary, but # at least it doesn't spoil indentation code.begin_block() code.putln("%(target)s = (%(target_type)s)(%(start)s + %(step)s * %(i)s);" % fmt_dict) self.initialize_privates_to_nan(code, exclude=self.target.entry) if self.is_parallel and not self.is_nested_prange: # nested pranges are not omp'ified, temps go to outer loops code.funcstate.start_collecting_temps() self.body.generate_execution_code(code) self.trap_parallel_exit(code, should_flush=True) if self.is_parallel and not self.is_nested_prange: # nested pranges are not omp'ified, temps go to outer loops self.privatize_temps(code) if self.breaking_label_used: # Put a guard around the loop body in case return, break or # exceptions might be used guard_around_body_codepoint.putln("if (%s < 2)" % Naming.parallel_why) code.end_block() # end guard around loop body code.end_block() # end for loop block if self.is_parallel: # Release the GIL and deallocate the thread state self.end_parallel_block(code) code.end_block() # pragma omp parallel end block class CnameDecoratorNode(StatNode): """ This node is for the cname decorator in CythonUtilityCode: @cname('the_cname') cdef func(...): ... In case of a cdef class the cname specifies the objstruct_cname. node the node to which the cname decorator is applied cname the cname the node should get """ child_attrs = ['node'] def analyse_declarations(self, env): self.node.analyse_declarations(env) node = self.node if isinstance(node, CompilerDirectivesNode): node = node.body.stats[0] self.is_function = isinstance(node, FuncDefNode) is_struct_or_enum = isinstance(node, (CStructOrUnionDefNode, CEnumDefNode)) e = node.entry if self.is_function: e.cname = self.cname e.func_cname = self.cname e.used = True if e.pyfunc_cname and '.' in e.pyfunc_cname: e.pyfunc_cname = self.mangle(e.pyfunc_cname) elif is_struct_or_enum: e.cname = e.type.cname = self.cname else: scope = node.scope e.cname = self.cname e.type.objstruct_cname = self.cname + '_obj' e.type.typeobj_cname = Naming.typeobj_prefix + self.cname e.type.typeptr_cname = self.cname + '_type' e.type.scope.namespace_cname = e.type.typeptr_cname e.as_variable.cname = e.type.typeptr_cname scope.scope_prefix = self.cname + "_" for name, entry in scope.entries.items(): if entry.func_cname: entry.func_cname = self.mangle(entry.cname) if entry.pyfunc_cname: entry.pyfunc_cname = self.mangle(entry.pyfunc_cname) def mangle(self, cname): if '.' in cname: # remove __pyx_base from func_cname cname = cname.split('.')[-1] return '%s_%s' % (self.cname, cname) def analyse_expressions(self, env): self.node = self.node.analyse_expressions(env) return self def generate_function_definitions(self, env, code): "Ensure a prototype for every @cname method in the right place" if self.is_function and env.is_c_class_scope: # method in cdef class, generate a prototype in the header h_code = code.globalstate['utility_code_proto'] if isinstance(self.node, DefNode): self.node.generate_function_header( h_code, with_pymethdef=False, proto_only=True) else: from . import ModuleNode entry = self.node.entry cname = entry.cname entry.cname = entry.func_cname ModuleNode.generate_cfunction_declaration( entry, env.global_scope(), h_code, definition=True) entry.cname = cname self.node.generate_function_definitions(env, code) def generate_execution_code(self, code): self.node.generate_execution_code(code) class ErrorNode(Node): """ Node type for things that we want to get through the parser (especially for things that are being scanned in "tentative_scan" blocks), but should immediately raise and error afterwards. what str """ child_attrs = [] #------------------------------------------------------------------------------------ # # Runtime support code # #------------------------------------------------------------------------------------ if Options.gcc_branch_hints: branch_prediction_macros = """ /* Test for GCC > 2.95 */ #if defined(__GNUC__) \ && (__GNUC__ > 2 || (__GNUC__ == 2 && (__GNUC_MINOR__ > 95))) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else /* !__GNUC__ or GCC < 2.95 */ #define likely(x) (x) #define unlikely(x) (x) #endif /* __GNUC__ */ """ else: branch_prediction_macros = """ #define likely(x) (x) #define unlikely(x) (x) """ #------------------------------------------------------------------------------------ printing_utility_code = UtilityCode.load_cached("Print", "Printing.c") printing_one_utility_code = UtilityCode.load_cached("PrintOne", "Printing.c") #------------------------------------------------------------------------------------ # Exception raising code # # Exceptions are raised by __Pyx_Raise() and stored as plain # type/value/tb in PyThreadState->curexc_*. When being caught by an # 'except' statement, curexc_* is moved over to exc_* by # __Pyx_GetException() restore_exception_utility_code = UtilityCode.load_cached("PyErrFetchRestore", "Exceptions.c") raise_utility_code = UtilityCode.load_cached("RaiseException", "Exceptions.c") get_exception_utility_code = UtilityCode.load_cached("GetException", "Exceptions.c") swap_exception_utility_code = UtilityCode.load_cached("SwapException", "Exceptions.c") reset_exception_utility_code = UtilityCode.load_cached("SaveResetException", "Exceptions.c") traceback_utility_code = UtilityCode.load_cached("AddTraceback", "Exceptions.c") #------------------------------------------------------------------------------------ get_exception_tuple_utility_code = UtilityCode( proto=""" static PyObject *__Pyx_GetExceptionTuple(PyThreadState *__pyx_tstate); /*proto*/ """, # I doubt that calling __Pyx_GetException() here is correct as it moves # the exception from tstate->curexc_* to tstate->exc_*, which prevents # exception handlers later on from receiving it. # NOTE: "__pyx_tstate" may be used by __Pyx_GetException() macro impl = """ static PyObject *__Pyx_GetExceptionTuple(CYTHON_UNUSED PyThreadState *__pyx_tstate) { PyObject *type = NULL, *value = NULL, *tb = NULL; if (__Pyx_GetException(&type, &value, &tb) == 0) { PyObject* exc_info = PyTuple_New(3); if (exc_info) { Py_INCREF(type); Py_INCREF(value); Py_INCREF(tb); PyTuple_SET_ITEM(exc_info, 0, type); PyTuple_SET_ITEM(exc_info, 1, value); PyTuple_SET_ITEM(exc_info, 2, tb); return exc_info; } } return NULL; } """, requires=[get_exception_utility_code])