#ifndef CRYPTOPP_VMAC_H #define CRYPTOPP_VMAC_H #include "iterhash.h" #include "seckey.h" NAMESPACE_BEGIN(CryptoPP) #define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);} #define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate; /// . class VMAC_Base : public IteratedHashBase { public: std::string AlgorithmName() const {return std::string("VMAC(") + GetCipher().AlgorithmName() + ")-" + IntToString(DigestSize()*8);} unsigned int IVSize() const {return GetCipher().BlockSize();} void Resynchronize(const byte *IV); void GetNextIV(RandomNumberGenerator &rng, byte *IV); unsigned int DigestSize() const {return m_is128 ? 16 : 8;}; void UncheckedSetKey(const byte *userKey, unsigned int keylength, const NameValuePairs ¶ms); void TruncatedFinal(byte *mac, size_t size); unsigned int BlockSize() const {return m_L1KeyLength;} ByteOrder GetByteOrder() const {return LITTLE_ENDIAN_ORDER;} protected: virtual BlockCipher & AccessCipher() =0; virtual int DefaultDigestSize() const =0; const BlockCipher & GetCipher() const {return const_cast(this)->AccessCipher();} void HashEndianCorrectedBlock(const word64 *data); size_t HashMultipleBlocks(const word64 *input, size_t length); void Init() {} word64* StateBuf() {return NULL;} word64* DataBuf() {return (word64 *)m_data();} void VHASH_Update_SSE2(const word64 *data, size_t blocksRemainingInWord64, int tagPart); #if !(defined(_MSC_VER) && _MSC_VER < 1300) // can't use function template here with VC6 template #endif void VHASH_Update_Template(const word64 *data, size_t blockRemainingInWord128); void VHASH_Update(const word64 *data, size_t blocksRemainingInWord128); CRYPTOPP_BLOCK_1(polyState, word64, 4*(m_is128+1)) CRYPTOPP_BLOCK_2(nhKey, word64, m_L1KeyLength/sizeof(word64) + 2*m_is128) CRYPTOPP_BLOCK_3(data, byte, m_L1KeyLength) CRYPTOPP_BLOCK_4(l3Key, word64, 2*(m_is128+1)) CRYPTOPP_BLOCK_5(nonce, byte, IVSize()) CRYPTOPP_BLOCK_6(pad, byte, IVSize()) CRYPTOPP_BLOCKS_END(6) bool m_is128, m_padCached, m_isFirstBlock; int m_L1KeyLength; }; /// VMAC template class VMAC : public SimpleKeyingInterfaceImpl > { public: static std::string StaticAlgorithmName() {return std::string("VMAC(") + T_BlockCipher::StaticAlgorithmName() + ")-" + IntToString(T_DigestBitSize);} private: BlockCipher & AccessCipher() {return m_cipher;} int DefaultDigestSize() const {return T_DigestBitSize/8;} typename T_BlockCipher::Encryption m_cipher; }; NAMESPACE_END #endif