// validat1.cpp - originally written and placed in the public domain by Wei Dai // CryptoPP::Test namespace added by JW in February 2017 #include "pch.h" #define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1 #include "cryptlib.h" #include "pubkey.h" #include "gfpcrypt.h" #include "eccrypto.h" #include "filters.h" #include "files.h" #include "hex.h" #include "base32.h" #include "base64.h" #include "modes.h" #include "cbcmac.h" #include "dmac.h" #include "idea.h" #include "des.h" #include "rc2.h" #include "arc4.h" #include "rc5.h" #include "blowfish.h" #include "3way.h" #include "safer.h" #include "gost.h" #include "shark.h" #include "cast.h" #include "square.h" #include "seal.h" #include "rc6.h" #include "mars.h" #include "aes.h" #include "cpu.h" #include "rng.h" #include "rijndael.h" #include "twofish.h" #include "serpent.h" #include "skipjack.h" #include "shacal2.h" #include "camellia.h" #include "aria.h" #include "osrng.h" #include "drbg.h" #include "rdrand.h" #include "padlkrng.h" #include "mersenne.h" #include "randpool.h" #include "zdeflate.h" #include "smartptr.h" #include "channels.h" #include "misc.h" #include #include #include #include #undef BLOCKING_RNG_AVAILABLE #include "validate.h" // Aggressive stack checking with VS2005 SP1 and above. #if (_MSC_FULL_VER >= 140050727) # pragma strict_gs_check (on) #endif #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4505 4355) #endif NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Test) bool ValidateAll(bool thorough) { bool pass=TestSettings(); pass=TestOS_RNG() && pass; pass=TestRandomPool() && pass; #if !defined(NO_OS_DEPENDENCE) && defined(OS_RNG_AVAILABLE) pass=TestAutoSeededX917() && pass; #endif // pass=TestSecRandom() && pass; #if defined(CRYPTOPP_EXTENDED_VALIDATION) pass=TestMersenne() && pass; #endif #if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) pass=TestPadlockRNG() && pass; pass=TestRDRAND() && pass; pass=TestRDSEED() && pass; #endif #if defined(CRYPTOPP_EXTENDED_VALIDATION) // http://github.com/weidai11/cryptopp/issues/92 pass=TestSecBlock() && pass; // http://github.com/weidai11/cryptopp/issues/336 pass=TestIntegerBitops() && pass; // http://github.com/weidai11/cryptopp/issues/64 pass=TestPolynomialMod2() && pass; // http://github.com/weidai11/cryptopp/issues/360 pass=TestRounding() && pass; // http://github.com/weidai11/cryptopp/issues/242 pass=TestHuffmanCodes() && pass; // http://github.com/weidai11/cryptopp/issues/346 pass=TestASN1Parse() && pass; // Additional tests due to no coverage pass=ValidateBaseCode() && pass; pass=TestCompressors() && pass; pass=TestSharing() && pass; pass=TestEncryptors() && pass; #endif pass=ValidateCRC32() && pass; pass=ValidateCRC32C() && pass; pass=ValidateAdler32() && pass; pass=ValidateMD2() && pass; #if defined(CRYPTOPP_EXTENDED_VALIDATION) pass=ValidateMD4() && pass; #endif pass=ValidateMD5() && pass; pass=ValidateSHA() && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/keccak.txt") && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/sha3.txt") && pass; pass=ValidateHashDRBG() && pass; pass=ValidateHmacDRBG() && pass; pass=ValidateTiger() && pass; pass=ValidateRIPEMD() && pass; pass=ValidatePanama() && pass; pass=ValidateWhirlpool() && pass; pass=ValidateSM3() && pass; pass=ValidateBLAKE2s() && pass; pass=ValidateBLAKE2b() && pass; pass=ValidatePoly1305() && pass; pass=ValidateSipHash() && pass; pass=ValidateHMAC() && pass; pass=ValidateTTMAC() && pass; pass=ValidatePBKDF() && pass; pass=ValidateHKDF() && pass; pass=ValidateDES() && pass; pass=ValidateCipherModes() && pass; pass=ValidateIDEA() && pass; pass=ValidateSAFER() && pass; pass=ValidateRC2() && pass; pass=ValidateARC4() && pass; pass=ValidateRC5() && pass; pass=ValidateBlowfish() && pass; pass=ValidateThreeWay() && pass; pass=ValidateGOST() && pass; pass=ValidateSHARK() && pass; pass=ValidateCAST() && pass; pass=ValidateSquare() && pass; pass=ValidateSKIPJACK() && pass; pass=ValidateSEAL() && pass; pass=ValidateRC6() && pass; pass=ValidateMARS() && pass; pass=ValidateRijndael() && pass; pass=ValidateTwofish() && pass; pass=ValidateSerpent() && pass; pass=ValidateSHACAL2() && pass; pass=ValidateARIA() && pass; pass=ValidateCamellia() && pass; pass=ValidateSalsa() && pass; pass=ValidateSosemanuk() && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/seed.txt") && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/threefish.txt") && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/kalyna.txt") && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/simon.txt") && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/speck.txt") && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/sm4.txt") && pass; pass=ValidateVMAC() && pass; pass=ValidateCCM() && pass; pass=ValidateGCM() && pass; pass=ValidateCMAC() && pass; pass=RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/eax.txt") && pass; pass=ValidateBBS() && pass; pass=ValidateDH() && pass; pass=ValidateMQV() && pass; pass=ValidateHMQV() && pass; pass=ValidateFHMQV() && pass; pass=ValidateRSA() && pass; pass=ValidateElGamal() && pass; pass=ValidateDLIES() && pass; pass=ValidateNR() && pass; pass=ValidateDSA(thorough) && pass; pass=ValidateLUC() && pass; pass=ValidateLUC_DH() && pass; pass=ValidateLUC_DL() && pass; pass=ValidateXTR_DH() && pass; pass=ValidateRabin() && pass; pass=ValidateRW() && pass; // pass=ValidateBlumGoldwasser() && pass; pass=ValidateECP() && pass; pass=ValidateEC2N() && pass; pass=ValidateECDSA() && pass; pass=ValidateECGDSA() && pass; pass=ValidateESIGN() && pass; if (pass) std::cout << "\nAll tests passed!\n"; else std::cout << "\nOops! Not all tests passed.\n"; return pass; } bool TestSettings() { bool pass = true; std::cout << "\nTesting Settings...\n\n"; word32 w; const byte s[] = "\x01\x02\x03\x04"; #if (_MSC_FULL_VER >= 140050727) std::copy(s, s+4, stdext::make_checked_array_iterator(reinterpret_cast(&w), sizeof(w))); #else std::copy(s, s+4, reinterpret_cast(&w)); #endif if (w == 0x04030201L) { #ifdef CRYPTOPP_LITTLE_ENDIAN std::cout << "passed: "; #else std::cout << "FAILED: "; pass = false; #endif std::cout << "Your machine is little endian.\n"; } else if (w == 0x01020304L) { #ifndef CRYPTOPP_LITTLE_ENDIAN std::cout << "passed: "; #else std::cout << "FAILED: "; pass = false; #endif std::cout << "Your machine is big endian.\n"; } else { std::cout << "FAILED: Your machine is neither big endian nor little endian.\n"; pass = false; } #if defined(CRYPTOPP_EXTENDED_VALIDATION) // App and library versions, http://github.com/weidai11/cryptopp/issues/371 const int v1 = LibraryVersion(); const int v2 = HeaderVersion(); if(v1/10 == v2/10) std::cout << "passed: "; else { std::cout << "FAILED: "; pass = false; } std::cout << "Library version (library): " << v1 << ", header version (app): " << v2 << "\n"; #endif #ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS // Don't assert the alignment of testvals. That's what this test is for. byte testvals[10] = {1,2,2,3,3,3,3,2,2,1}; if (*(word32 *)(void *)(testvals+3) == 0x03030303 && *(word64 *)(void *)(testvals+1) == W64LIT(0x0202030303030202)) std::cout << "passed: Unaligned data access (CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS).\n"; else { std::cout << "FAILED: Unaligned data access gave incorrect results.\n"; pass = false; } #else std::cout << "passed: Aligned data access (no CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS).\n"; #endif if (sizeof(byte) == 1) std::cout << "passed: "; else { std::cout << "FAILED: "; pass = false; } std::cout << "sizeof(byte) == " << sizeof(byte) << "\n"; if (sizeof(word16) == 2) std::cout << "passed: "; else { std::cout << "FAILED: "; pass = false; } std::cout << "sizeof(word16) == " << sizeof(word16) << "\n"; if (sizeof(word32) == 4) std::cout << "passed: "; else { std::cout << "FAILED: "; pass = false; } std::cout << "sizeof(word32) == " << sizeof(word32) << "\n"; if (sizeof(word64) == 8) std::cout << "passed: "; else { std::cout << "FAILED: "; pass = false; } std::cout << "sizeof(word64) == " << sizeof(word64) << "\n"; #ifdef CRYPTOPP_WORD128_AVAILABLE if (sizeof(word128) == 16) std::cout << "passed: "; else { std::cout << "FAILED: "; pass = false; } std::cout << "sizeof(word128) == " << sizeof(word128) << "\n"; #endif if (sizeof(word) == 2*sizeof(hword) #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE && sizeof(dword) == 2*sizeof(word) #endif ) std::cout << "passed: "; else { std::cout << "FAILED: "; pass = false; } std::cout << "sizeof(hword) == " << sizeof(hword) << ", sizeof(word) == " << sizeof(word); #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE std::cout << ", sizeof(dword) == " << sizeof(dword); #endif std::cout << "\n"; const int cacheLineSize = GetCacheLineSize(); if (cacheLineSize < 16 || cacheLineSize > 256 || !IsPowerOf2(cacheLineSize)) { std::cout << "FAILED: "; pass = false; } else std::cout << "passed: "; std::cout << "cacheLineSize == " << cacheLineSize << "\n"; #ifdef CRYPTOPP_CPUID_AVAILABLE bool hasSSE2 = HasSSE2(); bool hasSSSE3 = HasSSSE3(); bool hasSSE41 = HasSSE41(); bool hasSSE42 = HasSSE42(); bool isP4 = IsP4(); std::cout << "hasSSE2 == " << hasSSE2 << ", hasSSSE3 == " << hasSSSE3 << ", hasSSE4.1 == " << hasSSE41 << ", hasSSE4.2 == " << hasSSE42; std::cout << ", hasAESNI == " << HasAESNI() << ", hasCLMUL == " << HasCLMUL() << ", hasRDRAND == " << HasRDRAND() << ", hasRDSEED == " << HasRDSEED(); std::cout << ", hasSHA == " << HasSHA() << ", isP4 == " << isP4 << "\n"; #elif (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64) bool hasNEON = HasNEON(); bool hasCRC32 = HasCRC32(); bool hasPMULL = HasPMULL(); bool hasAES = HasAES(); bool hasSHA1 = HasSHA1(); bool hasSHA2 = HasSHA2(); std::cout << "passed: "; std::cout << "hasNEON == " << hasNEON << ", hasCRC32 == " << hasCRC32 << ", hasPMULL == " << hasPMULL; std::cout << ", hasAES == " << hasAES << ", hasSHA1 == " << hasSHA1 << ", hasSHA2 == " << hasSHA2 << "\n"; #elif (CRYPTOPP_BOOL_PPC32 || CRYPTOPP_BOOL_PPC64) const bool hasAltivec = HasAltivec(); const bool hasPower7 = HasPower7(); const bool hasPower8 = HasPower8(); const bool hasAES = HasAES(); const bool hasSHA256 = HasSHA256(); const bool hasSHA512 = HasSHA512(); std::cout << "passed: "; std::cout << "hasAltivec == " << hasAltivec << ", hasPower7 == " << hasPower7 << ", hasPower8 == " << hasPower8; std::cout << ", hasAES == " << hasAES << ", hasSHA256 == " << hasSHA256 << ", hasSHA512 == " << hasSHA512 << "\n"; #endif if (!pass) { std::cerr << "Some critical setting in config.h is in error. Please fix it and recompile.\n"; std::abort(); } return pass; } bool TestOS_RNG() { bool pass = true; member_ptr rng; #ifdef BLOCKING_RNG_AVAILABLE try {rng.reset(new BlockingRng);} catch (const OS_RNG_Err &) {} #endif if (rng.get()) { std::cout << "\nTesting operating system provided blocking random number generator...\n\n"; MeterFilter meter(new Redirector(TheBitBucket())); RandomNumberSource test(*rng, UINT_MAX, false, new Deflator(new Redirector(meter))); unsigned long total=0, length=0; time_t t = time(NULLPTR), t1 = 0; CRYPTOPP_UNUSED(length); // check that it doesn't take too long to generate a reasonable amount of randomness while (total < 16 && (t1 < 10 || total*8 > (unsigned long)t1)) { test.Pump(1); total += 1; t1 = time(NULLPTR) - t; } if (total < 16) { std::cout << "FAILED:"; pass = false; } else std::cout << "passed:"; std::cout << " it took " << long(t1) << " seconds to generate " << total << " bytes" << std::endl; #if 0 // disable this part. it's causing an unpredictable pause during the validation testing if (t1 < 2) { // that was fast, are we really blocking? // first exhaust the extropy reserve t = time(NULLPTR); while (time(NULLPTR) - t < 2) { test.Pump(1); total += 1; } // if it generates too many bytes in a certain amount of time, // something's probably wrong t = time(NULLPTR); while (time(NULLPTR) - t < 2) { test.Pump(1); total += 1; length += 1; } if (length > 1024) { std::cout << "FAILED:"; pass = false; } else std::cout << "passed:"; std::cout << " it generated " << length << " bytes in " << long(time(NULLPTR) - t) << " seconds" << std::endl; } #endif test.AttachedTransformation()->MessageEnd(); if (meter.GetTotalBytes() < total) { std::cout << "FAILED:"; pass = false; } else std::cout << "passed:"; std::cout << " " << total << " generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { // Miscellaneous for code coverage RandomNumberGenerator& prng = *rng.get(); (void)prng.AlgorithmName(); word32 result = prng.GenerateWord32(); result = prng.