From 78cbd84a0068db09b6d08ff14a316800ad9be89a Mon Sep 17 00:00:00 2001 From: weidai Date: Tue, 15 Apr 2003 00:38:48 +0000 Subject: fix bug in Grouper add RIPEMD-???, Whirlpool, Shacal2, Camellia, Two-Track MAC (Kevin Springle) change ChannelSwitch to allow non-blocking input (denis bider) change Redirector to allow more options (denis bider) fix MaurerRandomnessTest optimize MD2 (Kevin Springle) git-svn-id: svn://svn.code.sf.net/p/cryptopp/code/trunk/c5@55 57ff6487-cd31-0410-9ec3-f628ee90f5f0 --- fipsalgt.cpp | 877 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 877 insertions(+) create mode 100644 fipsalgt.cpp (limited to 'fipsalgt.cpp') diff --git a/fipsalgt.cpp b/fipsalgt.cpp new file mode 100644 index 0000000..4537ee4 --- /dev/null +++ b/fipsalgt.cpp @@ -0,0 +1,877 @@ +// fipsalgt.cpp - written and placed in the public domain by Wei Dai + +// This file implements the various algorithm tests needed to pass FIPS 140 validation. +// They're preserved here (commented out) in case Crypto++ needs to be revalidated. + +/* +class LineBreakParser : public AutoSignaling > +{ +public: + LineBreakParser(BufferedTransformation *attachment=NULL, byte lineEnd='\n') + : AutoSignaling >(attachment), m_lineEnd(lineEnd) {} + + unsigned int Put2(const byte *begin, unsigned int length, int messageEnd, bool blocking) + { + if (!blocking) + throw BlockingInputOnly("LineBreakParser"); + + unsigned int i, last = 0; + for (i=0; iPut2(begin+last, i-last, GetAutoSignalPropagation(), blocking); + last = i+1; + } + } + if (last != i) + AttachedTransformation()->Put2(begin+last, i-last, 0, blocking); + + if (messageEnd && GetAutoSignalPropagation()) + { + AttachedTransformation()->MessageEnd(GetAutoSignalPropagation()-1, blocking); + AttachedTransformation()->MessageSeriesEnd(GetAutoSignalPropagation()-1, blocking); + } + + return 0; + } + +private: + byte m_lineEnd; +}; + +class TestDataParser : public Unflushable +{ +public: + enum DataType {OTHER, COUNT, KEY_T, IV, INPUT, OUTPUT}; + + TestDataParser(std::string algorithm, std::string test, std::string mode, unsigned int feedbackSize, bool encrypt, BufferedTransformation *attachment) + : Unflushable(attachment) + , m_algorithm(algorithm), m_test(test), m_mode(mode), m_feedbackSize(feedbackSize) + , m_firstLine(true), m_blankLineTransition(0) + { + m_nameToType["COUNT"] = COUNT; + m_nameToType["KEY"] = KEY_T; + m_nameToType["KEYs"] = KEY_T; + m_nameToType["key"] = KEY_T; + m_nameToType["IV"] = IV; + m_nameToType["IV1"] = IV; + m_nameToType["CV"] = IV; + m_nameToType["CV1"] = IV; + m_nameToType["IB"] = IV; + m_nameToType["TEXT"] = INPUT; + m_nameToType["RESULT"] = OUTPUT; + SetEncrypt(encrypt); + + if (m_algorithm == "DSS") + { + if (m_test == "prime") + m_trigger = "Prime"; + else if (m_test == "pqg") + m_trigger = "N"; + else if (m_test == "xy") + m_trigger = "G"; + else if (m_test == "gensig") + m_trigger = "Msg"; + else if (m_test == "versig") + m_trigger = "Sig"; + else if (m_test == "verpqg") + m_trigger = "c"; + } + } + + void SetEncrypt(bool encrypt) + { + m_encrypt = encrypt; + if (encrypt) + { + m_nameToType["PLAINTEXT"] = INPUT; + m_nameToType["CIPHERTEXT"] = OUTPUT; + m_nameToType["PT"] = INPUT; + m_nameToType["CT"] = OUTPUT; + } + else + { + m_nameToType["PLAINTEXT"] = OUTPUT; + m_nameToType["CIPHERTEXT"] = INPUT; + m_nameToType["PT"] = OUTPUT; + m_nameToType["CT"] = INPUT; + } + } + +protected: + void OutputData(std::string &output, const std::string &key, const std::string &data) + { + output += key; + output += "= "; + output += data; + output += "\n"; + } + + void OutputData(std::string &output, const std::string &key, int data) + { + OutputData(output, key, IntToString(data)); + } + + void OutputData(std::string &output, const std::string &key, const SecByteBlock &data) + { + output += key; + output += "= "; + HexEncoder(new StringSink(output), false).Put(data, data.size()); + output += "\n"; + } + + void OutputData(std::string &output, const std::string &key, const Integer &data) + { + SecByteBlock s(data.MinEncodedSize()); + data.Encode(s, s.size()); + OutputData(output, key, s); + } + + void OutputData(std::string &output, DataType t, const std::string &data) + { + if (m_algorithm == "SKIPJACK") + { + if (m_test == "KAT") + { + if (t == OUTPUT) + output = m_line + data + "\n"; + } + else + { + if (t != COUNT) + { + output += m_typeToName[t]; + output += "="; + } + output += data; + output += t == OUTPUT ? "\n" : " "; + } + } + else if (m_algorithm == "TDES" && t == KEY_T && m_typeToName[KEY_T].empty()) + { + output += "KEY1 = "; + output += data.substr(0, 16); + output += "\nKEY2 = "; + output += data.size() > 16 ? data.substr(16, 16) : data.substr(0, 16); + output += "\nKEY3 = "; + output += data.size() > 32 ? data.substr(32, 16) : data.substr(0, 16); + output += "\n"; + } + else + { + output += m_typeToName[t]; + output += " = "; + output += data; + output += "\n"; + } + } + + void OutputData(std::string &output, DataType t, int i) + { + OutputData(output, t, IntToString(i)); + } + + void OutputData(std::string &output, DataType t, const SecByteBlock &data) + { + std::string hexData; + StringSource(data, true, new HexEncoder(new StringSink(hexData), false)); + OutputData(output, t, hexData); + } + + void OutputGivenData(std::string &output, DataType t, bool optional = false) + { + if (m_data.find(m_typeToName[t]) == m_data.end()) + { + if (optional) + return; + throw Exception(Exception::OTHER_ERROR, "TestDataParser: key not found: " + m_typeToName[t]); + } + + OutputData(output, t, m_data[m_typeToName[t]]); + } + + template + BlockCipher * NewBT(T *) + { + if (!m_encrypt && (m_mode == "ECB" || m_mode == "CBC")) + return new typename T::Decryption; + else + return new typename T::Encryption; + } + + template + SymmetricCipher * NewMode(T *, BlockCipher &bt, const byte *iv) + { + if (!m_encrypt) + return new typename T::Decryption(bt, iv, m_feedbackSize/8); + else + return new typename T::Encryption(bt, iv, m_feedbackSize/8); + } + + static inline void Xor(SecByteBlock &z, const SecByteBlock &x, const SecByteBlock &y) + { + assert(x.size() == y.size()); + z.resize(x.size()); + xorbuf(z, x, y, x.size()); + } + + SecByteBlock UpdateKey(SecByteBlock key, const SecByteBlock *text) + { + unsigned int innerCount = (m_algorithm == "AES") ? 