// skipjack.cpp - modified by Wei Dai from Paulo Barreto's skipjack32.c, // which is public domain according to his web site. #include "pch.h" #ifndef CRYPTOPP_IMPORTS #include "skipjack.h" /* * Optimized implementation of SKIPJACK algorithm * * originally written by Panu Rissanen 1998.06.24 * optimized by Mark Tillotson 1998.06.25 * optimized by Paulo Barreto 1998.06.30 */ NAMESPACE_BEGIN(CryptoPP) /** * The F-table byte permutation (see description of the G-box permutation) */ const byte SKIPJACK::Base::fTable[256] = { 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9, 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28, 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53, 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2, 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8, 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90, 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76, 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d, 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18, 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4, 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40, 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5, 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2, 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8, 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac, 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46 }; /** * The key-dependent permutation G on V^16 is a four-round Feistel network. * The round function is a fixed byte-substitution table (permutation on V^8), * the F-table. Each round of G incorporates a single byte from the key. */ #define g(tab, w, i, j, k, l) \ { \ w ^= (word)tab[i*256 + (w & 0xff)] << 8; \ w ^= (word)tab[j*256 + (w >> 8)]; \ w ^= (word)tab[k*256 + (w & 0xff)] << 8; \ w ^= (word)tab[l*256 + (w >> 8)]; \ } #define g0(tab, w) g(tab, w, 0, 1, 2, 3) #define g1(tab, w) g(tab, w, 4, 5, 6, 7) #define g2(tab, w) g(tab, w, 8, 9, 0, 1) #define g3(tab, w) g(tab, w, 2, 3, 4, 5) #define g4(tab, w) g(tab, w, 6, 7, 8, 9) /** * The inverse of the G permutation. */ #define h(tab, w, i, j, k, l) \ { \ w ^= (word)tab[l*256 + (w >> 8)]; \ w ^= (word)tab[k*256 + (w & 0xff)] << 8; \ w ^= (word)tab[j*256 + (w >> 8)]; \ w ^= (word)tab[i*256 + (w & 0xff)] << 8; \ } #define h0(tab, w) h(tab, w, 0, 1, 2, 3) #define h1(tab, w) h(tab, w, 4, 5, 6, 7) #define h2(tab, w) h(tab, w, 8, 9, 0, 1) #define h3(tab, w) h(tab, w, 2, 3, 4, 5) #define h4(tab, w) h(tab, w, 6, 7, 8, 9) /** * Preprocess a user key into a table to save an XOR at each F-table access. */ void SKIPJACK::Base::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &) { AssertValidKeyLength(length); /* tab[i][c] = fTable[c ^ key[i]] */ int i; for (i = 0; i < 10; i++) { byte *t = tab+i*256, k = key[9-i]; int c; for (c = 0; c < 256; c++) { t[c] = fTable[c ^ k]; } } } typedef BlockGetAndPut Block; /** * Encrypt a single block of data. */ void SKIPJACK::Enc::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word16 w1, w2, w3, w4; Block::Get(inBlock)(w4)(w3)(w2)(w1); /* stepping rule A: */ g0(tab, w1); w4 ^= w1 ^ 1; g1(tab, w4); w3 ^= w4 ^ 2; g2(tab, w3); w2 ^= w3 ^ 3; g3(tab, w2); w1 ^= w2 ^ 4; g4(tab, w1); w4 ^= w1 ^ 5; g0(tab, w4); w3 ^= w4 ^ 6; g1(tab, w3); w2 ^= w3 ^ 7; g2(tab, w2); w1 ^= w2 ^ 8; /* stepping rule B: */ w2 ^= w1 ^ 9; g3(tab, w1); w1 ^= w4 ^ 10; g4(tab, w4); w4 ^= w3 ^ 11; g0(tab, w3); w3 ^= w2 ^ 12; g1(tab, w2); w2 ^= w1 ^ 13; g2(tab, w1); w1 ^= w4 ^ 14; g3(tab, w4); w4 ^= w3 ^ 15; g4(tab, w3); w3 ^= w2 ^ 16; g0(tab, w2); /* stepping rule A: */ g1(tab, w1); w4 ^= w1 ^ 17; g2(tab, w4); w3 ^= w4 ^ 18; g3(tab, w3); w2 ^= w3 ^ 19; g4(tab, w2); w1 ^= w2 ^ 20; g0(tab, w1); w4 ^= w1 ^ 21; g1(tab, w4); w3 ^= w4 ^ 22; g2(tab, w3); w2 ^= w3 ^ 23; g3(tab, w2); w1 ^= w2 ^ 24; /* stepping rule B: */ w2 ^= w1 ^ 25; g4(tab, w1); w1 ^= w4 ^ 26; g0(tab, w4); w4 ^= w3 ^ 27; g1(tab, w3); w3 ^= w2 ^ 28; g2(tab, w2); w2 ^= w1 ^ 29; g3(tab, w1); w1 ^= w4 ^ 30; g4(tab, w4); w4 ^= w3 ^ 31; g0(tab, w3); w3 ^= w2 ^ 32; g1(tab, w2); Block::Put(xorBlock, outBlock)(w4)(w3)(w2)(w1); } /** * Decrypt a single block of data. */ void SKIPJACK::Dec::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word16 w1, w2, w3, w4; Block::Get(inBlock)(w4)(w3)(w2)(w1); /* stepping rule A: */ h1(tab, w2); w3 ^= w2 ^ 32; h0(tab, w3); w4 ^= w3 ^ 31; h4(tab, w4); w1 ^= w4 ^ 30; h3(tab, w1); w2 ^= w1 ^ 29; h2(tab, w2); w3 ^= w2 ^ 28; h1(tab, w3); w4 ^= w3 ^ 27; h0(tab, w4); w1 ^= w4 ^ 26; h4(tab, w1); w2 ^= w1 ^ 25; /* stepping rule B: */ w1 ^= w2 ^ 24; h3(tab, w2); w2 ^= w3 ^ 23; h2(tab, w3); w3 ^= w4 ^ 22; h1(tab, w4); w4 ^= w1 ^ 21; h0(tab, w1); w1 ^= w2 ^ 20; h4(tab, w2); w2 ^= w3 ^ 19; h3(tab, w3); w3 ^= w4 ^ 18; h2(tab, w4); w4 ^= w1 ^ 17; h1(tab, w1); /* stepping rule A: */ h0(tab, w2); w3 ^= w2 ^ 16; h4(tab, w3); w4 ^= w3 ^ 15; h3(tab, w4); w1 ^= w4 ^ 14; h2(tab, w1); w2 ^= w1 ^ 13; h1(tab, w2); w3 ^= w2 ^ 12; h0(tab, w3); w4 ^= w3 ^ 11; h4(tab, w4); w1 ^= w4 ^ 10; h3(tab, w1); w2 ^= w1 ^ 9; /* stepping rule B: */ w1 ^= w2 ^ 8; h2(tab, w2); w2 ^= w3 ^ 7; h1(tab, w3); w3 ^= w4 ^ 6; h0(tab, w4); w4 ^= w1 ^ 5; h4(tab, w1); w1 ^= w2 ^ 4; h3(tab, w2); w2 ^= w3 ^ 3; h2(tab, w3); w3 ^= w4 ^ 2; h1(tab, w4); w4 ^= w1 ^ 1; h0(tab, w1); Block::Put(xorBlock, outBlock)(w4)(w3)(w2)(w1); } NAMESPACE_END #endif