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); prng.GenerateBlock(reinterpret_cast(&result), 4); prng.GenerateBlock(reinterpret_cast(&result), 3); prng.GenerateBlock(reinterpret_cast(&result), 2); prng.GenerateBlock(reinterpret_cast(&result), 1); prng.GenerateBlock(reinterpret_cast(&result), 0); pass = true; } catch (const Exception&) { pass = false; } if (!pass) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } else std::cout << "\nNo operating system provided blocking random number generator, skipping test." << std::endl; rng.reset(NULLPTR); #ifdef NONBLOCKING_RNG_AVAILABLE try {rng.reset(new NonblockingRng);} catch (OS_RNG_Err &) {} #endif if (rng.get()) { std::cout << "\nTesting operating system provided nonblocking random number generator...\n\n"; MeterFilter meter(new Redirector(TheBitBucket())); RandomNumberSource test(*rng, 100000, true, new Deflator(new Redirector(meter))); if (meter.GetTotalBytes() < 100000) { std::cout << "FAILED:"; pass = false; } else std::cout << "passed:"; std::cout << " 100000 generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { // Miscellaneous for code coverage RandomNumberGenerator& prng = *rng.get(); (void)prng.AlgorithmName(); word32 result = prng.GenerateWord32(); result = prng.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); prng.GenerateBlock(reinterpret_cast(&result), 4); prng.GenerateBlock(reinterpret_cast(&result), 3); prng.GenerateBlock(reinterpret_cast(&result), 2); prng.GenerateBlock(reinterpret_cast(&result), 1); prng.GenerateBlock(reinterpret_cast(&result), 0); pass = true; } catch (const Exception&) { pass = false; } if (!pass) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } else std::cout << "\nNo operating system provided nonblocking random number generator, skipping test." << std::endl; return pass; } bool TestRandomPool() { std::cout << "\nTesting RandomPool generator...\n\n"; bool pass=true, fail; { RandomPool prng; static const unsigned int ENTROPY_SIZE = 32; MeterFilter meter(new Redirector(TheBitBucket())); RandomNumberSource test(prng, 100000, true, new Deflator(new Redirector(meter))); fail = false; if (meter.GetTotalBytes() < 100000) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " 100000 generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; prng.DiscardBytes(100000); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded 10000 bytes" << std::endl; try { fail = false; if(prng.CanIncorporateEntropy()) { SecByteBlock entropy(ENTROPY_SIZE); GlobalRNG().GenerateBlock(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); } } catch (const Exception& /*ex*/) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " IncorporateEntropy with " << 4*ENTROPY_SIZE << " bytes\n"; try { // Miscellaneous for code coverage (void)prng.AlgorithmName(); // "unknown" word32 result = prng.GenerateWord32(); result = prng.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); prng.GenerateBlock(reinterpret_cast(&result), 4); prng.GenerateBlock(reinterpret_cast(&result), 3); prng.GenerateBlock(reinterpret_cast(&result), 2); prng.GenerateBlock(reinterpret_cast(&result), 1); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } #if !defined(NO_OS_DEPENDENCE) && defined(OS_RNG_AVAILABLE) std::cout << "\nTesting AutoSeeded RandomPool generator...\n\n"; { AutoSeededRandomPool prng; static const unsigned int ENTROPY_SIZE = 32; MeterFilter meter(new Redirector(TheBitBucket())); RandomNumberSource test(prng, 100000, true, new Deflator(new Redirector(meter))); fail = false; if (meter.GetTotalBytes() < 100000) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " 100000 generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; prng.DiscardBytes(100000); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded 10000 bytes" << std::endl; try { fail = false; if(prng.CanIncorporateEntropy()) { SecByteBlock entropy(ENTROPY_SIZE); GlobalRNG().GenerateBlock(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); } } catch (const Exception& /*ex*/) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " IncorporateEntropy with " << 4*ENTROPY_SIZE << " bytes\n"; try { // Miscellaneous for code coverage fail = false; (void)prng.AlgorithmName(); // "unknown" word32 result = prng.GenerateWord32(); result = prng.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); prng.GenerateBlock(reinterpret_cast(&result), 4); prng.GenerateBlock(reinterpret_cast(&result), 3); prng.GenerateBlock(reinterpret_cast(&result), 2); prng.GenerateBlock(reinterpret_cast(&result), 1); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } #endif // Old, PGP 2.6 style RandomPool. Added because users were still having problems // with it in 2017. The missing functionality was a barrier to upgrades. std::cout << "\nTesting OldRandomPool generator...\n\n"; { OldRandomPool old; static const unsigned int ENTROPY_SIZE = 32; // https://github.com/weidai11/cryptopp/issues/452 byte actual[32], expected[32] = { 0x41,0xD1,0xEF,0x8F,0x10,0x3C,0xE2,0x94, 0x47,0xC0,0xC3,0x86,0x66,0xBC,0x86,0x09, 0x57,0x77,0x73,0x91,0x57,0x4D,0x93,0x66, 0xD1,0x13,0xE1,0xBA,0x07,0x49,0x8F,0x75 }; SecByteBlock seed(384); for (size_t i=0; i<384; ++i) seed[i] = static_cast(i); old.IncorporateEntropy(seed, seed.size()); old.GenerateBlock(actual, sizeof(actual)); fail = (0 != std::memcmp(actual, expected, sizeof(expected))); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " Expected sequence from PGP-style RandomPool (circa 2007)\n"; OldRandomPool prng; MeterFilter meter(new Redirector(TheBitBucket())); RandomNumberSource test(prng, 100000, true, new Deflator(new Redirector(meter))); fail = false; if (meter.GetTotalBytes() < 100000) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " 100000 generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; prng.DiscardBytes(100000); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded 10000 bytes" << std::endl; try { fail = false; if(prng.CanIncorporateEntropy()) { SecByteBlock entropy(ENTROPY_SIZE); GlobalRNG().GenerateBlock(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); } } catch (const Exception& /*ex*/) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " IncorporateEntropy with " << 4*ENTROPY_SIZE << " bytes\n"; try { // Miscellaneous for code coverage fail = false; word32 result = prng.GenerateWord32(); result = prng.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); prng.GenerateBlock(reinterpret_cast(&result), 4); prng.GenerateBlock(reinterpret_cast(&result), 3); prng.GenerateBlock(reinterpret_cast(&result), 2); prng.GenerateBlock(reinterpret_cast(&result), 1); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } return pass; } #if !defined(NO_OS_DEPENDENCE) && defined(OS_RNG_AVAILABLE) bool TestAutoSeededX917() { // This tests Auto-Seeding and GenerateIntoBufferedTransformation. std::cout << "\nTesting AutoSeeded X917 generator...\n\n"; AutoSeededX917RNG prng; bool pass = true, fail; static const unsigned int ENTROPY_SIZE = 32; MeterFilter meter(new Redirector(TheBitBucket())); RandomNumberSource test(prng, 100000, true, new Deflator(new Redirector(meter))); fail = false; if (meter.GetTotalBytes() < 100000) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " 100000 generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; prng.DiscardBytes(100000); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded 10000 bytes" << std::endl; try { fail = false; if(prng.CanIncorporateEntropy()) { SecByteBlock entropy(ENTROPY_SIZE); GlobalRNG().GenerateBlock(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); } } catch (const Exception& /*ex*/) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " IncorporateEntropy with " << 4*ENTROPY_SIZE << " bytes\n"; try { // Miscellaneous for code coverage fail = false; (void)prng.AlgorithmName(); // "unknown" word32 result = prng.GenerateWord32(); result = prng.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); prng.GenerateBlock(reinterpret_cast(&result), 4); prng.GenerateBlock(reinterpret_cast(&result), 3); prng.GenerateBlock(reinterpret_cast(&result), 2); prng.GenerateBlock(reinterpret_cast(&result), 1); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; return pass; } #endif #if defined(CRYPTOPP_EXTENDED_VALIDATION) bool TestMersenne() { std::cout << "\nTesting Mersenne Twister...\n\n"; static const unsigned int ENTROPY_SIZE = 32; bool pass = true, fail = false; // First 10; http://create.stephan-brumme.com/mersenne-twister/ word32 result[10], expected[10] = {0xD091BB5C, 0x22AE9EF6, 0xE7E1FAEE, 0xD5C31F79, 0x2082352C, 0xF807B7DF, 0xE9D30005, 0x3895AFE1, 0xA1E24BBA, 0x4EE4092B}; MT19937ar prng; prng.GenerateBlock(reinterpret_cast(result), sizeof(result)); fail = (0 != std::memcmp(result, expected, sizeof(expected))); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " Expected sequence from MT19937ar (2002 version)\n"; MeterFilter meter(new Redirector(TheBitBucket())); RandomNumberSource test(prng, 100000, true, new Deflator(new Redirector(meter))); fail = false; if (meter.GetTotalBytes() < 100000) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " 100000 generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; prng.DiscardBytes(100000); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded 10000 bytes\n"; try { fail = false; if(prng.CanIncorporateEntropy()) { SecByteBlock entropy(ENTROPY_SIZE); GlobalRNG().GenerateBlock(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); prng.IncorporateEntropy(entropy, entropy.SizeInBytes()); } } catch (const Exception& /*ex*/) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " IncorporateEntropy with " << 4*ENTROPY_SIZE << " bytes\n"; try { // Miscellaneous for code coverage (void)prng.AlgorithmName(); word32 temp = prng.GenerateWord32(); temp = prng.GenerateWord32((temp & 0xff), 0xffffffff - (temp & 0xff)); prng.GenerateBlock(reinterpret_cast(&result[0]), 4); prng.GenerateBlock(reinterpret_cast(&result[0]), 3); prng.GenerateBlock(reinterpret_cast(&result[0]), 2); prng.GenerateBlock(reinterpret_cast(&result[0]), 1); prng.GenerateBlock(reinterpret_cast(&result[0]), 0); fail = false; } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; return pass; } #endif #if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) bool TestPadlockRNG() { std::cout << "\nTesting Padlock RNG generator...\n\n"; bool pass = true, fail = false; member_ptr rng; try {rng.reset(new PadlockRNG);} catch (const PadlockRNG_Err &) {} if (rng.get()) { PadlockRNG& padlock = dynamic_cast(*rng.get()); static const unsigned int SIZE = 10000; SecByteBlock zero(16), one(16), t(16); std::memset(zero, 0x00, 16); std::memset( one, 0xff, 16); // Cryptography Research, Inc tests word32 oldDivisor = padlock.SetDivisor(0); padlock.GenerateBlock(t, t.size()); word32 msr = padlock.GetMSR(); padlock.SetDivisor(oldDivisor); // Bit 6 should be set fail = !(msr & (1 << 6U)); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " VIA RNG is activated\n"; // Bit 13 should be unset fail = !!(msr & (1 << 13U)); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " von Neumann corrector is activated\n"; // Bit 14 should be unset fail = !!