1000 : 10000; + int keySize = key.size(), blockSize = text[0].size(); + SecByteBlock x(keySize); + for (int k=0; k= 2); + assert(m_compactString[0] == m_compactString.size()-2); + bool b = !!m_compactString[1]; + Integer m; + unsigned int bitLength = 0; + + for (unsigned int j = 2; j < m_compactString.size(); j++) + { + m <<= m_compactString[j]; + for (unsigned int k = 0; k < m_compactString[j]; k++) + m.SetBit(k, b); + bitLength += m_compactString[j]; + b = !b; + } + m_compactString.clear(); + assert(bitLength % 8 == 0); + + SecByteBlock message(bitLength / 8); + m.Encode(message, message.size()); + SHA sha; + + if (m_bracketString == "SHS Type 3 Strings") + { + SecByteBlock m1; + for (int j = 0; j < 100; j++) + { + for (word32 i = 1; i <= 50000; i++) + { + m1.resize(message.size() + j/4 + 3 + 4); + memcpy(m1, message, message.size()); + memset(m1 + message.size(), 0, j/4 + 3); + PutWord(false, BIG_ENDIAN_ORDER, m1 + m1.size() - 4, i); + message.resize(sha.DigestSize()); + sha.CalculateDigest(message, m1, m1.size()); + } + StringSource(message, message.size(), true, new HexEncoder(new StringSink(output))); + output += " ^\n"; + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + } + } + else + { + StringSource(message, message.size(), true, new HashFilter(sha, new HexEncoder(new StringSink(output)))); + output += " ^\n"; + AttachedTransformation()->Put((byte *)output.data(), output.size()); + } + } + else if (m_test == "prime") + { + Integer p((m_data["Prime"] + "h").c_str()); + OutputData(output, "result", VerifyPrime(m_rng, p, 2) ? "P" : "F"); + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + } + else if (m_test == "pqg") + { + int n = atol(m_data["N"].c_str()); + for (int i=0; iPut((byte *)output.data(), output.size()); + output.resize(0); + } + } + else if (m_test == "xy") + { + Integer p((m_data["P"] + "h").c_str()); + Integer q((m_data["Q"] + "h").c_str()); + Integer g((m_data["G"] + "h").c_str()); + + for (int i=0; i<10; i++) + { + DSA::Signer priv(m_rng, p, q, g); + DSA::Verifier pub(priv); + + OutputData(output, "X", priv.GetKey().GetPrivateExponent()); + OutputData(output, "Y", pub.GetKey().GetPublicElement()); + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + } + } + else if (m_test == "gensig") + { + Integer p((m_data["P"] + "h").c_str()); + Integer q((m_data["Q"] + "h").c_str()); + Integer g((m_data["G"] + "h").c_str()); + Integer x((m_data["X"] + "h").c_str()); + DSA::Signer signer(p, q, g, x); + + SecByteBlock sig(signer.SignatureLength()); + StringSource(m_data["Msg"], true, new HexDecoder(new SignerFilter(m_rng, signer, new ArraySink(sig, sig.size())))); + OutputData(output, "Sig", sig); + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + } + else if (m_test == "versig") + { + Integer p((m_data["P"] + "h").c_str()); + Integer q((m_data["Q"] + "h").c_str()); + Integer g((m_data["G"] + "h").c_str()); + Integer y((m_data["Y"] + "h").c_str()); + DSA::Verifier verifier(p, q, g, y); + + HexDecoder filter(new SignatureVerificationFilter(verifier)); + StringSource(m_data["Sig"], true, new Redirector(filter, false)); + StringSource(m_data["Msg"], true, new Redirector(filter, false)); + filter.MessageEnd(); + byte b; + filter.Get(b); + OutputData(output, "result", b ? "P" : "F"); + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + } + else if (m_test == "verpqg") + { + Integer p((m_data["P"] + "h").c_str()); + Integer q((m_data["Q"] + "h").c_str()); + Integer g((m_data["G"] + "h").c_str()); + Integer h((m_data["H"] + "h").c_str()); + int c = atol(m_data["c"].c_str()); + SecByteBlock seed(m_data["Seed"].size()/2); + StringSource(m_data["Seed"], true, new HexDecoder(new ArraySink(seed, seed.size()))); + + Integer p1, q1; + bool result = DSA::GeneratePrimes(seed, seed.size()*8, c, p1, 1024, q1, true); + result = result && (p1 == p && q1 == q); + result = result && g == a_exp_b_mod_c(h, (p-1)/q, p); + + OutputData(output, "result", result ? "P" : "F"); + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + } + + return; + } + + SecByteBlock &key = m_data2[KEY_T]; + + if (m_algorithm == "TDES") + { + if (!m_data["KEY1"].empty()) + { + const std::string keys[3] = {m_data["KEY1"], m_data["KEY2"], m_data["KEY3"]}; + key.resize(24); + HexDecoder hexDec(new ArraySink(key, key.size())); + for (int i=0; i<3; i++) + hexDec.Put((byte *)keys[i].data(), keys[i].size()); + + if (keys[0] == keys[2]) + { + if (keys[0] == keys[1]) + key.resize(8); + else + key.resize(16); + } + else + key.resize(24); + } + } + + member_ptr pBT; + if (m_algorithm == "DES") + pBT.reset(NewBT((DES*)0)); + else if (m_algorithm == "TDES") + { + if (key.size() == 8) + pBT.reset(NewBT((DES*)0)); + else if (key.size() == 16) + pBT.reset(NewBT((DES_EDE2*)0)); + else + pBT.reset(NewBT((DES_EDE3*)0)); + } + else if (m_algorithm == "SKIPJACK") + pBT.reset(NewBT((SKIPJACK*)0)); + else if (m_algorithm == "AES") + pBT.reset(NewBT((AES*)0)); + else + throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected algorithm: " + m_algorithm); + + if (!pBT->IsValidKeyLength(key.size())) + key.CleanNew(pBT->DefaultKeyLength()); // for Scbcvrct + pBT->SetKey(key.data(), key.size()); + + SecByteBlock &iv = m_data2[IV]; + if (iv.empty()) + iv.CleanNew(pBT->BlockSize()); + + member_ptr pCipher; + unsigned int K = m_feedbackSize; + + if (m_mode == "ECB") + pCipher.reset(NewMode((ECB_Mode_ExternalCipher*)0, *pBT, iv)); + else if (m_mode == "CBC") + pCipher.reset(NewMode((CBC_Mode_ExternalCipher*)0, *pBT, iv)); + else if (m_mode == "CFB") + pCipher.reset(NewMode((CFB_Mode_ExternalCipher*)0, *pBT, iv)); + else if (m_mode == "OFB") + pCipher.reset(NewMode((OFB_Mode_ExternalCipher*)0, *pBT, iv)); + else + throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected mode: " + m_mode); + + bool encrypt = m_encrypt; + + if (m_test == "MONTE") + { + SecByteBlock KEY[401]; + KEY[0] = key; + int keySize = key.size(); + int blockSize = pBT->BlockSize(); + + SecByteBlock IB[10001], OB[10001], PT[10001], CT[10001], RESULT[10001], TXT[10001], CV[10001]; + PT[0] = GetData("PLAINTEXT"); + CT[0] = GetData("CIPHERTEXT"); + CV[0] = IB[0] = iv; + TXT[0] = GetData("TEXT"); + + unsigned int outerCount = (m_algorithm == "AES") ? 100 : 400; + unsigned int innerCount = (m_algorithm == "AES") ? 1000 : 10000; + + for (int i=0; iSetKey(KEY[i], keySize); + + for (int j=0; jProcessBlock(IB[j], CT[j]); + PT[j+1] = CT[j]; + } + else + { + IB[j] = CT[j]; + PT[j].resize(blockSize); + pBT->ProcessBlock(IB[j], PT[j]); + CT[j+1] = PT[j]; + } + } + else if (m_mode == "OFB") + { + OB[j].resize(blockSize); + pBT->ProcessBlock(IB[j], OB[j]); + Xor(RESULT[j], OB[j], TXT[j]); + TXT[j+1] = IB[j]; + IB[j+1] = OB[j]; + } + else if (m_mode == "CBC") + { + if (encrypt) + { + Xor(IB[j], PT[j], CV[j]); + CT[j].resize(blockSize); + pBT->ProcessBlock(IB[j], CT[j]); + PT[j+1] = CV[j]; + CV[j+1] = CT[j]; + } + else + { + IB[j] = CT[j]; + OB[j].resize(blockSize); + pBT->ProcessBlock(IB[j], OB[j]); + Xor(PT[j], OB[j], CV[j]); + CV[j+1] = CT[j]; + CT[j+1] = PT[j]; + } + } + else if (m_mode == "CFB") + { + if (encrypt) + { + OB[j].resize(blockSize); + pBT->ProcessBlock(IB[j], OB[j]); + AssignLeftMostBits(CT[j], OB[j], K); + Xor(CT[j], CT[j], PT[j]); + AssignLeftMostBits(PT[j+1], IB[j], K); + IB[j+1].resize(blockSize); + memcpy(IB[j+1], IB[j]+K/8, blockSize-K/8); + memcpy(IB[j+1]+blockSize-K/8, CT[j], K/8); + } + else + { + OB[j].resize(blockSize); + pBT->ProcessBlock(IB[j], OB[j]); + AssignLeftMostBits(PT[j], OB[j], K); + Xor(PT[j], PT[j], CT[j]); + IB[j+1].resize(blockSize); + memcpy(IB[j+1], IB[j]+K/8, blockSize-K/8); + memcpy(IB[j+1]+blockSize-K/8, CT[j], K/8); + AssignLeftMostBits(CT[j+1], OB[j], K); + } + } + else + throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected mode: " + m_mode); + } + + OutputData(output, COUNT, i); + OutputData(output, KEY_T, KEY[i]); + if (m_mode == "CBC") + OutputData(output, IV, CV[0]); + if (m_mode == "OFB" || m_mode == "CFB") + OutputData(output, IV, IB[0]); + if (m_mode == "ECB" || m_mode == "CBC" || m_mode == "CFB") + { + if (encrypt) + { + OutputData(output, INPUT, PT[0]); + OutputData(output, OUTPUT, CT[innerCount-1]); + KEY[i+1] = UpdateKey(KEY[i], CT); + } + else + { + OutputData(output, INPUT, CT[0]); + OutputData(output, OUTPUT, PT[innerCount-1]); + KEY[i+1] = UpdateKey(KEY[i], PT); + } + PT[0] = PT[innerCount]; + IB[0] = IB[innerCount]; + CV[0] = CV[innerCount]; + CT[0] = CT[innerCount]; + } + else if (m_mode == "OFB") + { + OutputData(output, INPUT, TXT[0]); + OutputData(output, OUTPUT, RESULT[innerCount-1]); + KEY[i+1] = UpdateKey(KEY[i], RESULT); + Xor(TXT[0], TXT[0], IB[innerCount-1]); + IB[0] = OB[innerCount-1]; + } + output += "\n"; + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + } + } + else if (m_test == "MCT") + { + SecByteBlock KEY[101]; + KEY[0] = key; + int keySize = key.size(); + int blockSize = pBT->BlockSize(); + + SecByteBlock ivs[101], inputs[1001], outputs[1001]; + ivs[0] = iv; + inputs[0] = m_data2[INPUT]; + + for (int i=0; i<100; i++) + { + pCipher->SetKey(KEY[i], keySize, MakeParameters(Name::IV(), (const byte *)ivs[i])(Name::FeedbackSize(), (int)K/8)); + + for (int j=0; j<1000; j++) + { + outputs[j] = inputs[j]; + pCipher->ProcessString(outputs[j], outputs[j].size()); + if (K==8 && m_mode == "CFB") + { + if (j<16) + inputs[j+1].Assign(ivs[i]+j, 1); + else + inputs[j+1] = outputs[j-16]; + } + else if (m_mode == "ECB") + inputs[j+1] = outputs[j]; + else if (j == 0) + inputs[j+1] = ivs[i]; + else + inputs[j+1] = outputs[j-1]; + } + + OutputData(output, KEY_T, KEY[i]); + if (m_mode != "ECB") + OutputData(output, IV, ivs[i]); + OutputData(output, INPUT, inputs[0]); + OutputData(output, OUTPUT, outputs[999]); + output += "\n"; + AttachedTransformation()->Put((byte *)output.data(), output.size()); + output.resize(0); + + KEY[i+1] = UpdateKey(KEY[i], outputs); + ivs[i+1].CleanNew(pCipher->IVSize()); + ivs[i+1] = UpdateKey(ivs[i+1], outputs); + if (K==8 && m_mode == "CFB") + inputs[0] = outputs[999-16]; + else if (m_mode == "ECB") + inputs[0] = outputs[999]; + else + inputs[0] = outputs[998]; + } + } + else + { + assert(m_test == "KAT"); + + SecByteBlock &input = m_data2[INPUT]; + SecByteBlock result(input.size()); + member_ptr pFilter(new StreamTransformationFilter(*pCipher, new