// speck64_simd.cpp - written and placed in the public domain by Jeffrey Walton // // This source file uses intrinsics and built-ins to gain access to // SSSE3, ARM NEON and ARMv8a, and Altivec instructions. A separate // source file is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. #include "pch.h" #include "config.h" #include "speck.h" #include "misc.h" // Uncomment for benchmarking C++ against SSE or NEON. // Do so in both speck.cpp and speck-simd.cpp. // #undef CRYPTOPP_SSE41_AVAILABLE // #undef CRYPTOPP_ARM_NEON_AVAILABLE #if (CRYPTOPP_SSSE3_AVAILABLE) # include "adv_simd.h" # include # include #endif #if (CRYPTOPP_SSE41_AVAILABLE) # include #endif #if defined(__XOP__) # include #endif #if defined(__AVX512F__) # define CRYPTOPP_AVX512_ROTATE 1 # include #endif // C1189: error: This header is specific to ARM targets #if (CRYPTOPP_ARM_NEON_AVAILABLE) # include "adv_simd.h" # ifndef _M_ARM64 # include # endif #endif #if (CRYPTOPP_ARM_ACLE_AVAILABLE) # include # include #endif #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) # include "adv_simd.h" # include "ppc_simd.h" #endif // Squash MS LNK4221 and libtool warnings extern const char SPECK64_SIMD_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::word64; // *************************** ARM NEON ************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) template inline T UnpackHigh32(const T& a, const T& b) { const uint32x2_t x(vget_high_u32((uint32x4_t)a)); const uint32x2_t y(vget_high_u32((uint32x4_t)b)); const uint32x2x2_t r = vzip_u32(x, y); return (T)vcombine_u32(r.val[0], r.val[1]); } template inline T UnpackLow32(const T& a, const T& b) { const uint32x2_t x(vget_low_u32((uint32x4_t)a)); const uint32x2_t y(vget_low_u32((uint32x4_t)b)); const uint32x2x2_t r = vzip_u32(x, y); return (T)vcombine_u32(r.val[0], r.val[1]); } template inline uint32x4_t RotateLeft32(const uint32x4_t& val) { const uint32x4_t a(vshlq_n_u32(val, R)); const uint32x4_t b(vshrq_n_u32(val, 32 - R)); return vorrq_u32(a, b); } template inline uint32x4_t RotateRight32(const uint32x4_t& val) { const uint32x4_t a(vshlq_n_u32(val, 32 - R)); const uint32x4_t b(vshrq_n_u32(val, R)); return vorrq_u32(a, b); } #if defined(__aarch32__) || defined(__aarch64__) // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint32x4_t RotateLeft32<8>(const uint32x4_t& val) { #if (CRYPTOPP_BIG_ENDIAN) const uint8_t maskb[16] = { 14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3 }; const uint8x16_t mask = vld1q_u8(maskb); #else const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 }; const uint8x16_t mask = vld1q_u8(maskb); #endif return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint32x4_t RotateRight32<8>(const uint32x4_t& val) { #if (CRYPTOPP_BIG_ENDIAN) const uint8_t maskb[16] = { 12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1 }; const uint8x16_t mask = vld1q_u8(maskb); #else const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,15,12 }; const uint8x16_t mask = vld1q_u8(maskb); #endif return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); } #endif // Aarch32 or Aarch64 inline void SPECK64_Enc_Block(uint32x4_t &block0, uint32x4_t &block1, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; for (int i=0; i < static_cast(rounds); ++i) { const uint32x4_t rk = vdupq_n_u32(subkeys[i]); x1 = RotateRight32<8>(x1); x1 = vaddq_u32(x1, y1); x1 = veorq_u32(x1, rk); y1 = RotateLeft32<3>(y1); y1 = veorq_u32(y1, x1); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); } inline void SPECK64_Dec_Block(uint32x4_t &block0, uint32x4_t &block1, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; for (int i = static_cast(rounds-1); i >= 0; --i) { const uint32x4_t rk = vdupq_n_u32(subkeys[i]); y1 = veorq_u32(y1, x1); y1 = RotateRight32<3>(y1); x1 = veorq_u32(x1, rk); x1 = vsubq_u32(x1, y1); x1 = RotateLeft32<8>(x1); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); } inline void SPECK64_Enc_6_Blocks(uint32x4_t &block0, uint32x4_t &block1, uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; uint32x4_t x2 = vuzpq_u32(block2, block3).val[1]; uint32x4_t y2 = vuzpq_u32(block2, block3).val[0]; uint32x4_t