(msr & (1 << 14U)); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " String filter is deactivated\n"; // Bit 12:10 should be unset fail = !!(msr & (0x7 << 10U)); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " Bias voltage is unmodified\n"; fail = false; if (t == zero || t == one) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " All 0's or all 1's test\n"; MeterFilter meter(new Redirector(TheBitBucket())); Deflator deflator(new Redirector(meter)); MaurerRandomnessTest maurer; ChannelSwitch chsw; chsw.AddDefaultRoute(deflator); chsw.AddDefaultRoute(maurer); RandomNumberSource rns(padlock, SIZE, true, new Redirector(chsw)); deflator.Flush(true); CRYPTOPP_ASSERT(0 == maurer.BytesNeeded()); const double mv = maurer.GetTestValue(); fail = false; if (mv < 0.98f) fail = true; // Coverity finding, also see http://stackoverflow.com/a/34509163/608639. StreamState ss(std::cout); std::cout << std::setiosflags(std::ios::fixed) << std::setprecision(6); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " Maurer Randomness Test returned value " << mv << "\n"; fail = false; if (meter.GetTotalBytes() < SIZE) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " " << SIZE << " generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; padlock.DiscardBytes(SIZE); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded " << SIZE << " bytes\n"; try { // Miscellaneous for code coverage (void)padlock.AlgorithmName(); (void)padlock.CanIncorporateEntropy(); padlock.IncorporateEntropy(NULLPTR, 0); word32 result = padlock.GenerateWord32(); result = padlock.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); padlock.GenerateBlock(reinterpret_cast(&result), 4); padlock.GenerateBlock(reinterpret_cast(&result), 3); padlock.GenerateBlock(reinterpret_cast(&result), 2); padlock.GenerateBlock(reinterpret_cast(&result), 1); fail = false; } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } else std::cout << "Padlock RNG generator not available, skipping test.\n"; return pass; } bool TestRDRAND() { std::cout << "\nTesting RDRAND generator...\n\n"; bool pass = true, fail = false; member_ptr rng; try {rng.reset(new RDRAND);} catch (const RDRAND_Err &) {} if (rng.get()) { RDRAND& rdrand = dynamic_cast(*rng.get()); static const unsigned int SIZE = 10000; MeterFilter meter(new Redirector(TheBitBucket())); Deflator deflator(new Redirector(meter)); MaurerRandomnessTest maurer; ChannelSwitch chsw; chsw.AddDefaultRoute(deflator); chsw.AddDefaultRoute(maurer); RandomNumberSource rns(rdrand, SIZE, true, new Redirector(chsw)); deflator.Flush(true); CRYPTOPP_ASSERT(0 == maurer.BytesNeeded()); const double mv = maurer.GetTestValue(); if (mv < 0.98f) fail = true; // Coverity finding, also see http://stackoverflow.com/a/34509163/608639. StreamState ss(std::cout); std::cout << std::setiosflags(std::ios::fixed) << std::setprecision(6); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " Maurer Randomness Test returned value " << mv << "\n"; fail = false; if (meter.GetTotalBytes() < SIZE) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " " << SIZE << " generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; rdrand.DiscardBytes(SIZE); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded " << SIZE << " bytes\n"; try { // Miscellaneous for code coverage (void)rdrand.AlgorithmName(); (void)rdrand.CanIncorporateEntropy(); rdrand.IncorporateEntropy(NULLPTR, 0); word32 result = rdrand.GenerateWord32(); result = rdrand.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); rdrand.GenerateBlock(reinterpret_cast(&result), 4); rdrand.GenerateBlock(reinterpret_cast(&result), 3); rdrand.GenerateBlock(reinterpret_cast(&result), 2); rdrand.GenerateBlock(reinterpret_cast(&result), 1); fail = false; } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } else std::cout << "RDRAND generator not available, skipping test.\n"; return pass; } bool TestRDSEED() { std::cout << "\nTesting RDSEED generator...\n\n"; bool pass = true, fail = false; member_ptr rng; try {rng.reset(new RDSEED);} catch (const RDSEED_Err &) {} if (rng.get()) { RDSEED& rdseed = dynamic_cast(*rng.get()); static const unsigned int SIZE = 10000; MeterFilter meter(new Redirector(TheBitBucket())); Deflator deflator(new Redirector(meter)); MaurerRandomnessTest maurer; ChannelSwitch chsw; chsw.AddDefaultRoute(deflator); chsw.AddDefaultRoute(maurer); RandomNumberSource rns(rdseed, SIZE, true, new Redirector(chsw)); deflator.Flush(true); CRYPTOPP_ASSERT(0 == maurer.BytesNeeded()); const double mv = maurer.GetTestValue(); if (mv < 0.98f) fail = true; // Coverity finding, also see http://stackoverflow.com/a/34509163/608639. StreamState ss(std::cout); std::cout << std::setiosflags(std::ios::fixed) << std::setprecision(6); pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " Maurer Randomness Test returned value " << mv << "\n"; fail = false; if (meter.GetTotalBytes() < SIZE) fail = true; pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " " << SIZE << " generated bytes compressed to " << meter.GetTotalBytes() << " bytes by DEFLATE\n"; try { fail = false; rdseed.DiscardBytes(SIZE); } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " discarded " << SIZE << " bytes\n"; try { // Miscellaneous for code coverage (void)rdseed.AlgorithmName(); (void)rdseed.CanIncorporateEntropy(); rdseed.IncorporateEntropy(NULLPTR, 0); word32 result = rdseed.GenerateWord32(); result = rdseed.GenerateWord32((result & 0xff), 0xffffffff - (result & 0xff)); rdseed.GenerateBlock(reinterpret_cast(&result), 4); rdseed.GenerateBlock(reinterpret_cast(&result), 3); rdseed.GenerateBlock(reinterpret_cast(&result), 2); rdseed.GenerateBlock(reinterpret_cast(&result), 1); fail = false; } catch (const Exception&) { fail = true; } pass &= !fail; if (fail) std::cout << "FAILED:"; else std::cout << "passed:"; std::cout << " GenerateWord32 and Crop\n"; } else std::cout << "RDSEED generator not available, skipping test.\n"; return pass; } #endif bool ValidateHashDRBG() { std::cout << "\nTesting NIST Hash DRBGs...\n\n"; bool pass=true, fail; // # CAVS 14.3 // # DRBG800-90A information for "drbg_pr" // # Generated on Tue Apr 02 15:32:09 2013 { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 0], [ReturnedBitsLen = 640] const byte entropy1[] = "\x16\x10\xb8\x28\xcc\xd2\x7d\xe0\x8c\xee\xa0\x32\xa2\x0e\x92\x08"; const byte entropy2[] = "\x72\xd2\x8c\x90\x8e\xda\xf9\xa4\xd1\xe5\x26\xd8\xf2\xde\xd5\x44"; const byte nonce[] = "\x49\x2c\xf1\x70\x92\x42\xf6\xb5"; Hash_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16); SecByteBlock result(80); drbg.GenerateBlock(result, result.size()); drbg.GenerateBlock(result, result.size()); const byte expected[] = "\x56\xF3\x3D\x4F\xDB\xB9\xA5\xB6\x4D\x26\x23\x44\x97\xE9\xDC\xB8\x77\x98\xC6\x8D" "\x08\xF7\xC4\x11\x99\xD4\xBD\xDF\x97\xEB\xBF\x6C\xB5\x55\x0E\x5D\x14\x9F\xF4\xD5" "\xBD\x0F\x05\xF2\x5A\x69\x88\xC1\x74\x36\x39\x62\x27\x18\x4A\xF8\x4A\x56\x43\x35" "\x65\x8E\x2F\x85\x72\xBE\xA3\x33\xEE\xE2\xAB\xFF\x22\xFF\xA6\xDE\x3E\x22\xAC\xA2"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (COUNT=0, E=16, N=8)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 0], [ReturnedBitsLen = 640] const byte entropy1[] = "\x55\x08\x75\xb7\x4e\xc1\x1f\x90\x67\x78\xa3\x1a\x37\xa3\x29\xfd"; const byte entropy2[] = "\x96\xc6\x39\xec\x14\x9f\x6b\x28\xe2\x79\x3b\xb9\x37\x9e\x60\x67"; const byte nonce[] = "\x08\xdd\x8c\xd3\x5b\xfa\x00\x94"; Hash_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16); SecByteBlock result(80); drbg.GenerateBlock(result, result.size()); drbg.GenerateBlock(result, result.size()); const byte expected[] = "\xEE\x44\xC6\xCF\x2C\x0C\x73\xA8\xAC\x4C\xA5\x6C\x0E\x71\x2C\xA5\x50\x9A\x19\x5D" "\xE4\x5B\x8D\x2B\xC9\x40\xA7\xDB\x66\xC3\xEB\x2A\xA1\xBD\xB4\xDD\x76\x85\x12\x45" "\x80\x2E\x68\x05\x4A\xAB\xA8\x7C\xD6\x3A\xD3\xE5\xC9\x7C\x06\xE7\xA3\x9F\xF6\xF9" "\x8E\xB3\xD9\x72\xD4\x11\x35\xE5\xE7\x46\x1B\x49\x9C\x56\x45\x6A\xBE\x7F\x77\xD4"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (COUNT=1, E=16, N=8)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 128], [ReturnedBitsLen = 640] const byte entropy1[] = "\xd9\xba\xb5\xce\xdc\xa9\x6f\x61\x78\xd6\x45\x09\xa0\xdf\xdc\x5e"; const byte entropy2[] = "\xc6\xba\xd0\x74\xc5\x90\x67\x86\xf5\xe1\xf3\x20\x99\xf5\xb4\x91"; const byte nonce[] = "\xda\xd8\x98\x94\x14\x45\x0e\x01"; const byte additional1[] = "\x3e\x6b\xf4\x6f\x4d\xaa\x38\x25\xd7\x19\x4e\x69\x4e\x77\x52\xf7"; const byte additional2[] = "\x04\xfa\x28\x95\xaa\x5a\x6f\x8c\x57\x43\x34\x3b\x80\x5e\x5e\xa4"; const byte additional3[] = "\xdf\x5d\xc4\x59\xdf\xf0\x2a\xa2\xf0\x52\xd7\x21\xec\x60\x72\x30"; Hash_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16, additional1, 16); SecByteBlock result(80); drbg.GenerateBlock(additional2, 16, result, result.size()); drbg.GenerateBlock(additional3, 16, result, result.size()); const byte expected[] = "\xC4\x8B\x89\xF9\xDA\x3F\x74\x82\x45\x55\x5D\x5D\x03\x3B\x69\x3D\xD7\x1A\x4D\xF5" "\x69\x02\x05\xCE\xFC\xD7\x20\x11\x3C\xC2\x4E\x09\x89\x36\xFF\x5E\x77\xB5\x41\x53" "\x58\x70\xB3\x39\x46\x8C\xDD\x8D\x6F\xAF\x8C\x56\x16\x3A\x70\x0A\x75\xB2\x3E\x59" "\x9B\x5A\xEC\xF1\x6F\x3B\xAF\x6D\x5F\x24\x19\x97\x1F\x24\xF4\x46\x72\x0F\xEA\xBE"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (C0UNT=0, E=16, N=8, A=16)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 128], [ReturnedBitsLen = 640] const byte entropy1[] = "\x28\x00\x0f\xbf\xf0\x57\x22\xc8\x89\x93\x06\xc2\x9b\x50\x78\x0a"; const byte entropy2[] = "\xd9\x95\x8e\x8c\x08\xaf\x5a\x41\x0e\x91\x9b\xdf\x40\x8e\x5a\x0a"; const byte nonce[] = "\x11\x2f\x6e\x20\xc0\x29\xed\x3f"; const byte additional1[] = "\x91\x1d\x96\x5b\x6e\x77\xa9\x6c\xfe\x3f\xf2\xd2\xe3\x0e\x2a\x86"; const byte additional2[] = "\xcd\x44\xd9\x96\xab\x05\xef\xe8\x27\xd3\x65\x83\xf1\x43\x18\x2c"; const byte additional3[] = "\x9f\x6a\x31\x82\x12\x18\x4e\x70\xaf\x5d\x00\x14\x1f\x42\x82\xf6"; Hash_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16, additional1, 16); SecByteBlock result(80); drbg.GenerateBlock(additional2, 16, result, result.size()); drbg.GenerateBlock(additional3, 16, result, result.size()); const byte expected[] = "\x54\x61\x65\x92\x1E\x71\x4A\xD1\x39\x02\x2F\x97\xD2\x65\x3F\x0D\x47\x69\xB1\x4A" "\x3E\x6E\xEF\xA1\xA0\x16\xD6\x9E\xA9\x7F\x51\xD5\x81\xDC\xAA\xCF\x66\xF9\xB1\xE8" "\x06\x94\x41\xD6\xB5\xC5\x44\x60\x54\x07\xE8\xE7\xDC\x1C\xD8\xE4\x70\xAD\x84\x77" "\x5A\x65\x31\xBE\xE0\xFC\x81\x36\xE2\x8F\x0B\xFE\xEB\xE1\x98\x62\x7E\x98\xE0\xC1"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (C0UNT=1, E=16, N=8, A=16)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 128], [AdditionalInputLen = 0], [ReturnedBitsLen = 640] const byte entropy1[] = "\x0e\xd5\x4c\xef\x44\x5c\x61\x7d\x58\x86\xe0\x34\xc0\x97\x36\xd4"; const byte entropy2[] = "\x0b\x90\x27\xb8\x01\xe7\xf7\x2e\xe6\xec\x50\x2b\x8b\x6b\xd7\x11"; const byte nonce[] = "\x2c\x8b\x07\x13\x55\x6c\x91\x6f"; const byte personalization[] = "\xf3\x37\x8e\xa1\x45\x34\x30\x41\x12\xe0\xee\x57\xe9\xb3\x4a\x4b"; Hash_DRBG drbg(entropy1, 16, nonce, 8, personalization, 16); drbg.IncorporateEntropy(entropy2, 16); SecByteBlock result(80); drbg.GenerateBlock(result, result.size()); drbg.GenerateBlock(result, result.size()); const byte expected[] = "\x55\x37\x0E\xD4\xB7\xCA\xA4\xBB\x67\x3A\x0F\x58\x40\xB3\x9F\x76\x4E\xDA\xD2\x85" "\xD5\x6F\x01\x8F\x2D\xA7\x54\x4B\x0E\x66\x39\x62\x35\x96\x1D\xB7\xF6\xDA\xFB\x30" "\xB6\xC5\x68\xD8\x40\x6E\x2B\xD4\x3D\x23\xEB\x0F\x10\xBA\x5F\x24\x9C\xC9\xE9\x4A" "\xD3\xA5\xF1\xDF\xA4\xF2\xB4\x80\x40\x91\xED\x8C\xD6\x6D\xE7\xB7\x53\xB2\x09\xD5"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (C0UNT=0, E=16, N=8, A=0, P=16)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 128], [AdditionalInputLen = 0], [ReturnedBitsLen = 640] const byte entropy1[] = "\x8f\x2a\x33\x9f\x5f\x45\x21\x30\xa4\x57\xa9\x6f\xcb\xe2\xe6\x36"; const byte entropy2[] = "\x1f\xff\x9e\x4f\x4d\x66\x3a\x1f\x9e\x85\x4a\x15\x7d\xad\x97\xe0"; const