// simple.h - originally written and placed in the public domain by Wei Dai //! \file simple.h //! \brief Classes providing basic library services. #ifndef CRYPTOPP_SIMPLE_H #define CRYPTOPP_SIMPLE_H #include "config.h" #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4127 4189) #endif #include "cryptlib.h" #include "misc.h" NAMESPACE_BEGIN(CryptoPP) //! \class ClonableImpl //! \brief Base class for identifying alogorithm //! \tparam BASE base class from which to derive //! \tparam DERIVED class which to clone template class CRYPTOPP_NO_VTABLE ClonableImpl : public BASE { public: Clonable * Clone() const {return new DERIVED(*static_cast(this));} }; //! \class AlgorithmImpl //! \brief Base class for identifying alogorithm //! \tparam BASE an Algorithm derived class //! \tparam ALGORITHM_INFO an Algorithm derived class //! \details AlgorithmImpl provides StaticAlgorithmName from the template parameter BASE template class CRYPTOPP_NO_VTABLE AlgorithmImpl : public BASE { public: static std::string CRYPTOPP_API StaticAlgorithmName() {return ALGORITHM_INFO::StaticAlgorithmName();} std::string AlgorithmName() const {return ALGORITHM_INFO::StaticAlgorithmName();} }; //! \class InvalidKeyLength //! \brief Exception thrown when an invalid key length is encountered class CRYPTOPP_DLL InvalidKeyLength : public InvalidArgument { public: explicit InvalidKeyLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid key length") {} }; //! \class InvalidRounds //! \brief Exception thrown when an invalid number of rounds is encountered class CRYPTOPP_DLL InvalidRounds : public InvalidArgument { public: explicit InvalidRounds(const std::string &algorithm, unsigned int rounds) : InvalidArgument(algorithm + ": " + IntToString(rounds) + " is not a valid number of rounds") {} }; //! \class InvalidBlockSize //! \brief Exception thrown when an invalid block size is encountered class CRYPTOPP_DLL InvalidBlockSize : public InvalidArgument { public: explicit InvalidBlockSize(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid block size") {} }; //! \class InvalidPersonalizationLength //! \brief Exception thrown when an invalid personalization string length is encountered class CRYPTOPP_DLL InvalidPersonalizationLength : public InvalidArgument { public: explicit InvalidPersonalizationLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid salt length") {} }; //! \class InvalidSaltLength //! \brief Exception thrown when an invalid salt length is encountered class CRYPTOPP_DLL InvalidSaltLength : public InvalidArgument { public: explicit InvalidSaltLength(const std::string &algorithm, size_t length) : InvalidArgument(algorithm + ": " + IntToString(length) + " is not a valid salt length") {} }; // ***************************** //! \class Bufferless //! \brief Base class for bufferless filters //! \tparam T the class or type template class CRYPTOPP_NO_VTABLE Bufferless : public T { public: bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); return false;} }; //! \class Unflushable //! \brief Base class for unflushable filters //! \tparam T the class or type template class CRYPTOPP_NO_VTABLE Unflushable : public T { public: bool Flush(bool completeFlush, int propagation=-1, bool blocking=true) {return ChannelFlush(DEFAULT_CHANNEL, completeFlush, propagation, blocking);} bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); CRYPTOPP_ASSERT(false); return false;} bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true) { if (hardFlush && !InputBufferIsEmpty()) throw CannotFlush("Unflushable: this object has buffered input that cannot be flushed"); else { BufferedTransformation *attached = this->AttachedTransformation(); return attached && propagation ? attached->ChannelFlush(channel, hardFlush, propagation-1, blocking) : false; } } protected: virtual bool InputBufferIsEmpty() const {return false;} }; //! \class InputRejecting //! \brief Base class for input rejecting filters //! \tparam T the class or type //! \details T should be a BufferedTransformation derived class template class CRYPTOPP_NO_VTABLE InputRejecting : public T { public: struct InputRejected : public NotImplemented {InputRejected() : NotImplemented("BufferedTransformation: this object doesn't allow input") {}}; //! \name INPUT //@{ //! \brief Input a byte array for processing //! \param inString the byte array to process //! \param length the size of the string, in bytes //! \param messageEnd means how many filters to signal MessageEnd() to, including this one //! \param blocking specifies whether the object should block when processing input //! \throws InputRejected //! \returns the number of bytes that remain in the block (i.e., bytes not processed) //! \details Internally, the default implementation throws InputRejected. size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();} //@} //! \name SIGNALS //@{ bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); return