// sm4_simd.cpp - written and placed in the public domain by // Markku-Juhani O. Saarinen and Jeffrey Walton // // This source file uses intrinsics and built-ins to gain access to // AESNI, ARM NEON and ARMv8a, and Power7 Altivec instructions. A separate // source file is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. // // AES-NI based on Markku-Juhani O. Saarinen work at https://github.com/mjosaarinen/sm4ni. // // ARMv8 is upcoming. #include "pch.h" #include "config.h" #include "sm4.h" #include "misc.h" // Uncomment for benchmarking C++ against SSE. // Do so in both simon.cpp and simon_simd.cpp. // #undef CRYPTOPP_AESNI_AVAILABLE #if (CRYPTOPP_AESNI_AVAILABLE) # include "adv_simd.h" # include # include # include #endif // Squash MS LNK4221 and libtool warnings extern const char SM4_SIMD_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::word32; #if (CRYPTOPP_AESNI_AVAILABLE) template inline __m128i ShiftLeft(const __m128i& val) { return _mm_slli_epi32(val, R); } template inline __m128i ShiftRight(const __m128i& val) { return _mm_srli_epi32(val, R); } template inline __m128i ShiftLeft64(const __m128i& val) { return _mm_slli_epi64(val, R); } template inline __m128i ShiftRight64(const __m128i& val) { return _mm_srli_epi64(val, R); } template inline __m128i RotateLeft(const __m128i& val) { return _mm_or_si128( _mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R)); } template inline __m128i RotateRight(const __m128i& val) { return _mm_or_si128( _mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R)); } template <> inline __m128i RotateLeft<8>(const __m128i& val) { const __m128i r08 = _mm_set_epi32(0x0E0D0C0F, 0x0A09080B, 0x06050407, 0x02010003); return _mm_shuffle_epi8(val, r08); } template <> inline __m128i RotateLeft<16>(const __m128i& val) { const __m128i mask = _mm_set_epi32(0x0D0C0F0E, 0x09080B0A, 0x05040706, 0x01000302); return _mm_shuffle_epi8(val, mask); } template <> inline __m128i RotateLeft<24>(const __m128i& val) { const __m128i mask = _mm_set_epi32(0x0C0F0E0D, 0x080B0A09, 0x04070605, 0x00030201); return _mm_shuffle_epi8(val, mask); } /// \brief Unpack XMM words /// \tparam IDX the element from each XMM word /// \param a the first XMM word /// \param b the second XMM word /// \param c the third XMM word /// \param d the fourth XMM word /// \details UnpackXMM selects the IDX element from a, b, c, d and returns a concatenation /// equivalent to a[IDX] || b[IDX] || c[IDX] || d[IDX]. template inline __m128i UnpackXMM(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) { // Should not be instantiated CRYPTOPP_UNUSED(a); CRYPTOPP_UNUSED(b); CRYPTOPP_UNUSED(c); CRYPTOPP_UNUSED(d); CRYPTOPP_ASSERT(0); return _mm_setzero_si128(); } template <> inline __m128i UnpackXMM<0>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) { const __m128i r1 = _mm_unpacklo_epi32(a, b); const __m128i r2 = _mm_unpacklo_epi32(c, d); return _mm_unpacklo_epi64(r1, r2); } template <> inline __m128i UnpackXMM<1>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) { const __m128i r1 = _mm_unpacklo_epi32(a, b); const __m128i r2 = _mm_unpacklo_epi32(c, d); return _mm_unpackhi_epi64(r1, r2); } template <> inline __m128i UnpackXMM<2>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) { const __m128i r1 = _mm_unpackhi_epi32(a, b); const __m128i r2 = _mm_unpackhi_epi32(c, d); return _mm_unpacklo_epi64(r1, r2); } template <> inline __m128i UnpackXMM<3>(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) { const __m128i r1 = _mm_unpackhi_epi32(a, b); const __m128i r2 = _mm_unpackhi_epi32(c, d); return _mm_unpackhi_epi64(r1, r2); } /// \brief Unpack a XMM word /// \tparam IDX the element from each XMM word /// \param v the first XMM word /// \details UnpackXMM selects the IDX element from v and returns a concatenation /// equivalent to v[IDX] || v[IDX] || v[IDX] || v[IDX]. template inline __m128i UnpackXMM(const __m128i& v) { // Should not be instantiated CRYPTOPP_UNUSED(v); CRYPTOPP_ASSERT(0); return _mm_setzero_si128(); } template <> inline __m128i UnpackXMM<0>(const __m128i& v) { // Splat to all lanes return _mm_shuffle_epi8(v, _mm_set_epi8(3,2,1,0, 3,2,1,0, 3,2,1,0, 3,2,1,0)); } template <> inline __m128i UnpackXMM<1>(const __m128i& v) { // Splat to all lanes return _mm_shuffle_epi8(v, _mm_set_epi8(7,6,5,4, 7,6,5,4, 