byte nonce[] = "\x0e\xd0\xe9\xa5\xa4\x54\x8a\xd0"; const byte personalization[] = "\x45\xe4\xb3\xe2\x63\x87\x62\x57\x2c\x99\xe4\x03\x45\xd6\x32\x6f"; Hash_DRBG drbg(entropy1, 16, nonce, 8, personalization, 16); drbg.IncorporateEntropy(entropy2, 16); SecByteBlock result(80); drbg.GenerateBlock(result, result.size()); drbg.GenerateBlock(result, result.size()); const byte expected[] = "\x4F\xE8\x96\x41\xF8\xD3\x95\xC4\x43\x6E\xFB\xF8\x05\x75\xA7\x69\x74\x6E\x0C\x5F" "\x54\x14\x35\xB4\xE6\xA6\xB3\x40\x7C\xA2\xC4\x42\xA2\x2F\x66\x28\x28\xCF\x4A\xA8" "\xDC\x16\xBC\x5F\x69\xE5\xBB\x05\xD1\x43\x8F\x80\xAB\xC5\x8F\x9C\x3F\x75\x57\xEB" "\x44\x0D\xF5\x0C\xF4\x95\x23\x94\x67\x11\x55\x98\x14\x43\xFF\x13\x14\x85\x5A\xBC"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (C0UNT=1, E=16, N=8, A=0, P=16)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 128], [AdditionalInputLen = 16], [ReturnedBitsLen = 640] const byte entropy1[] = "\x48\xa1\xa9\x7c\xcc\x49\xd7\xcc\xf6\xe3\x78\xa2\xf1\x6b\x0f\xcd"; const byte entropy2[] = "\xba\x5d\xa6\x79\x12\x37\x24\x3f\xea\x60\x50\xf5\xb9\x9e\xcd\xf5"; const byte nonce[] = "\xb0\x91\xd2\xec\x12\xa8\x39\xfe"; const byte personalization[] = "\x3d\xc1\x6c\x1a\xdd\x9c\xac\x4e\xbb\xb0\xb8\x89\xe4\x3b\x9e\x12"; const byte additional1[] = "\xd1\x23\xe3\x8e\x4c\x97\xe8\x29\x94\xa9\x71\x7a\xc6\xf1\x7c\x08"; const byte additional2[] = "\x80\x0b\xed\x97\x29\xcf\xad\xe6\x68\x0d\xfe\x53\xba\x0c\x1e\x28"; const byte additional3[] = "\x25\x1e\x66\xb9\xe3\x85\xac\x1c\x17\xfb\x77\x1b\x5d\xc7\x6c\xf2"; Hash_DRBG drbg(entropy1, 16, nonce, 8, personalization, 16); drbg.IncorporateEntropy(entropy2, 16, additional1, 16); SecByteBlock result(80); drbg.GenerateBlock(additional2, 16, result, result.size()); drbg.GenerateBlock(additional3, 16, result, result.size()); const byte expected[] = "\xA1\xB2\xEE\x86\xA0\xF1\xDA\xB7\x93\x83\x13\x3A\x62\x27\x99\x08\x95\x3A\x1C\x9A" "\x98\x77\x60\x12\x11\x19\xCC\x78\xB8\x51\x2B\xD5\x37\xA1\x9D\xB9\x73\xCA\x39\x7A" "\xDD\x92\x33\x78\x6D\x5D\x41\xFF\xFA\xE9\x80\x59\x04\x85\x21\xE2\x52\x84\xBC\x6F" "\xDB\x97\xF3\x4E\x6A\x12\x7A\xCD\x41\x0F\x50\x68\x28\x46\xBE\x56\x9E\x9A\x6B\xC8"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (C0UNT=0, E=16, N=8, A=16, P=16)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 128], [AdditionalInputLen = 16], [ReturnedBitsLen = 640] const byte entropy1[] = "\x3b\xcb\xa8\x3b\x6d\xfb\x06\x79\x80\xef\xc3\x1e\xd2\x9e\x68\x57"; const byte entropy2[] = "\x2f\xc9\x87\x49\x19\xcb\x52\x4a\x5b\xac\xf0\xcd\x96\x4e\xf8\x6e"; const byte nonce[] = "\x23\xfe\x20\x9f\xac\x70\x45\xde"; const byte personalization[] = "\xf2\x25\xf4\xd9\x6b\x9c\xab\x49\x1e\xab\x18\x14\xb2\x5e\x78\xef"; const byte additional1[] = "\x57\x5b\x9a\x11\x32\x7a\xab\x89\x08\xfe\x46\x11\x9a\xed\x14\x5d"; const byte additional2[] = "\x5d\x19\xcd\xed\xb7\xe3\x44\x66\x8e\x11\x42\x96\xa0\x38\xb1\x7f"; const byte additional3[] = "\x2b\xaf\xa0\x15\xed\xdd\x5c\x76\x32\x75\x34\x35\xd1\x37\x72\xfb"; Hash_DRBG drbg(entropy1, 16, nonce, 8, personalization, 16); drbg.IncorporateEntropy(entropy2, 16, additional1, 16); SecByteBlock result(80); drbg.GenerateBlock(additional2, 16, result, result.size()); drbg.GenerateBlock(additional3, 16, result, result.size()); const byte expected[] = "\x1D\x12\xEB\x6D\x42\x60\xBD\xFB\xA7\x99\xB8\x53\xCC\x6F\x19\xB1\x64\xFE\x2F\x55" "\xBA\xA2\x1C\x89\xD4\xD0\xE9\xB4\xBA\xD4\xE5\xF8\xC5\x30\x06\x41\xBA\xC4\x3D\x2B" "\x73\x91\x27\xE9\x31\xC0\x55\x55\x11\xE8\xB6\x57\x02\x0D\xCE\x90\xAC\x31\xB9\x00" "\x31\xC1\xD4\x4F\xE7\x12\x3B\xCC\x85\x16\x2F\x12\x8F\xB2\xDF\x84\x4E\xF7\x06\xBE"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA1/128/440 (C0UNT=1, E=16, N=8, A=16, P=16)\n"; } { // [SHA-256], [PredictionResistance = False], [EntropyInputLen = 256], [NonceLen = 128] // [PersonalizationStringLen = 256], [AdditionalInputLen = 256], [ReturnedBitsLen = 1024] const byte entropy1[] = "\xf0\x5b\xab\x56\xc7\xac\x6e\xeb\x31\xa0\xcf\x8a\x8a\x06\x2a\x49\x17\x9a\xcf\x3c\x5b\x20\x4d\x60\xdd\x7a\x3e\xb7\x8f\x5d\x8e\x3b"; const byte entropy2[] = "\x72\xd4\x02\xa2\x59\x7b\x98\xa3\xb8\xf5\x0b\x71\x6c\x63\xc6\xdb\xa7\x3a\x07\xe6\x54\x89\x06\x3f\x02\xc5\x32\xf5\xda\xc4\xd4\x18"; const byte nonce[] = "\xa1\x45\x08\x53\x41\x68\xb6\x88\xf0\x5f\x1e\x41\x9c\x88\xcc\x30"; const byte personalization[] = "\xa0\x34\x72\xf4\x04\x59\xe2\x87\xea\xcb\x21\x32\xc0\xb6\x54\x02\x7d\xa3\xe6\x69\x25\xb4\x21\x25\x54\xc4\x48\x18\x8c\x0e\x86\x01"; const byte additional1[] = "\xb3\x0d\x28\xaf\xa4\x11\x6b\xbc\x13\x6e\x65\x09\xb5\x82\xa6\x93\xbc\x91\x71\x40\x46\xaa\x3c\x66\xb6\x77\xb3\xef\xf9\xad\xfd\x49"; const byte additional2[] = "\x77\xfd\x1d\x68\xd6\xa4\xdd\xd5\xf3\x27\x25\x2d\x3f\x6b\xdf\xee\x8c\x35\xce\xd3\x83\xbe\xaf\xc9\x32\x77\xef\xf2\x1b\x6f\xf4\x1b"; const byte additional3[] = "\x59\xa0\x1f\xf8\x6a\x58\x72\x1e\x85\xd2\xf8\x3f\x73\x99\xf1\x96\x4e\x27\xf8\x7f\xcd\x1b\xf5\xc1\xeb\xf3\x37\x10\x9b\x13\xbd\x24"; Hash_DRBG drbg(entropy1, 32, nonce, 16, personalization, 32); drbg.IncorporateEntropy(entropy2, 32, additional1, 32); SecByteBlock result(128); drbg.GenerateBlock(additional2, 32, result, result.size()); drbg.GenerateBlock(additional3, 32, result, result.size()); const byte expected[] = "\xFF\x27\x96\x38\x5C\x32\xBF\x84\x3D\xFA\xBB\xF0\x3E\x70\x5A\x39\xCB\xA3\x4C\xF1" "\x4F\xAE\xC3\x05\x63\xDF\x5A\xDD\xBD\x2D\x35\x83\xF5\x7E\x05\xF9\x40\x30\x56\x18" "\xF2\x00\x88\x14\x03\xC2\xD9\x81\x36\x39\xE6\x67\x55\xDC\xFC\x4E\x88\xEA\x71\xDD" "\xB2\x25\x2E\x09\x91\x49\x40\xEB\xE2\x3D\x63\x44\xA0\xF4\xDB\x5E\xE8\x39\xE6\x70" "\xEC\x47\x24\x3F\xA0\xFC\xF5\x13\x61\xCE\x53\x98\xAA\xBF\xB4\x19\x1B\xFE\xD5\x00" "\xE1\x03\x3A\x76\x54\xFF\xD7\x24\x70\x5E\x8C\xB2\x41\x7D\x92\x0A\x2F\x4F\x27\xB8" "\x45\x13\x7F\xFB\x87\x90\xA9\x49"; fail = !!memcmp(result, expected, 1024/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA256/128/440 (C0UNT=0, E=32, N=16, A=32, P=32)\n"; } { // [SHA-256], [PredictionResistance = False], [EntropyInputLen = 256], [NonceLen = 128] // [PersonalizationStringLen = 256], [AdditionalInputLen = 256], [ReturnedBitsLen = 1024] const byte entropy1[] = "\xfe\x61\x50\x79\xf1\xad\x2a\x71\xea\x7f\x0f\x5a\x14\x34\xee\xc8\x46\x35\x54\x4a\x95\x6a\x4f\xbd\x64\xff\xba\xf6\x1d\x34\x61\x83"; const byte entropy2[] = "\x18\x89\x7b\xd8\x3e\xff\x38\xab\xb5\x6e\x82\xa8\x1b\x8c\x5e\x59\x3c\x3d\x85\x62\x2a\xe2\x88\xe5\xb2\xc6\xc5\xd2\xad\x7d\xc9\x45"; const byte nonce[] = "\x9d\xa7\x87\x56\xb7\x49\x17\x02\x4c\xd2\x00\x65\x11\x9b\xe8\x7e"; const byte personalization[] = "\x77\x5d\xbf\x32\xf3\x5c\xf3\x51\xf4\xb8\x1c\xd3\xfa\x7f\x65\x0b\xcf\x31\x88\xa1\x25\x57\x0c\xdd\xac\xaa\xfe\xa1\x7b\x3b\x29\xbc"; const byte additional1[] = "\xef\x96\xc7\x9c\xb1\x73\x1d\x82\x85\x0a\x6b\xca\x9b\x5c\x34\x39\xba\xd3\x4e\x4d\x82\x6f\x35\x9f\x61\x5c\xf6\xf2\xa3\x3e\x91\x05"; const byte additional2[] = "\xaf\x25\xc4\x6e\x21\xfc\xc3\xaf\x1f\xbb\xf8\x76\xb4\x57\xab\x1a\x94\x0a\x85\x16\x47\x81\xa4\xab\xda\xc8\xab\xca\xd0\x84\xda\xae"; const byte additional3[] = "\x59\x5b\x44\x94\x38\x86\x36\xff\x8e\x45\x1a\x0c\x42\xc8\xcc\x21\x06\x38\x3a\xc5\xa6\x30\x96\xb9\x14\x81\xb3\xa1\x2b\xc8\xcd\xf6"; Hash_DRBG drbg(entropy1, 32, nonce, 16, personalization, 32); drbg.IncorporateEntropy(entropy2, 32, additional1, 32); SecByteBlock result(128); drbg.GenerateBlock(additional2, 32, result, result.size()); drbg.GenerateBlock(additional3, 32, result, result.size()); const byte expected[] = "\x8B\x1C\x9C\x76\xC4\x9B\x3B\xAE\xFD\x6E\xEB\x6C\xFF\xA3\xA1\x03\x3A\x8C\xAF\x09" "\xFE\xBD\x44\x00\xFC\x0F\xD3\xA8\x26\x9C\xEE\x01\xAC\xE3\x73\x0E\xBE\xDA\x9A\xC6" "\x23\x44\x6D\xA1\x56\x94\x29\xEC\x4B\xCD\x01\x84\x32\x25\xEF\x00\x91\x0B\xCC\xF3" "\x06\x3B\x80\xF5\x46\xAC\xD2\xED\x5F\x70\x2B\x56\x2F\x21\x0A\xE9\x80\x87\x38\xAD" "\xB0\x2A\xEB\x27\xF2\xD9\x20\x2A\x66\x0E\xF5\xC9\x20\x4A\xB4\x3C\xCE\xD6\x24\x97" "\xDB\xB1\xED\x94\x12\x6A\x2F\x03\x98\x4A\xD4\xD1\x72\xF3\x7A\x66\x74\x7E\x2A\x5B" "\xDE\xEF\x43\xBC\xB9\x8C\x49\x01"; fail = !!memcmp(result, expected, 1024/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA256/128/440 (C0UNT=1, E=32, N=16, A=32, P=32)\n"; } { // [SHA-512], [PredictionResistance = False], [EntropyInputLen = 256], [NonceLen = 128] // [PersonalizationStringLen = 256], [AdditionalInputLen = 256], [ReturnedBitsLen = 2048] const byte entropy1[] = "\x55\x4e\x8f\xfd\xc4\x9a\xd8\xf9\x9a\xe5\xd5\xf8\x1a\xf5\xda\xfb\x7f\x75\x53\xd7\xcb\x56\x8e\xa7\x3c\xc0\x82\xdd\x80\x76\x25\xc0"; const byte entropy2[] = "\x78\x07\x3e\x86\x79\x4b\x10\x95\x88\xf4\x22\xf9\xbd\x04\x7e\xc0\xce\xab\xd6\x78\x6b\xdf\xe2\x89\xb3\x16\x43\x9c\x32\x2d\xb2\x59"; const byte nonce[] = "\xf0\x89\x78\xde\x2d\xc2\xcd\xd9\xc0\xfd\x3d\x84\xd9\x8b\x8e\x8e"; const byte personalization[] = "\x3e\x52\x7a\xb5\x81\x2b\x0c\x0e\x98\x2a\x95\x78\x93\x98\xd9\xeb\xf1\xb9\xeb\xd6\x1d\x02\x05\xed\x42\x21\x2d\x24\xb8\x37\xf8\x41"; const byte additional1[] = "\xf2\x6b\xb1\xef\x30\xca\x8f\x97\xc0\x19\xd0\x79\xe5\xc6\x5e\xae\xd1\xa3\x9a\x52\xaf\x12\xe8\x28\xde\x03\x70\x79\x9a\x70\x11\x8b"; const byte additional2[] = "\xb0\x9d\xb5\xa8\x45\xec\x79\x7a\x4b\x60\x7e\xe4\xd5\x58\x56\x70\x35\x20\x9b\xd8\xe5\x01\x6c\x78\xff\x1f\x6b\x93\xbf\x7c\x34\xca"; const byte additional3[] = "\x45\x92\x2f\xb3\x5a\xd0\x6a\x84\x5f\xc9\xca\x16\x4a\x42\xbb\x59\x84\xb4\x38\x57\xa9\x16\x23\x48\xf0\x2f\x51\x61\x24\x35\xb8\x62"; Hash_DRBG drbg(entropy1, 32, nonce, 16, personalization, 32); drbg.IncorporateEntropy(entropy2, 32, additional1, 32); SecByteBlock result(256); drbg.GenerateBlock(additional2, 32, result, result.size()); drbg.GenerateBlock(additional3, 32, result, result.size()); const byte expected[] = "\x1F\x20\x83\x9E\x22\x55\x3B\x1E\x6C\xD4\xF6\x3A\x47\xC3\x99\x54\x0F\x69\xA3\xBB" "\x37\x47\xA0\x2A\x12\xAC\xC7\x00\x85\xC5\xCC\xF4\x7B\x12\x5A\x4A\xEA\xED\x2F\xE5" "\x31\x51\x0D\xC1\x8E\x50\x29\xE2\xA6\xCB\x8F\x34\xBA\xDA\x8B\x47\x32\x33\x81\xF1" "\x2D\xF6\x8B\x73\x8C\xFF\x15\xC8\x8E\x8C\x31\x48\xFA\xC3\xC4\x9F\x52\x81\x23\xC2" "\x2A\x83\xBD\xF1\x44\xEF\x15\x49\x93\x44\x83\x6B\x37\x5D\xBB\xFF\x72\xD2\x86\x96" "\x62\xF8\x4D\x12\x3B\x16\xCB\xAC\xA1\x00\x12\x1F\x94\xA8\xD5\xAE\x9A\x9E\xDA\xC8" "\xD7\x6D\x59\x33\xFD\x55\xC9\xCC\x5B\xAD\x39\x73\xB5\x13\x8B\x96\xDF\xDB\xF5\x90" "\x81\xDF\x68\x6A\x30\x72\x42\xF2\x74\xAE\x7F\x1F\x7F\xFE\x8B\x3D\x49\x38\x98\x34" "\x7C\x63\x46\x6E\xAF\xFA\xCB\x06\x06\x08\xE6\xC8\x35\x3C\x68\xB8\xCC\x9D\x5C\xDF" "\xDB\xC0\x41\x44\x48\xE6\x11\xD4\x78\x50\x81\x91\xED\x1D\x75\xF3\xBD\x79\xFF\x1E" "\x37\xAF\xC6\x5D\x49\xD6\x5C\xAC\x5B\xCB\xD6\x91\x37\x51\xFA\x98\x70\xFC\x32\xB3" "\xF2\x86\xE4\xED\x74\xF2\x5D\x8B\x6C\x4D\xB8\xDE\xD8\x4A\xD6\x5E\xD6\x6D\xAE\xB1" "\x1B\xA2\x94\x52\x54\xAD\x3C\x3D\x25\xBD\x12\x46\x3C\xA0\x45\x9D"; fail = !!memcmp(result, expected, 2048/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA512/256/888 (C0UNT=0, E=32, N=16, A=32, P=32)\n"; } { // [SHA-512], [PredictionResistance = False], [EntropyInputLen = 256], [NonceLen = 128] // [PersonalizationStringLen = 256], [AdditionalInputLen = 256], [ReturnedBitsLen = 2048] const byte entropy1[] = "\x0c\x9f\xcd\x06\x21\x3c\xb2\xf6\x3c\xdf\x79\x76\x4b\x46\x74\xfc\xdf\x68\xb0\xff\xae\xc7\x21\x8a\xa2\xaf\x4e\x4c\xb9\xe6\x60\x78"; const byte entropy2[] = "\x75\xb8\x49\x54\xdf\x30\x10\x16\x2c\x06\x8c\x12\xeb\x6c\x1d\x03\x64\x5c\xad\x10\x5c\xc3\x17\x69\xb2\x5a\xc1\x7c\xb8\x33\x5b\x45"; const byte nonce[] = "\x43\x1c\x4d\x65\x93\x96\xad\xdc\xc1\x6d\x17\x9f\x7f\x57\x24\x4d"; const byte personalization[] = "\x7e\x54\xbd\x87\xd2\x0a\x95\xd7\xc4\x0c\x3b\x1b\x32\x15\x26\xd2\x06\x67\xa4\xac\xc1\xaa\xfb\x55\x91\x68\x2c\xb5\xc9\xcd\x66\x05"; const byte additional1[] = "\xd5\x74\x9e\x56\xfb\x5f\xf3\xf8\x2c\x73\x2b\x7a\x83\xe0\xde\x06\x85\x0b\xf0\x57\x50\xc8\x55\x60\x4a\x41\x4f\x86\xb1\x68\x14\x03"; const byte additional2[] = "\x9a\x83\xbb\x06\xdf\x4d\x53\x89\xf5\x3f\x24\xff\xf7\xcd\x0c\xcf\x4f\xbe\x46\x79\x8e\xce\x82\xa8\xc4\x6b\x5f\x8e\x58\x32\x62\x23"; const