// xtr.cpp - originally written and placed in the public domain by Wei Dai #include "pch.h" #include "xtr.h" #include "nbtheory.h" #include "integer.h" #include "algebra.h" #include "modarith.h" #include "algebra.cpp" NAMESPACE_BEGIN(CryptoPP) const GFP2Element & GFP2Element::Zero() { #if defined(CRYPTOPP_CXX11_STATIC_INIT) static const GFP2Element s_zero; return s_zero; #else return Singleton().Ref(); #endif } void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits) { CRYPTOPP_ASSERT(qbits > 9); // no primes exist for pbits = 10, qbits = 9 CRYPTOPP_ASSERT(pbits > qbits); const Integer minQ = Integer::Power2(qbits - 1); const Integer maxQ = Integer::Power2(qbits) - 1; const Integer minP = Integer::Power2(pbits - 1); const Integer maxP = Integer::Power2(pbits) - 1; top: Integer r1, r2; do { (void)q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12); // Solution always exists because q === 7 mod 12. (void)SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q); // I believe k_i, r1 and r2 are being used slightly different than the // paper's algorithm. I believe it is leading to the failed asserts. // Just make the assert part of the condition. if(!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit() ? r1 : r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3 * q)) { continue; } } while (((p % 3U) != 2) || (((p.Squared() - p + 1) % q).NotZero())); // CRYPTOPP_ASSERT((p % 3U) == 2); // CRYPTOPP_ASSERT(((p.Squared() - p + 1) % q).IsZero()); GFP2_ONB gfp2(p); GFP2Element three = gfp2.ConvertIn(3), t; while (true) { g.c1.Randomize(rng, Integer::Zero(), p-1); g.c2.Randomize(rng, Integer::Zero(), p-1); t = XTR_Exponentiate(g, p+1, p); if (t.c1 == t.c2) continue; g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p); if (g != three) break; } if (XTR_Exponentiate(g, q, p) != three) goto top; // CRYPTOPP_ASSERT(XTR_Exponentiate(g, q, p) == three); } GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p) { unsigned int bitCount = e.BitCount(); if (bitCount == 0) return GFP2Element(-3, -3); // find the lowest bit of e that is 1 unsigned int lowest1bit; for (lowest1bit=0; e.GetBit(lowest1bit) == 0; lowest1bit++) {} GFP2_ONB gfp2(p); GFP2Element c = gfp2.ConvertIn(b); GFP2Element cp = gfp2.PthPower(c); GFP2Element S[5] = {gfp2.ConvertIn(3), c, gfp2.SpecialOperation1(c)}; // do all exponents bits except the lowest zeros starting from the top unsigned int i; for (i = e.BitCount() - 1; i>lowest1bit; i--) { if (e.GetBit(i)) { gfp2.RaiseToPthPower(S[0]); gfp2.Accumulate(S[0], gfp2.SpecialOperation2(S[2], c, S[1])); S[1] = gfp2.SpecialOperation1(S[1]); S[2] = gfp2.SpecialOperation1(S[2]); S[0].swap(S[1]); } else { gfp2.RaiseToPthPower(S[2]); gfp2.Accumulate(S[2], gfp2.SpecialOperation2(S[0], cp, S[1])); S[1] = gfp2.SpecialOperation1(S[1]); S[0] = gfp2.SpecialOperation1(S[0]); S[2].swap(S[1]); } } // now do the lowest zeros while (i--) S[1] = gfp2.SpecialOperation1(S[1]); return gfp2.ConvertOut(S[1]); } template class AbstractRing; template class AbstractGroup; NAMESPACE_END