7,6,5,4, 7,6,5,4)); } template <> inline __m128i UnpackXMM<2>(const __m128i& v) { // Splat to all lanes return _mm_shuffle_epi8(v, _mm_set_epi8(11,10,9,8, 11,10,9,8, 11,10,9,8, 11,10,9,8)); } template <> inline __m128i UnpackXMM<3>(const __m128i& v) { // Splat to all lanes return _mm_shuffle_epi8(v, _mm_set_epi8(15,14,13,12, 15,14,13,12, 15,14,13,12, 15,14,13,12)); } template inline __m128i RepackXMM(const __m128i& a, const __m128i& b, const __m128i& c, const __m128i& d) { return UnpackXMM(a, b, c, d); } template inline __m128i RepackXMM(const __m128i& v) { return UnpackXMM(v); } inline void SM4_Encrypt(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const word32 *subkeys) { // nibble mask const __m128i c0f = _mm_set_epi32(0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F, 0x0F0F0F0F); // flip all bytes in all 32-bit words const __m128i flp = _mm_set_epi32(0x0C0D0E0F, 0x08090A0B, 0x04050607, 0x00010203); // inverse shift rows const __m128i shr = _mm_set_epi32(0x0306090C, 0x0F020508, 0x0B0E0104, 0x070A0D00); // Affine transform 1 (low and high hibbles) const __m128i m1l = _mm_set_epi32(0xC7C1B4B2, 0x22245157, 0x9197E2E4, 0x74720701); const __m128i m1h = _mm_set_epi32(0xF052B91B, 0xF95BB012, 0xE240AB09, 0xEB49A200); // Affine transform 2 (low and high hibbles) const __m128i m2l = _mm_set_epi32(0xEDD14478, 0x172BBE82, 0x5B67F2CE, 0xA19D0834); const __m128i m2h = _mm_set_epi32(0x11CDBE62, 0xCC1063BF, 0xAE7201DD, 0x73AFDC00); __m128i t0 = UnpackXMM<0>(block0, block1, block2, block3); __m128i t1 = UnpackXMM<1>(block0, block1, block2, block3); __m128i t2 = UnpackXMM<2>(block0, block1, block2, block3); __m128i t3 = UnpackXMM<3>(block0, block1, block2, block3); t0 = _mm_shuffle_epi8(t0, flp); t1 = _mm_shuffle_epi8(t1, flp); t2 = _mm_shuffle_epi8(t2, flp); t3 = _mm_shuffle_epi8(t3, flp); const unsigned int ROUNDS = 32; for (unsigned int i = 0; i < ROUNDS; i++) { const __m128i k = _mm_shuffle_epi32(_mm_castps_si128( _mm_load_ss((const float*)(subkeys+i))), _MM_SHUFFLE(0,0,0,0)); __m128i x, y; x = _mm_xor_si128(t1, _mm_xor_si128(t2, _mm_xor_si128(t3, k))); y = _mm_and_si128(x, c0f); // inner affine y = _mm_shuffle_epi8(m1l, y); x = _mm_and_si128(ShiftRight64<4>(x), c0f); x = _mm_xor_si128(_mm_shuffle_epi8(m1h, x), y); x = _mm_shuffle_epi8(x, shr); // inverse MixColumns x = _mm_aesenclast_si128(x, c0f); // AESNI instruction y = _mm_andnot_si128(x, c0f); // outer affine y = _mm_shuffle_epi8(m2l, y); x = _mm_and_si128(ShiftRight64<4>(x), c0f); x = _mm_xor_si128(_mm_shuffle_epi8(m2h, x), y); // 4 parallel L1 linear transforms y = _mm_xor_si128(x, RotateLeft<8>(x)); y = _mm_xor_si128(y, RotateLeft<16>(x)); y = _mm_xor_si128(ShiftLeft<2>(y), ShiftRight<30>(y)); x = _mm_xor_si128(x, _mm_xor_si128(y, RotateLeft<24>(x))); // rotate registers x = _mm_xor_si128(x, t0); t0 = t1; t1 = t2; t2 = t3; t3 = x; } t0 = _mm_shuffle_epi8(t0, flp); t1 = _mm_shuffle_epi8(t1, flp); t2 = _mm_shuffle_epi8(t2, flp); t3 = _mm_shuffle_epi8(t3, flp); block0 = RepackXMM<0>(t3,t2,t1,t0); block1 = RepackXMM<1>(t3,t2,t1,t0); block2 = RepackXMM<2>(t3,t2,t1,t0); block3 = RepackXMM<3>(t3,t2,t1,t0); } inline void SM4_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const word32 *subkeys, unsigned int /*rounds*/) { SM4_Encrypt(block0, block1, block2, block3, subkeys); } inline void SM4_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, const word32 *subkeys, unsigned int /*rounds*/) { SM4_Encrypt(block0, block1, block2, block3, subkeys); } inline void SM4_Enc_Block(__m128i &block0, const word32 *subkeys, unsigned int /*rounds*/) { __m128i t1 = _mm_setzero_si128(); __m128i t2 = _mm_setzero_si128(); __m128i t3 = _mm_setzero_si128(); SM4_Encrypt(block0, t1, t2, t3, subkeys); } inline void SM4_Dec_Block(__m128i &block0, const word32 *subkeys, unsigned int /*rounds*/) { __m128i t1 = _mm_setzero_si128(); __m128i t2 = _mm_setzero_si128(); __m128i t3 = _mm_setzero_si128(); SM4_Encrypt(block0, t1, t2, t3, subkeys); } #endif // CRYPTOPP_AESNI_AVAILABLE ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) #if defined(CRYPTOPP_AESNI_AVAILABLE) size_t SM4_Enc_AdvancedProcessBlocks_AESNI(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks128_4x1_SSE(SM4_Enc_Block, SM4_Enc_4_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_AESNI_AVAILABLE NAMESPACE_END