byte additional3[] = "\x48\x13\xc4\x95\x10\x99\xdd\x7f\xd4\x77\x3c\x9b\x8a\xa4\x1c\x3d\xb0\x93\x92\x50\xba\x23\x98\xef\x4b\x1b\xd2\x53\xc1\x61\xda\xc6"; Hash_DRBG drbg(entropy1, 32, nonce, 16, personalization, 32); drbg.IncorporateEntropy(entropy2, 32, additional1, 32); SecByteBlock result(256); drbg.GenerateBlock(additional2, 32, result, result.size()); drbg.GenerateBlock(additional3, 32, result, result.size()); const byte expected[] = "\xE1\x7E\x4B\xEE\xD1\x65\x4F\xB2\xFC\xC8\xE8\xD7\xC6\x72\x7D\xD2\xE3\x15\x73\xC0" "\x23\xC8\x55\x5D\x2B\xD8\x28\xD8\x31\xE4\xC9\x87\x42\x51\x87\x66\x43\x1F\x2C\xA4" "\x73\xED\x4E\x50\x12\xC4\x50\x0E\x4C\xDD\x14\x73\xA2\xFB\xB3\x07\x0C\x66\x97\x4D" "\x89\xDE\x35\x1C\x93\xE7\xE6\x8F\x20\x3D\x84\xE6\x73\x46\x0F\x7C\xF4\x3B\x6C\x02" "\x23\x7C\x79\x6C\x86\xD9\x48\x80\x9C\x34\xCB\xA1\x23\xE7\xF7\x8A\x2E\x4B\x9D\x39" "\xA5\x86\x1A\x73\x58\x28\x5A\x1D\x8D\x4A\xBD\x42\xD5\x49\x2B\xDF\x53\x1D\xE7\x4A" "\x5F\x74\x09\x7F\xDC\x29\x7D\x58\x9C\x4B\xC5\x2F\x3B\x8F\xBF\x56\xCA\x48\x0A\x74" "\xAE\xFF\xDD\x12\xE4\xF6\xAB\x83\x26\x4F\x52\x8A\x19\xBB\x91\x32\xA4\x42\xEC\x4F" "\x3C\x76\xED\x9F\x03\xAA\x5E\x53\x79\x4C\xD0\x06\xD2\x1A\x42\x9D\xB1\xA7\xEC\xF7" "\x5B\xD4\x03\x70\x1E\xF2\x47\x26\x48\xAC\x35\xEE\xD0\x58\x40\x94\x8C\x11\xD0\xEB" "\x77\x39\x5A\xA3\xD5\xD0\xD3\xC3\x68\xE1\x75\xAA\xC0\x44\xEA\xD8\xDD\x13\x3F\xF9" "\x7D\x21\x14\x34\xA5\x87\x43\xA4\x0A\x96\x77\x00\xCC\xCA\xB1\xDA\xC4\x39\xE0\x66" "\x37\x05\x6E\xAC\xF2\xE6\xC6\xC5\x4F\x79\xD3\xE5\x6A\x3D\x36\x3F"; fail = !!memcmp(result, expected, 2048/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "Hash_DRBG SHA512/256/888 (C0UNT=1, E=32, N=16, A=32, P=32)\n"; } return pass; } bool ValidateHmacDRBG() { std::cout << "\nTesting NIST HMAC DRBGs...\n\n"; bool pass=true, fail; // # CAVS 14.3 // # DRBG800-90A information for "drbg_pr" // # Generated on Tue Apr 02 15:32:12 2013 { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 0], [ReturnedBitsLen = 640] const byte entropy1[] = "\x79\x34\x9b\xbf\x7c\xdd\xa5\x79\x95\x57\x86\x66\x21\xc9\x13\x83"; const byte entropy2[] = "\xc7\x21\x5b\x5b\x96\xc4\x8e\x9b\x33\x8c\x74\xe3\xe9\x9d\xfe\xdf"; const byte nonce[] = "\x11\x46\x73\x3a\xbf\x8c\x35\xc8"; HMAC_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16); SecByteBlock result(80); drbg.GenerateBlock(result, result.size()); drbg.GenerateBlock(result, result.size()); const byte expected[] = "\xc6\xa1\x6a\xb8\xd4\x20\x70\x6f\x0f\x34\xab\x7f\xec\x5a\xdc\xa9\xd8\xca\x3a\x13" "\x3e\x15\x9c\xa6\xac\x43\xc6\xf8\xa2\xbe\x22\x83\x4a\x4c\x0a\x0a\xff\xb1\x0d\x71" "\x94\xf1\xc1\xa5\xcf\x73\x22\xec\x1a\xe0\x96\x4e\xd4\xbf\x12\x27\x46\xe0\x87\xfd" "\xb5\xb3\xe9\x1b\x34\x93\xd5\xbb\x98\xfa\xed\x49\xe8\x5f\x13\x0f\xc8\xa4\x59\xb7"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "HMAC_DRBG SHA1/128/440 (COUNT=0, E=16, N=8)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 0], [ReturnedBitsLen = 640] const byte entropy1[] = "\xee\x57\xfc\x23\x60\x0f\xb9\x02\x9a\x9e\xc6\xc8\x2e\x7b\x51\xe4"; const byte entropy2[] = "\x84\x1d\x27\x6c\xa9\x51\x90\x61\xd9\x2d\x7d\xdf\xa6\x62\x8c\xa3"; const byte nonce[] = "\x3e\x97\x21\xe4\x39\x3e\xf9\xad"; HMAC_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16); SecByteBlock result(80); drbg.GenerateBlock(result, result.size()); drbg.GenerateBlock(result, result.size()); const byte expected[] = "\xee\x26\xa5\xc8\xef\x08\xa1\xca\x8f\x14\x15\x4d\x67\xc8\x8f\x5e\x7e\xd8\x21\x9d" "\x93\x1b\x98\x42\xac\x00\x39\xf2\x14\x55\x39\xf2\x14\x2b\x44\x11\x7a\x99\x8c\x22" "\xf5\x90\xf6\xc9\xb3\x8b\x46\x5b\x78\x3e\xcf\xf1\x3a\x77\x50\x20\x1f\x7e\xcf\x1b" "\x8a\xb3\x93\x60\x4c\x73\xb2\x38\x93\x36\x60\x9a\xf3\x44\x0c\xde\x43\x29\x8b\x84"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "HMAC_DRBG SHA1/128/440 (COUNT=1, E=16, N=8)\n"; } // ***************************************************** { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 16], [ReturnedBitsLen = 640] const byte entropy1[] = "\x7d\x70\x52\xa7\x76\xfd\x2f\xb3\xd7\x19\x1f\x73\x33\x04\xee\x8b"; const byte entropy2[] = "\x49\x04\x7e\x87\x9d\x61\x09\x55\xee\xd9\x16\xe4\x06\x0e\x00\xc9"; const byte nonce[] = "\xbe\x4a\x0c\xee\xdc\xa8\x02\x07"; const byte additional1[] = "\xfd\x8b\xb3\x3a\xab\x2f\x6c\xdf\xbc\x54\x18\x11\x86\x1d\x51\x8d"; const byte additional2[] = "\x99\xaf\xe3\x47\x54\x04\x61\xdd\xf6\xab\xeb\x49\x1e\x07\x15\xb4"; const byte additional3[] = "\x02\xf7\x73\x48\x2d\xd7\xae\x66\xf7\x6e\x38\x15\x98\xa6\x4e\xf0"; HMAC_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16, additional1, 16); SecByteBlock result(80); drbg.GenerateBlock(additional2, 16, result, result.size()); drbg.GenerateBlock(additional3, 16, result, result.size()); const byte expected[] = "\xa7\x36\x34\x38\x44\xfc\x92\x51\x13\x91\xdb\x0a\xdd\xd9\x06\x4d\xbe\xe2\x4c\x89" "\x76\xaa\x25\x9a\x9e\x3b\x63\x68\xaa\x6d\xe4\xc9\xbf\x3a\x0e\xff\xcd\xa9\xcb\x0e" "\x9d\xc3\x36\x52\xab\x58\xec\xb7\x65\x0e\xd8\x04\x67\xf7\x6a\x84\x9f\xb1\xcf\xc1" "\xed\x0a\x09\xf7\x15\x50\x86\x06\x4d\xb3\x24\xb1\xe1\x24\xf3\xfc\x9e\x61\x4f\xcb"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "HMAC_DRBG SHA1/128/440 (COUNT=0, E=16, N=8, A=16)\n"; } { // [SHA-1], [PredictionResistance = False], [EntropyInputLen = 128], [NonceLen = 64] // [PersonalizationStringLen = 0], [AdditionalInputLen = 16], [ReturnedBitsLen = 640] const byte entropy1[] = "\x29\xc6\x2a\xfa\x3c\x52\x20\x8a\x3f\xde\xcb\x43\xfa\x61\x3f\x15"; const byte entropy2[] = "\xbd\x87\xbe\x99\xd1\x84\x16\x54\x12\x31\x41\x40\xd4\x02\x71\x41"; const byte nonce[] = "\x6c\x9e\xb5\x9a\xc3\xc2\xd4\x8b"; const byte additional1[] = "\x43\x3d\xda\xf2\x59\xd1\x4b\xcf\x89\x76\x30\xcc\xaa\x27\x33\x8c"; const byte additional2[] = "\x14\x11\x46\xd4\x04\xf2\x84\xc2\xd0\x2b\x6a\x10\x15\x6e\x33\x82"; const byte additional3[] = "\xed\xc3\x43\xdb\xff\xe7\x1a\xb4\x11\x4a\xc3\x63\x9d\x44\x5b\x65"; HMAC_DRBG drbg(entropy1, 16, nonce, 8); drbg.IncorporateEntropy(entropy2, 16, additional1, 16); SecByteBlock result(80); drbg.GenerateBlock(additional2, 16, result, result.size()); drbg.GenerateBlock(additional3, 16, result, result.size()); const byte expected[] = "\x8c\x73\x0f\x05\x26\x69\x4d\x5a\x9a\x45\xdb\xab\x05\x7a\x19\x75\x35\x7d\x65\xaf" "\xd3\xef\xf3\x03\x32\x0b\xd1\x40\x61\xf9\xad\x38\x75\x91\x02\xb6\xc6\x01\x16\xf6" "\xdb\x7a\x6e\x8e\x7a\xb9\x4c\x05\x50\x0b\x4d\x1e\x35\x7d\xf8\xe9\x57\xac\x89\x37" "\xb0\x5f\xb3\xd0\x80\xa0\xf9\x06\x74\xd4\x4d\xe1\xbd\x6f\x94\xd2\x95\xc4\x51\x9d"; fail = !!memcmp(result, expected, 640/8); pass = !fail && pass; std::cout << (fail ? "FAILED " : "passed ") << "HMAC_DRBG SHA1/128/440 (COUNT=1, E=16, N=8, A=16)\n"; } return pass; } class CipherFactory { public: virtual unsigned int BlockSize() const =0; virtual unsigned int KeyLength() const =0; virtual BlockTransformation* NewEncryption(const byte *keyStr) const =0; virtual BlockTransformation* NewDecryption(const byte *keyStr) const =0; }; template class FixedRoundsCipherFactory : public CipherFactory { public: FixedRoundsCipherFactory(unsigned int keylen=0) : m_keylen(keylen ? keylen : static_cast(E::DEFAULT_KEYLENGTH)) {} unsigned int BlockSize() const {return E::BLOCKSIZE;} unsigned int KeyLength() const {return m_keylen;} BlockTransformation* NewEncryption(const byte *keyStr) const {return new E(keyStr, m_keylen);} BlockTransformation* NewDecryption(const byte *keyStr) const {return new D(keyStr, m_keylen);} unsigned int m_keylen; }; template class VariableRoundsCipherFactory : public CipherFactory { public: VariableRoundsCipherFactory(unsigned int keylen=0, unsigned int rounds=0) : m_keylen(keylen ? keylen : static_cast(E::DEFAULT_KEYLENGTH)), m_rounds(rounds ? rounds : static_cast(E::DEFAULT_ROUNDS)) {} unsigned int BlockSize() const {return static_cast(E::BLOCKSIZE);} unsigned int KeyLength() const {return m_keylen;} BlockTransformation* NewEncryption(const byte *keyStr) const {return new E(keyStr, m_keylen, m_rounds);} BlockTransformation* NewDecryption(const byte *keyStr) const {return new D(keyStr, m_keylen, m_rounds);} unsigned int m_keylen, m_rounds; }; bool BlockTransformationTest(const CipherFactory &cg, BufferedTransformation &valdata, unsigned int tuples = 0xffff) { HexEncoder output(new FileSink(std::cout)); SecByteBlock plain(cg.BlockSize()), cipher(cg.BlockSize()), out(cg.BlockSize()), outplain(cg.BlockSize()); SecByteBlock key(cg.KeyLength()); bool pass=true, fail; while (valdata.MaxRetrievable() && tuples--) { (void)valdata.Get(key, cg.KeyLength()); (void)valdata.Get(plain, cg.BlockSize()); (void)valdata.Get(cipher, cg.BlockSize()); member_ptr transE(cg.NewEncryption(key)); transE->ProcessBlock(plain, out); fail = memcmp(out, cipher, cg.BlockSize()) != 0; member_ptr transD(cg.NewDecryption(key)); transD->ProcessBlock(out, outplain); fail=fail || memcmp(outplain, plain, cg.BlockSize()); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed "); output.Put(key, cg.KeyLength()); std::cout << " "; output.Put(outplain, cg.BlockSize()); std::cout << " "; output.Put(out, cg.BlockSize()); std::cout << std::endl; } return pass; } class FilterTester : public Unflushable { public: FilterTester(const byte *validOutput, size_t outputLen) : validOutput(validOutput), outputLen(outputLen), counter(0), fail(false) {} void PutByte(byte inByte) { if (counter >= outputLen || validOutput[counter] != inByte) { std::cerr << "incorrect output " << counter << ", " << (word16)validOutput[counter] << ", " << (word16)inByte << "\n"; fail = true; CRYPTOPP_ASSERT(false); } counter++; } size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) { CRYPTOPP_UNUSED(messageEnd), CRYPTOPP_UNUSED(blocking); while (length--) FilterTester::PutByte(*inString++); if (messageEnd) if (counter != outputLen) { fail = true; CRYPTOPP_ASSERT(false); } return 0; } bool GetResult() { return !fail; } const byte *validOutput; size_t outputLen, counter; bool fail; }; bool TestFilter(BufferedTransformation &bt, const byte *in, size_t inLen, const byte *out, size_t outLen) { FilterTester *ft; bt.Attach(ft = new FilterTester(out, outLen)); while (inLen) { size_t randomLen = GlobalRNG().GenerateWord32(0, (word32)inLen); bt.Put(in, randomLen); in += randomLen; inLen -= randomLen; } bt.MessageEnd(); return ft->GetResult(); } bool ValidateDES() { std::cout << "\nDES validation suite running...\n\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/descert.dat", true, new HexDecoder); bool pass = BlockTransformationTest(FixedRoundsCipherFactory(), valdata); std::cout << "\nTesting EDE2, EDE3, and XEX3 variants...\n\n"; FileSource valdata1(CRYPTOPP_DATA_DIR "TestData/3desval.dat", true, new HexDecoder); pass = BlockTransformationTest(FixedRoundsCipherFactory(), valdata1, 1) && pass; pass = BlockTransformationTest(FixedRoundsCipherFactory(), valdata1, 1) && pass; pass = BlockTransformationTest(FixedRoundsCipherFactory(), valdata1, 1) && pass; return pass; } bool TestModeIV(SymmetricCipher &e, SymmetricCipher &d) { SecByteBlock lastIV, iv(e.IVSize()); StreamTransformationFilter filter(e, new StreamTransformationFilter(d)); // Enterprise Analysis finding on the stack based array const int BUF_SIZE=20480U; AlignedSecByteBlock plaintext(BUF_SIZE); for (unsigned int i=1; i<20480; i*=2) { e.GetNextIV(GlobalRNG(), iv); if (iv == lastIV) return false; else lastIV = iv; e.Resynchronize(iv); d.Resynchronize(iv); unsigned int length = STDMAX(GlobalRNG().GenerateWord32(0, i), (word32)e.MinLastBlockSize()); GlobalRNG().GenerateBlock(plaintext, length); if (!TestFilter(filter, plaintext, length, plaintext, length)) return false; } return true; } bool ValidateCipherModes() { std::cout << "\nTesting DES modes...