ArraySink(result, result.size()), StreamTransformationFilter::NO_PADDING)); + StringSource(input.data(), input.size(), true, pFilter.release()); + + OutputGivenData(output, COUNT, true); + OutputData(output, KEY_T, key); + OutputGivenData(output, IV, true); + OutputGivenData(output, INPUT); + OutputData(output, OUTPUT, result); + output += "\n"; + AttachedTransformation()->Put((byte *)output.data(), output.size()); + } + } + + std::vector Tokenize(const std::string &line) + { + std::vector result; + std::string s; + for (int i=0; i") + { + assert(m_test == "sha"); + m_bracketString = m_line.substr(2, m_line.size()-4); + m_line = m_line.substr(0, 13) + "Hashes") + copyLine = true; + + if (m_line == "Put((byte *)m_line.data(), m_line.size(), blocking); + return false; + } + + std::vector tokens = Tokenize(m_line); + + if (m_algorithm == "DSS" && m_test == "sha") + { + for (int i = 0; i < tokens.size(); i++) + { + if (tokens[i] == "^") + DoTest(); + else if (tokens[i] != "") + m_compactString.push_back(atol(tokens[i].c_str())); + } + } + else + { + if (!m_line.empty() && m_algorithm == "DSS" && m_test != "pqg") + { + std::string output = m_line + '\n'; + AttachedTransformation()->Put((byte *)output.data(), output.size()); + } + + for (int i = 0; i < tokens.size(); i++) + { + if (m_firstLine && m_algorithm != "DSS") + { + if (tokens[i] == "Encrypt" || tokens[i] == "OFB") + SetEncrypt(true); + else if (tokens[i] == "Decrypt") + SetEncrypt(false); + else if (tokens[i] == "Modes") + m_test = "MONTE"; + } + else + { + if (tokens[i] != "=") + continue; + + if (i == 0) + throw Exception(Exception::OTHER_ERROR, "TestDataParser: unexpected data: " + m_line); + + const std::string &key = tokens[i-1]; + std::string &data = m_data[key]; + data = tokens[i+1]; + DataType t = m_nameToType[key]; + m_typeToName[t] = key; + SecByteBlock data2(data.size() / 2); + StringSource(data, true, new HexDecoder(new ArraySink(data2, data2.size()))); + m_data2[t] = data2; + + if (key == m_trigger || (t == OUTPUT && !m_data2[INPUT].empty())) + DoTest(); + } + } + } + + m_firstLine = false; + + return false; + } + + inline const SecByteBlock & GetData(const std::string &key) + { + return m_data2[m_nameToType[key]]; + } + + std::string m_algorithm, m_test, m_mode, m_line, m_bracketString, m_trigger; + unsigned int m_feedbackSize, m_blankLineTransition; + bool m_encrypt, m_firstLine; + + typedef std::map NameToTypeMap; + NameToTypeMap m_nameToType; + typedef std::map TypeToNameMap; + TypeToNameMap m_typeToName; + + typedef std::map Map; + Map m_data; // raw data + typedef std::map Map2; + Map2 m_data2; + + AutoSeededX917RNG m_rng; + std::vector m_compactString; +}; +*/ + +/* +int main (int argc, char **argv) +{ + std::string algorithm = argv[1]; + std::string pathname = argv[2]; + i = pathname.find_last_of("\\/"); + std::string filename = pathname.substr(i == std::string::npos ? 0 : i+1); + std::string mode; + if (filename[0] == 'S' || filename[0] == 'T') + mode = filename.substr(1, 3); + else + mode = filename.substr(0, 3); + for (i = 0; i 3) + { + std::string outDir = argv[3]; + if (*outDir.rbegin() != '\\' && *outDir.rbegin() != '/') + outDir += '/'; + std::string outPathname = outDir + filename.substr(0, filename.size() - 3) + "rsp"; + pSink = new FileSink(outPathname.c_str(), false); + } + else + pSink = new FileSink(cout); + + FileSource(pathname.c_str(), true, new LineBreakParser(new TestDataParser(algorithm, test, mode, feedbackSize, encrypt, pSink)), false); +} +*/ -- cgit v1.2.1