x3 = vuzpq_u32(block4, block5).val[1]; uint32x4_t y3 = vuzpq_u32(block4, block5).val[0]; for (int i=0; i < static_cast(rounds); ++i) { const uint32x4_t rk = vdupq_n_u32(subkeys[i]); x1 = RotateRight32<8>(x1); x2 = RotateRight32<8>(x2); x3 = RotateRight32<8>(x3); x1 = vaddq_u32(x1, y1); x2 = vaddq_u32(x2, y2); x3 = vaddq_u32(x3, y3); x1 = veorq_u32(x1, rk); x2 = veorq_u32(x2, rk); x3 = veorq_u32(x3, rk); y1 = RotateLeft32<3>(y1); y2 = RotateLeft32<3>(y2); y3 = RotateLeft32<3>(y3); y1 = veorq_u32(y1, x1); y2 = veorq_u32(y2, x2); y3 = veorq_u32(y3, x3); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); block2 = UnpackLow32(y2, x2); block3 = UnpackHigh32(y2, x2); block4 = UnpackLow32(y3, x3); block5 = UnpackHigh32(y3, x3); } inline void SPECK64_Dec_6_Blocks(uint32x4_t &block0, uint32x4_t &block1, uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; uint32x4_t x2 = vuzpq_u32(block2, block3).val[1]; uint32x4_t y2 = vuzpq_u32(block2, block3).val[0]; uint32x4_t x3 = vuzpq_u32(block4, block5).val[1]; uint32x4_t y3 = vuzpq_u32(block4, block5).val[0]; for (int i = static_cast(rounds-1); i >= 0; --i) { const uint32x4_t rk = vdupq_n_u32(subkeys[i]); y1 = veorq_u32(y1, x1); y2 = veorq_u32(y2, x2); y3 = veorq_u32(y3, x3); y1 = RotateRight32<3>(y1); y2 = RotateRight32<3>(y2); y3 = RotateRight32<3>(y3); x1 = veorq_u32(x1, rk); x2 = veorq_u32(x2, rk); x3 = veorq_u32(x3, rk); x1 = vsubq_u32(x1, y1); x2 = vsubq_u32(x2, y2); x3 = vsubq_u32(x3, y3); x1 = RotateLeft32<8>(x1); x2 = RotateLeft32<8>(x2); x3 = RotateLeft32<8>(x3); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); block2 = UnpackLow32(y2, x2); block3 = UnpackHigh32(y2, x2); block4 = UnpackLow32(y3, x3); block5 = UnpackHigh32(y3, x3); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE // ***************************** IA-32 ***************************** // #if defined(CRYPTOPP_SSE41_AVAILABLE) template inline __m128i RotateLeft32(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, R); #else return _mm_or_si128( _mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R)); #endif } template inline __m128i RotateRight32(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, 32-R); #else return _mm_or_si128( _mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R)); #endif } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> __m128i RotateLeft32<8>(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, 8); #else const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3); return _mm_shuffle_epi8(val, mask); #endif } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> __m128i RotateRight32<8>(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, 32-8); #else const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1); return _mm_shuffle_epi8(val, mask); #endif } inline void SPECK64_Enc_Block(__m128i &block0, __m128i &block1, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); for (int i=0; i < static_cast(rounds); ++i) { const __m128i rk = _mm_set1_epi32(subkeys[i]); x1 = RotateRight32<8>(x1); x1 = _mm_add_epi32(x1, y1); x1 = _mm_xor_si128(x1, rk); y1 = RotateLeft32<3>(y1); y1 = _mm_xor_si128(y1, x1); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); } inline void SPECK64_Dec_Block(__m128i &block0, __m128i &block1, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); for (int i = static_cast(rounds-1); i >= 0; --i) { const __m128i rk = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(y1, x1); y1 = RotateRight32<3>(y1); x1 = _mm_xor_si128(x1, rk); x1 = _mm_sub_epi32(x1, y1); x1 = RotateLeft32<8>(x1); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); } inline void SPECK64_Enc_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); const __m128 t2 = _mm_castsi128_ps(block2); const __m128 t3 = _mm_castsi128_ps(block3); __m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1))); __m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0))); const __m128 t4 = _mm_castsi128_ps(block4); const __m128 t5 = _mm_castsi128_ps(block5); __m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1))); __m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0))); for (int i=0; i < static_cast(rounds); ++i) { const __m128i rk = _mm_set1_epi32(subkeys[i]); x1 = RotateRight32<8>(x1); x2 = RotateRight32<8>(x2); x3 = RotateRight32<8>(x3); x1 = _mm_add_epi32(x1, y1); x2 = _mm_add_epi32(x2, y2); x3 = _mm_add_epi32(x3, y3); x1 = _mm_xor_si128(x1, rk); x2 = _mm_xor_si128(x2, rk); x3 = _mm_xor_si128(x3, rk); y1 = RotateLeft32<3>(y1); y2 = RotateLeft32<3>(y2); y3 = RotateLeft32<3>(y3); y1 = _mm_xor_si128(y1, x1); y2 = _mm_xor_si128(y2, x2); y3 = _mm_xor_si128(y3, x3); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); block2 = _mm_unpacklo_epi32(y2, x2); block3 = _mm_unpackhi_epi32(y2, x2); block4 = _mm_unpacklo_epi32(y3, x3); block5 = _mm_unpackhi_epi32(y3, x3); } inline void SPECK64_Dec_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); const __m128 t2 = _mm_castsi128_ps(block2); const __m128 t3 = _mm_castsi128_ps(block3); __m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1))); __m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0))); const __m128 t4 = _mm_castsi128_ps(block4); const __m128 t5 = _mm_castsi128_ps(block5); __m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1))); __m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0))); for (int i = static_cast(rounds-1); i >= 0; --i) { const __m128i rk = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(y1, x1); y2 = _mm_xor_si128(y2, x2); y3 = _mm_xor_si128(y3, x3); y1 = RotateRight32<3>(y1); y2 = RotateRight32<3>(y2); y3 = RotateRight32<3>(y3); x1 = _mm_xor_si128(x1, rk); x2 = _mm_xor_si128(x2, rk); x3 = _mm_xor_si128(x3, rk); x1 = _mm_sub_epi32(x1, y1); x2 = _mm_sub_epi32(x2, y2); x3 = _mm_sub_epi32(x3, y3); x1 = RotateLeft32<8>(x1); x2 = RotateLeft32<8>(x2); x3 = RotateLeft32<8>(x3); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); block2 = _mm_unpacklo_epi32(y2, x2); block3 = _mm_unpackhi_epi32(y2, x2); block4 = _mm_unpacklo_epi32(y3, x3); block5 = _mm_unpackhi_epi32(y3, x3); } #endif // CRYPTOPP_SSE41_AVAILABLE // ***************************** Altivec ***************************** // #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) using CryptoPP::uint8x16_p; using CryptoPP::uint32x4_p; using CryptoPP::VecAdd; using CryptoPP::VecSub; using CryptoPP::VecXor; using CryptoPP::VecLoad; using CryptoPP::VecPermute; // Rotate left by bit count template inline uint32x4_p RotateLeft32(const uint32x4_p val) { const uint32x4_p m = {C, C, C, C}; return vec_rl(val, m); } // Rotate right by bit count template inline uint32x4_p RotateRight32(const uint32x4_p val) { const uint32x4_p m = {32-C, 32-C, 32-C, 32-C}; return vec_rl(val, m); } void SPECK64_Enc_Block(uint32x4_p &block0, uint32x4_p &block1, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_p x1 = VecPermute(block0, block1, m1); uint32x4_p y1 = VecPermute(block0, block1, m2); for (int i=0; i < static_cast(rounds); ++i) { #if CRYPTOPP_POWER7_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[i]); #else // subkeys has extra elements so memory backs the last subkey const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+i); rk = VecPermute(rk, rk, m); #endif x1 = RotateRight32<8>(x1); x1 = VecAdd(x1, y1); x1 = VecXor(x1, rk); y1 = RotateLeft32<3>(y1); y1 = VecXor(y1, x1); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); } void SPECK64_Dec_Block(uint32x4_p &block0, uint32x4_p &block1, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_p x1 = VecPermute(block0, block1, m1); uint32x4_p y1 = VecPermute(block0, block1, m2); for (int i = static_cast(rounds-1); i >= 0; --i) { #if CRYPTOPP_POWER7_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[i]); #else // subkeys has extra elements so memory backs the last subkey const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+i); rk = VecPermute(rk, rk, m); #endif y1 = VecXor(y1, x1); y1 = RotateRight32<3>(y1); x1 = VecXor(x1, rk); x1 = VecSub(x1, y1); x1 = RotateLeft32<8>(x1); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); } void SPECK64_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1, uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4, uint32x4_p &block5, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_p x1 = (uint32x4_p)VecPermute(block0, block1, m1); uint32x4_p y1 = (uint32x4_p)VecPermute(block0, block1, m2); uint32x4_p x2 = (uint32x4_p)VecPermute(block2, block3, m1); uint32x4_p y2 = (uint32x4_p)VecPermute(block2, block3, m2); uint32x4_p x3 = (uint32x4_p)VecPermute(block4, block5, m1); uint32x4_p y3 = (uint32x4_p)VecPermute(block4, block5, m2); for (int i=0; i < static_cast(rounds); ++i) { #if CRYPTOPP_POWER7_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[i]); #else // subkeys has extra elements so memory backs the last subkey const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+i); rk = VecPermute(rk, rk, m); #endif x1 = RotateRight32<8>(x1); x2 = RotateRight32<8>(x2); x3 = RotateRight32<8>(x3); x1 = VecAdd(x1, y1); x2 = VecAdd(x2, y2); x3 = VecAdd(x3, y3); x1 = VecXor(x1, rk); x2 = VecXor(x2, rk); x3 = VecXor(x3, rk); y1 = RotateLeft32<3>(y1); y2 = RotateLeft32<3>(y2); y3 = RotateLeft32<3>(y3); y1 = VecXor(y1, x1); y2 = VecXor(y2, x2); y3 = VecXor(y3, x3); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); block2 = (uint32x4_p)VecPermute(x2, y2, m3); block3 = (uint32x4_p)VecPermute(x2, y2, m4); block4 = (uint32x4_p)VecPermute(x3, y3, m3); block5 = (uint32x4_p)VecPermute(x3, y3, m4); } void SPECK64_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1, uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4, uint32x4_p &block5, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_p x1 = (uint32x4_p)VecPermute(block0, block1, m1); uint32x4_p y1 = (uint32x4_p)VecPermute(block0, block1, m2); uint32x4_p x2 = (uint32x4_p)VecPermute(block2, block3, m1); uint32x4_p y2 = (uint32x4_p)VecPermute(block2, block3, m2); uint32x4_p x3 = (uint32x4_p)VecPermute(block4, block5, m1); uint32x4_p y3 = (uint32x4_p)VecPermute(block4, block5, m2); for (int i = static_cast(rounds-1); i >= 0; --i) { #if CRYPTOPP_POWER7_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[i]); #else // subkeys has extra elements so memory backs the last subkey const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+i); rk = VecPermute(rk, rk, m); #endif y1 = VecXor(y1, x1); y2 = VecXor(y2, x2); y3 = VecXor(y3, x3); y1 = RotateRight32<3>(y1); y2 = RotateRight32<3>(y2); y3 = RotateRight32<3>(y3); x1 = VecXor(x1, rk); x2 = VecXor(x2, rk); x3 = VecXor(x3, rk); x1 = VecSub(x1, y1); x2 = VecSub(x2, y2); x3 = VecSub(x3, y3); x1 = RotateLeft32<8>(x1); x2 = RotateLeft32<8>(x2); x3 = RotateLeft32<8>(x3); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); block2 = (uint32x4_p)VecPermute(x2, y2, m3); block3 = (uint32x4_p)VecPermute(x2, y2, m4); block4 = (uint32x4_p)VecPermute(x3, y3, m3); block5 = (uint32x4_p)VecPermute(x3, y3, m4); } #endif // CRYPTOPP_ALTIVEC_AVAILABLE ANONYMOUS_NAMESPACE_END /////////////////////////////////////////////////////////////////////// NAMESPACE_BEGIN(CryptoPP) // *************************** ARM NEON **************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) size_t SPECK64_Enc_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_NEON(SPECK64_Enc_Block, SPECK64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SPECK64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_NEON(SPECK64_Dec_Block, SPECK64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // ***************************** IA-32 ***************************** // #if defined(CRYPTOPP_SSE41_AVAILABLE) size_t SPECK64_Enc_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_SSE(SPECK64_Enc_Block, SPECK64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SPECK64_Dec_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_SSE(SPECK64_Dec_Block, SPECK64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // ***************************** Altivec ***************************** // #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) size_t SPECK64_Enc_AdvancedProcessBlocks_ALTIVEC(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_ALTIVEC(SPECK64_Enc_Block, SPECK64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SPECK64_Dec_AdvancedProcessBlocks_ALTIVEC(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_ALTIVEC(SPECK64_Dec_Block, SPECK64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif NAMESPACE_END