\n\n"; const byte key[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef}; const byte iv[] = {0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef}; const byte plain[] = { // "Now is the time for all " without tailing 0 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20}; DESEncryption desE(key); DESDecryption desD(key); bool pass=true, fail; { // from FIPS 81 const byte encrypted[] = { 0x3f, 0xa4, 0x0e, 0x8a, 0x98, 0x4d, 0x48, 0x15, 0x6a, 0x27, 0x17, 0x87, 0xab, 0x88, 0x83, 0xf9, 0x89, 0x3d, 0x51, 0xec, 0x4b, 0x56, 0x3b, 0x53}; ECB_Mode_ExternalCipher::Encryption modeE(desE); fail = !TestFilter(StreamTransformationFilter(modeE, NULLPTR, StreamTransformationFilter::NO_PADDING).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "ECB encryption" << std::endl; ECB_Mode_ExternalCipher::Decryption modeD(desD); fail = !TestFilter(StreamTransformationFilter(modeD, NULLPTR, StreamTransformationFilter::NO_PADDING).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "ECB decryption" << std::endl; } { // from FIPS 81 const byte encrypted[] = { 0xE5, 0xC7, 0xCD, 0xDE, 0x87, 0x2B, 0xF2, 0x7C, 0x43, 0xE9, 0x34, 0x00, 0x8C, 0x38, 0x9C, 0x0F, 0x68, 0x37, 0x88, 0x49, 0x9A, 0x7C, 0x05, 0xF6}; CBC_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE, NULLPTR, StreamTransformationFilter::NO_PADDING).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC encryption with no padding" << std::endl; CBC_Mode_ExternalCipher::Decryption modeD(desD, iv); fail = !TestFilter(StreamTransformationFilter(modeD, NULLPTR, StreamTransformationFilter::NO_PADDING).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC decryption with no padding" << std::endl; fail = !TestModeIV(modeE, modeD); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC mode IV generation" << std::endl; } { // generated with Crypto++, matches FIPS 81 // but has extra 8 bytes as result of padding const byte encrypted[] = { 0xE5, 0xC7, 0xCD, 0xDE, 0x87, 0x2B, 0xF2, 0x7C, 0x43, 0xE9, 0x34, 0x00, 0x8C, 0x38, 0x9C, 0x0F, 0x68, 0x37, 0x88, 0x49, 0x9A, 0x7C, 0x05, 0xF6, 0x62, 0xC1, 0x6A, 0x27, 0xE4, 0xFC, 0xF2, 0x77}; CBC_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC encryption with PKCS #7 padding" << std::endl; CBC_Mode_ExternalCipher::Decryption modeD(desD, iv); fail = !TestFilter(StreamTransformationFilter(modeD).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC decryption with PKCS #7 padding" << std::endl; } { // generated with Crypto++ 5.2, matches FIPS 81 // but has extra 8 bytes as result of padding const byte encrypted[] = { 0xE5, 0xC7, 0xCD, 0xDE, 0x87, 0x2B, 0xF2, 0x7C, 0x43, 0xE9, 0x34, 0x00, 0x8C, 0x38, 0x9C, 0x0F, 0x68, 0x37, 0x88, 0x49, 0x9A, 0x7C, 0x05, 0xF6, 0xcf, 0xb7, 0xc7, 0x64, 0x0e, 0x7c, 0xd9, 0xa7}; CBC_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE, NULLPTR, StreamTransformationFilter::ONE_AND_ZEROS_PADDING).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC encryption with one-and-zeros padding" << std::endl; CBC_Mode_ExternalCipher::Decryption modeD(desD, iv); fail = !TestFilter(StreamTransformationFilter(modeD, NULLPTR, StreamTransformationFilter::ONE_AND_ZEROS_PADDING).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC decryption with one-and-zeros padding" << std::endl; } { const byte plain_1[] = {'a', 0, 0, 0, 0, 0, 0, 0}; // generated with Crypto++ const byte encrypted[] = { 0x9B, 0x47, 0x57, 0x59, 0xD6, 0x9C, 0xF6, 0xD0}; CBC_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE, NULLPTR, StreamTransformationFilter::ZEROS_PADDING).Ref(), plain_1, 1, encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC encryption with zeros padding" << std::endl; CBC_Mode_ExternalCipher::Decryption modeD(desD, iv); fail = !TestFilter(StreamTransformationFilter(modeD, NULLPTR, StreamTransformationFilter::ZEROS_PADDING).Ref(), encrypted, sizeof(encrypted), plain_1, sizeof(plain_1)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC decryption with zeros padding" << std::endl; } { // generated with Crypto++, matches FIPS 81 // but with last two blocks swapped as result of CTS const byte encrypted[] = { 0xE5, 0xC7, 0xCD, 0xDE, 0x87, 0x2B, 0xF2, 0x7C, 0x68, 0x37, 0x88, 0x49, 0x9A, 0x7C, 0x05, 0xF6, 0x43, 0xE9, 0x34, 0x00, 0x8C, 0x38, 0x9C, 0x0F}; CBC_CTS_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC encryption with ciphertext stealing (CTS)" << std::endl; CBC_CTS_Mode_ExternalCipher::Decryption modeD(desD, iv); fail = !TestFilter(StreamTransformationFilter(modeD).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC decryption with ciphertext stealing (CTS)" << std::endl; fail = !TestModeIV(modeE, modeD); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC CTS IV generation" << std::endl; } { // generated with Crypto++ const byte decryptionIV[] = {0x4D, 0xD0, 0xAC, 0x8F, 0x47, 0xCF, 0x79, 0xCE}; const byte encrypted[] = {0x12, 0x34, 0x56}; byte stolenIV[8]; CBC_CTS_Mode_ExternalCipher::Encryption modeE(desE, iv); modeE.SetStolenIV(stolenIV); fail = !TestFilter(StreamTransformationFilter(modeE).Ref(), plain, 3, encrypted, sizeof(encrypted)); fail = memcmp(stolenIV, decryptionIV, 8) != 0 || fail; pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC encryption with ciphertext and IV stealing" << std::endl; CBC_CTS_Mode_ExternalCipher::Decryption modeD(desD, stolenIV); fail = !TestFilter(StreamTransformationFilter(modeD).Ref(), encrypted, sizeof(encrypted), plain, 3); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC decryption with ciphertext and IV stealing" << std::endl; } { const byte encrypted[] = { // from FIPS 81 0xF3,0x09,0x62,0x49,0xC7,0xF4,0x6E,0x51, 0xA6,0x9E,0x83,0x9B,0x1A,0x92,0xF7,0x84, 0x03,0x46,0x71,0x33,0x89,0x8E,0xA6,0x22}; CFB_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CFB encryption" << std::endl; CFB_Mode_ExternalCipher::Decryption modeD(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeD).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CFB decryption" << std::endl; fail = !TestModeIV(modeE, modeD); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CFB mode IV generation" << std::endl; } { const byte plain_2[] = { // "Now is the." without tailing 0 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74,0x68,0x65}; const byte encrypted[] = { // from FIPS 81 0xf3,0x1f,0xda,0x07,0x01,0x14,0x62,0xee,0x18,0x7f}; CFB_Mode_ExternalCipher::Encryption modeE(desE, iv, 1); fail = !TestFilter(StreamTransformationFilter(modeE).Ref(), plain_2, sizeof(plain_2), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CFB (8-bit feedback) encryption" << std::endl; CFB_Mode_ExternalCipher::Decryption modeD(desE, iv, 1); fail = !TestFilter(StreamTransformationFilter(modeD).Ref(), encrypted, sizeof(encrypted), plain_2, sizeof(plain_2)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CFB (8-bit feedback) decryption" << std::endl; fail = !TestModeIV(modeE, modeD); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CFB (8-bit feedback) IV generation" << std::endl; } { const byte encrypted[] = { // from Eric Young's libdes 0xf3,0x09,0x62,0x49,0xc7,0xf4,0x6e,0x51, 0x35,0xf2,0x4a,0x24,0x2e,0xeb,0x3d,0x3f, 0x3d,0x6d,0x5b,0xe3,0x25,0x5a,0xf8,0xc3}; OFB_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "OFB encryption" << std::endl; OFB_Mode_ExternalCipher::Decryption modeD(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeD).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "OFB decryption" << std::endl; fail = !TestModeIV(modeE, modeD); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "OFB IV generation" << std::endl; } { const byte encrypted[] = { // generated with Crypto++ 0xF3, 0x09, 0x62, 0x49, 0xC7, 0xF4, 0x6E, 0x51, 0x16, 0x3A, 0x8C, 0xA0, 0xFF, 0xC9, 0x4C, 0x27, 0xFA, 0x2F, 0x80, 0xF4, 0x80, 0xB8, 0x6F, 0x75}; CTR_Mode_ExternalCipher::Encryption modeE(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeE).Ref(), plain, sizeof(plain), encrypted, sizeof(encrypted)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "Counter Mode encryption" << std::endl; CTR_Mode_ExternalCipher::Decryption modeD(desE, iv); fail = !TestFilter(StreamTransformationFilter(modeD).Ref(), encrypted, sizeof(encrypted), plain, sizeof(plain)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "Counter Mode decryption" << std::endl; fail = !TestModeIV(modeE, modeD); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "Counter Mode IV generation" << std::endl; } { const byte plain_3[] = { // "7654321 Now is the time for " 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x20, 0x4e, 0x6f, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74, 0x68, 0x65, 0x20, 0x74, 0x69, 0x6d, 0x65, 0x20, 0x66, 0x6f, 0x72, 0x20}; const byte mac1[] = { // from FIPS 113 0xf1, 0xd3, 0x0f, 0x68, 0x49, 0x31, 0x2c, 0xa4}; const byte mac2[] = { // generated with Crypto++ 0x35, 0x80, 0xC5, 0xC4, 0x6B, 0x81, 0x24, 0xE2}; CBC_MAC cbcmac(key); HashFilter cbcmacFilter(cbcmac); fail = !TestFilter(cbcmacFilter, plain_3, sizeof(plain_3), mac1, sizeof(mac1)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "CBC MAC" << std::endl; DMAC dmac(key); HashFilter dmacFilter(dmac); fail = !TestFilter(dmacFilter, plain_3, sizeof(plain_3), mac2, sizeof(mac2)); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed ") << "DMAC" << std::endl; } return pass; } bool ValidateIDEA() { std::cout << "\nIDEA validation suite running...\n\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/ideaval.dat", true, new HexDecoder); return BlockTransformationTest(FixedRoundsCipherFactory(), valdata); } bool ValidateSAFER() { std::cout << "\nSAFER validation suite running...\n\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/saferval.dat", true, new HexDecoder); bool pass = true; pass = BlockTransformationTest(VariableRoundsCipherFactory(8,6), valdata, 4) && pass; pass = BlockTransformationTest(VariableRoundsCipherFactory(16,12), valdata, 4) && pass; pass = BlockTransformationTest(VariableRoundsCipherFactory(8,6), valdata, 4) && pass; pass = BlockTransformationTest(VariableRoundsCipherFactory(16,10), valdata, 4) && pass; return pass; } bool ValidateRC2() { std::cout << "\nRC2 validation suite running...\n\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/rc2val.dat", true, new HexDecoder); HexEncoder output(new FileSink(std::cout)); SecByteBlock plain(RC2Encryption::BLOCKSIZE), cipher(RC2Encryption::BLOCKSIZE), out(RC2Encryption::BLOCKSIZE), outplain(RC2Encryption::BLOCKSIZE); SecByteBlock key(128); bool pass=true, fail; while (valdata.MaxRetrievable()) { byte keyLen, effectiveLen; (void)valdata.Get(keyLen); (void)valdata.Get(effectiveLen); (void)valdata.Get(key, keyLen); (void)valdata.Get(plain, RC2Encryption::BLOCKSIZE); (void)valdata.Get(cipher, RC2Encryption::BLOCKSIZE); member_ptr transE(new RC2Encryption(key, keyLen, effectiveLen)); transE->ProcessBlock(plain, out); fail = memcmp(out, cipher, RC2Encryption::BLOCKSIZE) != 0; member_ptr transD(new RC2Decryption(key, keyLen, effectiveLen)); transD->ProcessBlock(out, outplain); fail=fail || memcmp(outplain, plain, RC2Encryption::BLOCKSIZE); pass = pass && !fail; std::cout << (fail ? "FAILED " : "passed "); output.Put(key, keyLen); std::cout << " "; output.Put(outplain, RC2Encryption::BLOCKSIZE); std::cout << " "; output.Put(out, RC2Encryption::BLOCKSIZE); std::cout << std::endl; } return pass; } bool ValidateARC4() { unsigned char Key0[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef }; unsigned char Input0[]={0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef}; unsigned char Output0[] = {0x75,0xb7,0x87,0x80,0x99,0xe0,0xc5,0x96}; unsigned char Key1[]={0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef}; unsigned char Input1[]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; unsigned char Output1[]={0x74,0x94,0xc2,0xe7,0x10,0x4b,0x08,0x79}; unsigned char Key2[]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; unsigned char Input2[]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; unsigned char Output2[]={0xde,0x18,0x89,0x41,0xa3,0x37,0x5d,0x3a}; unsigned char Key3[]={0xef,0x01,0x23,0x45}; unsigned char