false;} bool IsolatedMessageSeriesEnd(bool blocking) {CRYPTOPP_UNUSED(blocking); throw InputRejected();} size_t ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();} bool ChannelMessageSeriesEnd(const std::string& channel, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); throw InputRejected();} //@} }; //! \class CustomFlushPropagation //! \brief Interface for custom flush signals propagation //! \tparam T BufferedTransformation derived class template class CRYPTOPP_NO_VTABLE CustomFlushPropagation : public T { public: //! \name SIGNALS //@{ //! \brief Flush buffered input and/or output, with signal propagation //! \param hardFlush is used to indicate whether all data should be flushed //! \param propagation the number of attached transformations the Flush() signal should be passed //! \param blocking specifies whether the object should block when processing input //! \details propagation count includes this object. Setting propagation to 1 means this //! object only. Setting propagation to -1 means unlimited propagation. //! \note Hard flushes must be used with care. It means try to process and output everything, even if //! there may not be enough data to complete the action. For example, hard flushing a HexDecoder //! would cause an error if you do it after inputing an odd number of hex encoded characters. //! \note For some types of filters, like ZlibDecompressor, hard flushes can only //! be done at "synchronization points". These synchronization points are positions in the data //! stream that are created by hard flushes on the corresponding reverse filters, in this //! example ZlibCompressor. This is useful when zlib compressed data is moved across a //! network in packets and compression state is preserved across packets, as in the SSH2 protocol. virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true) =0; //@} private: bool IsolatedFlush(bool hardFlush, bool blocking) {CRYPTOPP_UNUSED(hardFlush); CRYPTOPP_UNUSED(blocking); CRYPTOPP_ASSERT(false); return false;} }; //! \class CustomSignalPropagation //! \brief Interface for custom flush signals //! \tparam T BufferedTransformation derived class template class CRYPTOPP_NO_VTABLE CustomSignalPropagation : public CustomFlushPropagation { public: //! \brief Initialize or reinitialize this object, with signal propagation //! \param parameters a set of NameValuePairs to initialize or reinitialize this object //! \param propagation the number of attached transformations the Initialize() signal should be passed //! \details Initialize() is used to initialize or reinitialize an object using a variable number of //! arbitrarily typed arguments. The function avoids the need for multiple constructors providing //! all possible combintations of configurable parameters. //! \details propagation count includes this object. Setting propagation to 1 means this //! object only. Setting propagation to -1 means unlimited propagation. virtual void Initialize(const NameValuePairs ¶meters=g_nullNameValuePairs, int propagation=-1) =0; private: void IsolatedInitialize(const NameValuePairs ¶meters) {CRYPTOPP_UNUSED(parameters); CRYPTOPP_ASSERT(false);} }; //! \class Multichannel //! \brief Multiple channels support for custom signal processing //! \tparam T the class or type //! \details T should be a BufferedTransformation derived class template class CRYPTOPP_NO_VTABLE Multichannel : public CustomFlushPropagation { public: bool Flush(bool hardFlush, int propagation=-1, bool blocking=true) {return this->ChannelFlush(DEFAULT_CHANNEL, hardFlush, propagation, blocking);} //! \brief Marks the end of a series of messages, with signal propagation //! \param propagation the number of attached transformations the MessageSeriesEnd() signal should be passed //! \param blocking specifies whether the object should block when processing input //! \details Each object that receives the signal will perform its processing, decrement //! propagation, and then pass the signal on to attached transformations if the value is not 0. //! \details propagation count includes this object. Setting propagation to 1 means this //! object only. Setting propagation to -1 means unlimited propagation. //! \note There should be a MessageEnd() immediately before MessageSeriesEnd(). bool MessageSeriesEnd(int propagation=-1, bool blocking=true) {return this->ChannelMessageSeriesEnd(DEFAULT_CHANNEL, propagation, blocking);} //! \brief Request space which can be written into by the caller //! \param size the requested size of the buffer //! \details The purpose of this method is to help avoid extra memory allocations. //! \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made, //! size is the requested size of the buffer. When the call returns, size is the size of //! the array returned to the caller. //! \details The base class implementation sets size to 0 and returns NULL. //! \note Some objects, like