Input3[]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; unsigned char Output3[]={0xd6,0xa1,0x41,0xa7,0xec,0x3c,0x38,0xdf,0xbd,0x61}; unsigned char Key4[]={ 0x01,0x23,0x45,0x67,0x89,0xab, 0xcd,0xef }; unsigned char Input4[] = {0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x01}; unsigned char Output4[]= { 0x75,0x95,0xc3,0xe6,0x11,0x4a,0x09,0x78,0x0c,0x4a,0xd4, 0x52,0x33,0x8e,0x1f,0xfd,0x9a,0x1b,0xe9,0x49,0x8f, 0x81,0x3d,0x76,0x53,0x34,0x49,0xb6,0x77,0x8d,0xca, 0xd8,0xc7,0x8a,0x8d,0x2b,0xa9,0xac,0x66,0x08,0x5d, 0x0e,0x53,0xd5,0x9c,0x26,0xc2,0xd1,0xc4,0x90,0xc1, 0xeb,0xbe,0x0c,0xe6,0x6d,0x1b,0x6b,0x1b,0x13,0xb6, 0xb9,0x19,0xb8,0x47,0xc2,0x5a,0x91,0x44,0x7a,0x95, 0xe7,0x5e,0x4e,0xf1,0x67,0x79,0xcd,0xe8,0xbf,0x0a, 0x95,0x85,0x0e,0x32,0xaf,0x96,0x89,0x44,0x4f,0xd3, 0x77,0x10,0x8f,0x98,0xfd,0xcb,0xd4,0xe7,0x26,0x56, 0x75,0x00,0x99,0x0b,0xcc,0x7e,0x0c,0xa3,0xc4,0xaa, 0xa3,0x04,0xa3,0x87,0xd2,0x0f,0x3b,0x8f,0xbb,0xcd, 0x42,0xa1,0xbd,0x31,0x1d,0x7a,0x43,0x03,0xdd,0xa5, 0xab,0x07,0x88,0x96,0xae,0x80,0xc1,0x8b,0x0a,0xf6, 0x6d,0xff,0x31,0x96,0x16,0xeb,0x78,0x4e,0x49,0x5a, 0xd2,0xce,0x90,0xd7,0xf7,0x72,0xa8,0x17,0x47,0xb6, 0x5f,0x62,0x09,0x3b,0x1e,0x0d,0xb9,0xe5,0xba,0x53, 0x2f,0xaf,0xec,0x47,0x50,0x83,0x23,0xe6,0x71,0x32, 0x7d,0xf9,0x44,0x44,0x32,0xcb,0x73,0x67,0xce,0xc8, 0x2f,0x5d,0x44,0xc0,0xd0,0x0b,0x67,0xd6,0x50,0xa0, 0x75,0xcd,0x4b,0x70,0xde,0xdd,0x77,0xeb,0x9b,0x10, 0x23,0x1b,0x6b,0x5b,0x74,0x13,0x47,0x39,0x6d,0x62, 0x89,0x74,0x21,0xd4,0x3d,0xf9,0xb4,0x2e,0x44,0x6e, 0x35,0x8e,0x9c,0x11,0xa9,0xb2,0x18,0x4e,0xcb,0xef, 0x0c,0xd8,0xe7,0xa8,0x77,0xef,0x96,0x8f,0x13,0x90, 0xec,0x9b,0x3d,0x35,0xa5,0x58,0x5c,0xb0,0x09,0x29, 0x0e,0x2f,0xcd,0xe7,0xb5,0xec,0x66,0xd9,0x08,0x4b, 0xe4,0x40,0x55,0xa6,0x19,0xd9,0xdd,0x7f,0xc3,0x16, 0x6f,0x94,0x87,0xf7,0xcb,0x27,0x29,0x12,0x42,0x64, 0x45,0x99,0x85,0x14,0xc1,0x5d,0x53,0xa1,0x8c,0x86, 0x4c,0xe3,0xa2,0xb7,0x55,0x57,0x93,0x98,0x81,0x26, 0x52,0x0e,0xac,0xf2,0xe3,0x06,0x6e,0x23,0x0c,0x91, 0xbe,0xe4,0xdd,0x53,0x04,0xf5,0xfd,0x04,0x05,0xb3, 0x5b,0xd9,0x9c,0x73,0x13,0x5d,0x3d,0x9b,0xc3,0x35, 0xee,0x04,0x9e,0xf6,0x9b,0x38,0x67,0xbf,0x2d,0x7b, 0xd1,0xea,0xa5,0x95,0xd8,0xbf,0xc0,0x06,0x6f,0xf8, 0xd3,0x15,0x09,0xeb,0x0c,0x6c,0xaa,0x00,0x6c,0x80, 0x7a,0x62,0x3e,0xf8,0x4c,0x3d,0x33,0xc1,0x95,0xd2, 0x3e,0xe3,0x20,0xc4,0x0d,0xe0,0x55,0x81,0x57,0xc8, 0x22,0xd4,0xb8,0xc5,0x69,0xd8,0x49,0xae,0xd5,0x9d, 0x4e,0x0f,0xd7,0xf3,0x79,0x58,0x6b,0x4b,0x7f,0xf6, 0x84,0xed,0x6a,0x18,0x9f,0x74,0x86,0xd4,0x9b,0x9c, 0x4b,0xad,0x9b,0xa2,0x4b,0x96,0xab,0xf9,0x24,0x37, 0x2c,0x8a,0x8f,0xff,0xb1,0x0d,0x55,0x35,0x49,0x00, 0xa7,0x7a,0x3d,0xb5,0xf2,0x05,0xe1,0xb9,0x9f,0xcd, 0x86,0x60,0x86,0x3a,0x15,0x9a,0xd4,0xab,0xe4,0x0f, 0xa4,0x89,0x34,0x16,0x3d,0xdd,0xe5,0x42,0xa6,0x58, 0x55,0x40,0xfd,0x68,0x3c,0xbf,0xd8,0xc0,0x0f,0x12, 0x12,0x9a,0x28,0x4d,0xea,0xcc,0x4c,0xde,0xfe,0x58, 0xbe,0x71,0x37,0x54,0x1c,0x04,0x71,0x26,0xc8,0xd4, 0x9e,0x27,0x55,0xab,0x18,0x1a,0xb7,0xe9,0x40,0xb0, 0xc0}; member_ptr arc4; bool pass=true, fail; unsigned int i; std::cout << "\nARC4 validation suite running...\n\n"; arc4.reset(new Weak::ARC4(Key0, sizeof(Key0))); arc4->ProcessString(Input0, sizeof(Input0)); fail = memcmp(Input0, Output0, sizeof(Input0)) != 0; std::cout << (fail ? "FAILED" : "passed") << " Test 0" << std::endl; pass = pass && !fail; arc4.reset(new Weak::ARC4(Key1, sizeof(Key1))); arc4->ProcessString(Key1, Input1, sizeof(Key1)); fail = memcmp(Output1, Key1, sizeof(Key1)) != 0; std::cout << (fail ? "FAILED" : "passed") << " Test 1" << std::endl; pass = pass && !fail; arc4.reset(new Weak::ARC4(Key2, sizeof(Key2))); for (i=0, fail=false; iProcessByte(Input2[i]) != Output2[i]) fail = true; std::cout << (fail ? "FAILED" : "passed") << " Test 2" << std::endl; pass = pass && !fail; arc4.reset(new Weak::ARC4(Key3, sizeof(Key3))); for (i=0, fail=false; iProcessByte(Input3[i]) != Output3[i]) fail = true; std::cout << (fail ? "FAILED" : "passed") << " Test 3" << std::endl; pass = pass && !fail; arc4.reset(new Weak::ARC4(Key4, sizeof(Key4))); for (i=0, fail=false; iProcessByte(Input4[i]) != Output4[i]) fail = true; std::cout << (fail ? "FAILED" : "passed") << " Test 4" << std::endl; pass = pass && !fail; return pass; } bool ValidateRC5() { std::cout << "\nRC5 validation suite running...\n\n"; bool pass1 = true, pass2 = true; RC5Encryption enc; // 0 to 2040-bits (255-bytes) pass1 = RC5Encryption::DEFAULT_KEYLENGTH == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(0) == 0 && pass1; pass1 = enc.StaticGetValidKeyLength(254) == 254 && pass1; pass1 = enc.StaticGetValidKeyLength(255) == 255 && pass1; pass1 = enc.StaticGetValidKeyLength(256) == 255 && pass1; pass1 = enc.StaticGetValidKeyLength(0) == enc.MinKeyLength() && pass1; pass1 = enc.StaticGetValidKeyLength(SIZE_MAX) == enc.MaxKeyLength() && pass1; RC5Decryption dec; pass2 = RC5Decryption::DEFAULT_KEYLENGTH == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(0) == 0 && pass2; pass2 = dec.StaticGetValidKeyLength(254) == 254 && pass2; pass2 = dec.StaticGetValidKeyLength(255) == 255 && pass2; pass2 = dec.StaticGetValidKeyLength(256) == 255 && pass2; pass2 = dec.StaticGetValidKeyLength(0) == dec.MinKeyLength() && pass2; pass2 = dec.StaticGetValidKeyLength(SIZE_MAX) == dec.MaxKeyLength() && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/rc5val.dat", true, new HexDecoder); return BlockTransformationTest(VariableRoundsCipherFactory(16, 12), valdata) && pass1 && pass2; } bool ValidateRC6() { std::cout << "\nRC6 validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; RC6Encryption enc; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(128) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(0) == enc.MinKeyLength() && pass1; pass1 = enc.StaticGetValidKeyLength(SIZE_MAX) == enc.MaxKeyLength() && pass1; RC6Decryption dec; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(128) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(0) == dec.MinKeyLength() && pass2; pass2 = dec.StaticGetValidKeyLength(SIZE_MAX) == dec.MaxKeyLength() && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/rc6val.dat", true, new HexDecoder); pass3 = BlockTransformationTest(FixedRoundsCipherFactory(16), valdata, 2) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(24), valdata, 2) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(32), valdata, 2) && pass3; return pass1 && pass2 && pass3; } bool ValidateMARS() { std::cout << "\nMARS validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; MARSEncryption enc; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 56 && pass1; pass1 = enc.StaticGetValidKeyLength(128) == 56 && pass1; pass1 = enc.StaticGetValidKeyLength(0) == enc.MinKeyLength() && pass1; pass1 = enc.StaticGetValidKeyLength(SIZE_MAX) == enc.MaxKeyLength() && pass1; MARSDecryption dec; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 56 && pass2; pass2 = dec.StaticGetValidKeyLength(128) == 56 && pass2; pass2 = dec.StaticGetValidKeyLength(0) == dec.MinKeyLength() && pass2; pass2 = dec.StaticGetValidKeyLength(SIZE_MAX) == dec.MaxKeyLength() && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/marsval.dat", true, new HexDecoder); pass3 = BlockTransformationTest(FixedRoundsCipherFactory(16), valdata, 4) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(24), valdata, 3) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(32), valdata, 2) && pass3; return pass1 && pass2 && pass3; } bool ValidateRijndael() { std::cout << "\nRijndael (AES) validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; RijndaelEncryption enc; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(128) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(0) == enc.MinKeyLength() && pass1; pass1 = enc.StaticGetValidKeyLength(SIZE_MAX) == enc.MaxKeyLength() && pass1; RijndaelDecryption dec; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(128) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(0) == dec.MinKeyLength() && pass2; pass2 = dec.StaticGetValidKeyLength(SIZE_MAX) == dec.MaxKeyLength() && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/rijndael.dat", true, new HexDecoder); pass3 = BlockTransformationTest(FixedRoundsCipherFactory(16), valdata, 4) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(24), valdata, 3) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(32), valdata, 2) && pass3; pass3 = RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/aes.txt") && pass3; return pass1 && pass2 && pass3; } bool ValidateTwofish() { std::cout << "\nTwofish validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; TwofishEncryption enc; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(128) == 32 && pass1; TwofishDecryption dec; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(128) == 32 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/twofishv.dat", true, new HexDecoder); pass3 = BlockTransformationTest(FixedRoundsCipherFactory(16), valdata, 4) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(24), valdata, 3) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(32), valdata, 2) && pass3; return pass1 && pass2 && pass3; } bool ValidateSerpent() { std::cout << "\nSerpent validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; SerpentEncryption enc; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(128) == 32 && pass1; SerpentDecryption dec; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(128) == 32 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/serpentv.dat", true, new HexDecoder); bool pass = true; pass = BlockTransformationTest(FixedRoundsCipherFactory(16), valdata, 5) && pass; pass = BlockTransformationTest(FixedRoundsCipherFactory(24), valdata, 4) && pass; pass = BlockTransformationTest(FixedRoundsCipherFactory(32), valdata, 3) && pass; return pass1 && pass2 && pass3; } bool ValidateBlowfish() { std::cout << "\nBlowfish validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true, fail; BlowfishEncryption enc1; // 32 to 448-bits (4 to 56-bytes) pass1 = enc1.StaticGetValidKeyLength(3) == 4 && pass1; pass1 = enc1.StaticGetValidKeyLength(4) == 4 && pass1; pass1 = enc1.StaticGetValidKeyLength(5) == 5 && pass1; pass1 = enc1.StaticGetValidKeyLength(8) == 8 && pass1; pass1 = enc1.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc1.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc1.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc1.StaticGetValidKeyLength(56) == 56 && pass1; pass1 = enc1.StaticGetValidKeyLength(57) == 56 && pass1; pass1 = enc1.StaticGetValidKeyLength(60) == 56 && pass1; pass1 = enc1.StaticGetValidKeyLength(64) == 56 && pass1; pass1 = enc1.StaticGetValidKeyLength(128) == 56 && pass1; BlowfishDecryption dec1; // 32 to 448-bits (4 to 56-bytes) pass2 = dec1.StaticGetValidKeyLength(3) == 4 && pass2; pass2 = dec1.StaticGetValidKeyLength(4) == 4 && pass2; pass2 = dec1.StaticGetValidKeyLength(5) == 5 && pass2; pass2 = dec1.StaticGetValidKeyLength(8) == 8 && pass2; pass2 = dec1.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec1.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec1.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec1.StaticGetValidKeyLength(56) == 56 && pass2; pass2 = dec1.StaticGetValidKeyLength(57) == 56 && pass2; pass2 = dec1.StaticGetValidKeyLength(60) == 56 && pass2; pass2 = dec1.StaticGetValidKeyLength(64) == 56 && pass2; pass2 = dec1.StaticGetValidKeyLength(128) == 56 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; HexEncoder output(new FileSink(std::cout)); const char *key[]={"abcdefghijklmnopqrstuvwxyz", "Who is John Galt?"}; byte *plain[]={(byte *)"BLOWFISH", (byte *)"\xfe\xdc\xba\x98\x76\x54\x32\x10"}; byte *cipher[]={(byte *)"\x32\x4e\xd0\xfe\xf4\x13\xa2\x03", (byte *)"\xcc\x91\x73\x2b\x80\x22\xf6\x84"}; byte out[8], outplain[8]; for (int i=0; i<2; i++) { ECB_Mode::Encryption enc2((byte *)key[i], strlen(key[i])); enc2.ProcessData(out, plain[i], 8); fail = memcmp(out, cipher[i], 8) != 0; ECB_Mode::Decryption dec2((byte *)key[i], strlen(key[i])); dec2.ProcessData(outplain, cipher[i], 8); fail = fail || memcmp(outplain, plain[i], 8); pass3 = pass3 && !fail; std::cout << (fail ? "FAILED " : "passed "); std::cout << '\"' << key[i] << '\"'; for (int j=0; j<(signed int)(30-strlen(key[i])); j++) std::cout << ' '; output.Put(outplain, 8); std::cout << " "; output.Put(out, 8); std::cout << std::endl; } return pass1 && pass2 && pass3; } bool ValidateThreeWay() { std::cout << "\n3-WAY validation suite running...\n\n"; bool pass1 = true, pass2 = true; ThreeWayEncryption enc; // 96-bit only pass1 = ThreeWayEncryption::KEYLENGTH == 12 && pass1; pass1 = enc.StaticGetValidKeyLength(8) == 12 && pass1; pass1 = enc.StaticGetValidKeyLength(12) == 12 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 12 && pass1; ThreeWayDecryption dec; // 96-bit only pass2 = ThreeWayDecryption::KEYLENGTH == 12 && pass2; pass2 = dec.StaticGetValidKeyLength(8) == 12 && pass2; pass2 = dec.StaticGetValidKeyLength(12) == 12 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 12 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/3wayval.dat", true, new HexDecoder); return BlockTransformationTest(FixedRoundsCipherFactory(), valdata) && pass1 && pass2; } bool ValidateGOST() { std::cout << "\nGOST validation suite running...\n\n"; bool pass1 = true, pass2 = true; GOSTEncryption enc; // 256-bit only pass1 = GOSTEncryption::KEYLENGTH == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(40) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 32 && pass1; GOSTDecryption dec; // 256-bit only pass2 = GOSTDecryption::KEYLENGTH == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(40) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 32 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/gostval.dat", true, new HexDecoder); return BlockTransformationTest(FixedRoundsCipherFactory(), valdata) && pass1 && pass2; } bool ValidateSHARK() { std::cout << "\nSHARK validation suite running...\n\n"; bool pass1 = true, pass2 = true; SHARKEncryption enc; // 128-bit only pass1 = SHARKEncryption::KEYLENGTH == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(15) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(17) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 16 && pass1; SHARKDecryption dec; // 128-bit only pass2 = SHARKDecryption::KEYLENGTH == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(15) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(17) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 16 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/sharkval.dat", true, new HexDecoder); return BlockTransformationTest(FixedRoundsCipherFactory(), valdata) && pass1 && pass2; } bool ValidateCAST() { std::cout << "\nCAST-128 validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; CAST128Encryption enc1; // 40 to 128-bits (5 to 16-bytes) pass1 = CAST128Encryption::DEFAULT_KEYLENGTH == 16 && pass1; pass1 = enc1.StaticGetValidKeyLength(4) == 5 && pass1; pass1 = enc1.StaticGetValidKeyLength(5) == 5 && pass1; pass1 = enc1.StaticGetValidKeyLength(15) == 15 && pass1; pass1 = enc1.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc1.StaticGetValidKeyLength(17) == 16 && pass1; CAST128Decryption dec1; // 40 to 128-bits (5 to 16-bytes) pass2 = CAST128Decryption::DEFAULT_KEYLENGTH == 16 && pass2; pass2 = dec1.StaticGetValidKeyLength(4) == 5 && pass2; pass2 = dec1.StaticGetValidKeyLength(5) == 5 && pass2; pass2 = dec1.StaticGetValidKeyLength(15) == 15 && pass2; pass2 = dec1.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec1.StaticGetValidKeyLength(17) == 16 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource val128(CRYPTOPP_DATA_DIR "TestData/cast128v.dat", true, new HexDecoder); pass3 = BlockTransformationTest(FixedRoundsCipherFactory(16), val128, 1) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(10), val128, 1) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(5), val128, 1) && pass3; std::cout << "\nCAST-256 validation suite running...\n\n"; bool pass4 = true, pass5 = true, pass6 = true; CAST256Encryption enc2; // 128, 160, 192, 224, or 256-bits (16 to 32-bytes, step 4) pass1 = CAST128Encryption::DEFAULT_KEYLENGTH == 16 && pass1; pass4 = enc2.StaticGetValidKeyLength(15) == 16 && pass4; pass4 = enc2.StaticGetValidKeyLength(16) == 16 && pass4; pass4 = enc2.StaticGetValidKeyLength(17) == 20 && pass4; pass4 = enc2.StaticGetValidKeyLength(20) == 20 && pass4; pass4 = enc2.StaticGetValidKeyLength(24) == 24 && pass4; pass4 = enc2.StaticGetValidKeyLength(28) == 28 && pass4; pass4 = enc2.StaticGetValidKeyLength(31) == 32 && pass4; pass4 = enc2.StaticGetValidKeyLength(32) == 32 && pass4; pass4 = enc2.StaticGetValidKeyLength(33) == 32 && pass4; CAST256Decryption dec2; // 128, 160, 192, 224, or 256-bits (16 to 32-bytes, step 4) pass2 = CAST256Decryption::DEFAULT_KEYLENGTH == 16 && pass2; pass5 = dec2.StaticGetValidKeyLength(15) == 16 && pass5; pass5 = dec2.StaticGetValidKeyLength(16) == 16 && pass5; pass5 = dec2.StaticGetValidKeyLength(17) == 20 && pass5; pass5 = dec2.StaticGetValidKeyLength(20) == 20 && pass5; pass5 = dec2.StaticGetValidKeyLength(24) == 24 && pass5; pass5 = dec2.StaticGetValidKeyLength(28) == 28 && pass5; pass5 = dec2.StaticGetValidKeyLength(31) == 32 && pass5; pass5 = dec2.StaticGetValidKeyLength(32) == 32 && pass5; pass5 = dec2.StaticGetValidKeyLength(33) == 32 && pass5; std::cout << (pass4 && pass5 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource val256(CRYPTOPP_DATA_DIR "TestData/cast256v.dat", true, new HexDecoder); pass6 = BlockTransformationTest(FixedRoundsCipherFactory(16), val256, 1) && pass6; pass6 = BlockTransformationTest(FixedRoundsCipherFactory(24), val256, 1) && pass6; pass6 = BlockTransformationTest(FixedRoundsCipherFactory(32), val256, 1) && pass6; return pass1 && pass2 && pass3 && pass4 && pass5 && pass6; } bool ValidateSquare() { std::cout << "\nSquare validation suite running...\n\n"; bool pass1 = true, pass2 = true; SquareEncryption enc; // 128-bits only pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(15) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(17) == 16 && pass1; SquareDecryption dec; // 128-bits only pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(15) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(17) == 16 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/squareva.dat", true, new HexDecoder); return BlockTransformationTest(FixedRoundsCipherFactory(), valdata) && pass1 && pass2; } bool ValidateSKIPJACK() { std::cout << "\nSKIPJACK validation suite running...\n\n"; bool pass1 = true, pass2 = true; SKIPJACKEncryption enc; // 80-bits only pass1 = enc.StaticGetValidKeyLength(8) == 10 && pass1; pass1 = enc.StaticGetValidKeyLength(9) == 10 && pass1; pass1 = enc.StaticGetValidKeyLength(10) == 10 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 10 && pass1; SKIPJACKDecryption dec; // 80-bits only pass2 = dec.StaticGetValidKeyLength(8) == 10 && pass2; pass2 = dec.StaticGetValidKeyLength(9) == 10 && pass2; pass2 = dec.StaticGetValidKeyLength(10) == 10 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 10 && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/skipjack.dat", true, new HexDecoder); return BlockTransformationTest(FixedRoundsCipherFactory(), valdata) && pass1 && pass2; } bool ValidateSEAL() { const byte input[] = {0x37,0xa0,0x05,0x95,0x9b,0x84,0xc4,0x9c,0xa4,0xbe,0x1e,0x05,0x06,0x73,0x53,0x0f,0x5f,0xb0,0x97,0xfd,0xf6,0xa1,0x3f,0xbd,0x6c,0x2c,0xde,0xcd,0x81,0xfd,0xee,0x7c}; const byte key[] = {0x67, 0x45, 0x23, 0x01, 0xef, 0xcd, 0xab, 0x89, 0x98, 0xba, 0xdc, 0xfe, 0x10, 0x32, 0x54, 0x76, 0xc3, 0xd2, 0xe1, 0xf0}; const byte iv[] = {0x01, 0x35, 0x77, 0xaf}; byte output[32]; std::cout << "\nSEAL validation suite running...\n\n"; SEAL<>::Encryption seal(key, sizeof(key), iv); unsigned int size = sizeof(input); bool pass = true; memset(output, 1, size); seal.ProcessString(output, input, size); for (unsigned int i=0; i(16), valdata, 4) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(64), valdata, 10) && pass3; return pass1 && pass2 && pass3; } bool ValidateARIA() { std::cout << "\nARIA validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; ARIAEncryption enc; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(128) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(0) == enc.MinKeyLength() && pass1; pass1 = enc.StaticGetValidKeyLength(SIZE_MAX) == enc.MaxKeyLength() && pass1; ARIADecryption dec; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(128) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(0) == dec.MinKeyLength() && pass2; pass2 = dec.StaticGetValidKeyLength(SIZE_MAX) == dec.MaxKeyLength() && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/aria.dat", true, new HexDecoder); pass3 = BlockTransformationTest(FixedRoundsCipherFactory(16), valdata, 15) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(24), valdata, 15) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(32), valdata, 15) && pass3; return pass1 && pass2 && pass3; } bool ValidateCamellia() { std::cout << "\nCamellia validation suite running...\n\n"; bool pass1 = true, pass2 = true, pass3 = true; CamelliaEncryption enc; pass1 = enc.StaticGetValidKeyLength(8) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(16) == 16 && pass1; pass1 = enc.StaticGetValidKeyLength(24) == 24 && pass1; pass1 = enc.StaticGetValidKeyLength(32) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(64) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(128) == 32 && pass1; pass1 = enc.StaticGetValidKeyLength(0) == enc.MinKeyLength() && pass1; pass1 = enc.StaticGetValidKeyLength(SIZE_MAX) == enc.MaxKeyLength() && pass1; CamelliaDecryption dec; pass2 = dec.StaticGetValidKeyLength(8) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(16) == 16 && pass2; pass2 = dec.StaticGetValidKeyLength(24) == 24 && pass2; pass2 = dec.StaticGetValidKeyLength(32) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(64) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(128) == 32 && pass2; pass2 = dec.StaticGetValidKeyLength(0) == dec.MinKeyLength() && pass2; pass2 = dec.StaticGetValidKeyLength(SIZE_MAX) == dec.MaxKeyLength() && pass2; std::cout << (pass1 && pass2 ? "passed:" : "FAILED:") << " Algorithm key lengths\n"; FileSource valdata(CRYPTOPP_DATA_DIR "TestData/camellia.dat", true, new HexDecoder); pass3 = BlockTransformationTest(FixedRoundsCipherFactory(16), valdata, 15) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(24), valdata, 15) && pass3; pass3 = BlockTransformationTest(FixedRoundsCipherFactory(32), valdata, 15) && pass3; return pass1 && pass2 && pass3; } bool ValidateSalsa() { std::cout << "\nSalsa validation suite running...\n"; return RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/salsa.txt"); } bool ValidateSosemanuk() { std::cout << "\nSosemanuk validation suite running...\n"; return RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/sosemanuk.txt"); } bool ValidateVMAC() { std::cout << "\nVMAC validation suite running...\n"; return RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/vmac.txt"); } bool ValidateCCM() { std::cout << "\nAES/CCM validation suite running...\n"; return RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/ccm.txt"); } bool ValidateGCM() { std::cout << "\nAES/GCM validation suite running...\n"; std::cout << "\n2K tables:"; bool pass = RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/gcm.txt", MakeParameters(Name::TableSize(), (int)2048)); std::cout << "\n64K tables:"; return RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/gcm.txt", MakeParameters(Name::TableSize(), (int)64*1024)) && pass; } bool ValidateCMAC() { std::cout << "\nCMAC validation suite running...\n"; return RunTestDataFile(CRYPTOPP_DATA_DIR "TestVectors/cmac.txt"); } NAMESPACE_END // Test NAMESPACE_END // CryptoPP