ArraySink, cannot create a space because its fixed. In the case of //! an ArraySink, the pointer to the array is returned and the size is remaining size. byte * CreatePutSpace(size_t &size) {return this->ChannelCreatePutSpace(DEFAULT_CHANNEL, size);} //! \brief Input multiple bytes for processing //! \param inString the byte buffer to process //! \param length the size of the string, in bytes //! \param messageEnd means how many filters to signal MessageEnd() to, including this one //! \param blocking specifies whether the object should block when processing input //! \details Derived classes must implement Put2(). size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {return this->ChannelPut2(DEFAULT_CHANNEL, inString, length, messageEnd, blocking);} //! \brief Input multiple bytes that may be modified by callee. //! \param inString the byte buffer to process. //! \param length the size of the string, in bytes. //! \param messageEnd means how many filters to signal MessageEnd() to, including this one. //! \param blocking specifies whether the object should block when processing input. //! \details Internally, PutModifiable2() calls Put2(). size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking) {return this->ChannelPutModifiable2(DEFAULT_CHANNEL, inString, length, messageEnd, blocking);} // void ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1) // {PropagateMessageSeriesEnd(propagation, channel);} byte * ChannelCreatePutSpace(const std::string &channel, size_t &size) {CRYPTOPP_UNUSED(channel); size = 0; return NULLPTR;} bool ChannelPutModifiable(const std::string &channel, byte *inString, size_t length) {this->ChannelPut(channel, inString, length); return false;} virtual size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking) =0; size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking) {return ChannelPut2(channel, begin, length, messageEnd, blocking);} virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true) =0; }; //! \class AutoSignaling //! \brief Provides auto signaling support //! \tparam T BufferedTransformation derived class template class CRYPTOPP_NO_VTABLE AutoSignaling : public T { public: //! \brief Construct an AutoSignaling //! \param propagation the propagation count AutoSignaling(int propagation=-1) : m_autoSignalPropagation(propagation) {} void SetAutoSignalPropagation(int propagation) {m_autoSignalPropagation = propagation;} int GetAutoSignalPropagation() const {return m_autoSignalPropagation;} private: int m_autoSignalPropagation; }; //! \class Store //! \brief Acts as a Source for pre-existing, static data //! \tparam T BufferedTransformation that only contains pre-existing data as "output" class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Store : public AutoSignaling > { public: //! \brief Construct a Store Store() : m_messageEnd(false) {} void IsolatedInitialize(const NameValuePairs ¶meters) { m_messageEnd = false; StoreInitialize(parameters); } unsigned int NumberOfMessages() const {return m_messageEnd ? 0 : 1;} bool GetNextMessage(); unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const; protected: virtual void StoreInitialize(const NameValuePairs ¶meters) =0; bool m_messageEnd; }; //! \class Sink //! \brief Implementation of BufferedTransformation's attachment interface //! \details Sink is a cornerstone of the Pipeline trinitiy. Data flows from //! Sources, through Filters, and then terminates in Sinks. The difference //! between a Source and Filter is a Source \a pumps data, while a Filter does //! not. The difference between a Filter and a Sink is a Filter allows an //! attached transformation, while a Sink does not. //! \details A Sink doesnot produce any retrievable output. //! \details See the discussion of BufferedTransformation in cryptlib.h for //! more details. class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Sink : public BufferedTransformation { public: size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) {CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(transferBytes); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking); transferBytes = 0; return 0;} size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const {CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(begin); CRYPTOPP_UNUSED(end); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking); return 0;} }; //! \class BitBucket //! \brief Acts as an input discarding Filter or Sink //! \tparam T the class or type //! \details The BitBucket discards all input and returns 0 to the caller //! to indicate all data was processed. class CRYPTOPP_DLL BitBucket : public Bufferless { public: std::string AlgorithmName() const {return "BitBucket";} void IsolatedInitialize(const NameValuePairs ¶ms) {CRYPTOPP_UNUSED(params);} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); return 0;} }; NAMESPACE_END #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif #endif