// simon-simd.cpp - written and placed in the public domain by Jeffrey Walton // // This source file uses intrinsics and built-ins to gain access to // SSSE3, ARM NEON and ARMv8a, and Altivec instructions. A separate // source file is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. #include "pch.h" #include "config.h" #include "simon.h" #include "misc.h" // Uncomment for benchmarking C++ against SSE or NEON. // Do so in both simon.cpp and simon-simd.cpp. // #undef CRYPTOPP_SSE41_AVAILABLE // #undef CRYPTOPP_ARM_NEON_AVAILABLE #if (CRYPTOPP_SSE41_AVAILABLE) # include "adv_simd.h" # include # include # include #endif #if defined(__XOP__) # include #endif // C1189: error: This header is specific to ARM targets #if (CRYPTOPP_ARM_NEON_AVAILABLE) # include "adv_simd.h" # ifndef _M_ARM64 # include # endif #endif #if (CRYPTOPP_ARM_ACLE_AVAILABLE) # include # include #endif #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) # include "adv_simd.h" # include "ppc_simd.h" #endif // Squash MS LNK4221 and libtool warnings extern const char SIMON64_SIMD_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::word64; using CryptoPP::vec_swap; // SunCC // *************************** ARM NEON ************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) template inline T UnpackHigh32(const T& a, const T& b) { const uint32x2_t x(vget_high_u32((uint32x4_t)a)); const uint32x2_t y(vget_high_u32((uint32x4_t)b)); const uint32x2x2_t r = vzip_u32(x, y); return (T)vcombine_u32(r.val[0], r.val[1]); } template inline T UnpackLow32(const T& a, const T& b) { const uint32x2_t x(vget_low_u32((uint32x4_t)a)); const uint32x2_t y(vget_low_u32((uint32x4_t)b)); const uint32x2x2_t r = vzip_u32(x, y); return (T)vcombine_u32(r.val[0], r.val[1]); } template inline uint32x4_t RotateLeft32(const uint32x4_t& val) { const uint32x4_t a(vshlq_n_u32(val, R)); const uint32x4_t b(vshrq_n_u32(val, 32 - R)); return vorrq_u32(a, b); } template inline uint32x4_t RotateRight32(const uint32x4_t& val) { const uint32x4_t a(vshlq_n_u32(val, 32 - R)); const uint32x4_t b(vshrq_n_u32(val, R)); return vorrq_u32(a, b); } #if defined(__aarch32__) || defined(__aarch64__) // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint32x4_t RotateLeft32<8>(const uint32x4_t& val) { const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 }; const uint8x16_t mask = vld1q_u8(maskb); return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint32x4_t RotateRight32<8>(const uint32x4_t& val) { const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,14,12 }; const uint8x16_t mask = vld1q_u8(maskb); return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); } #endif inline uint32x4_t SIMON64_f(const uint32x4_t& val) { return veorq_u32(RotateLeft32<2>(val), vandq_u32(RotateLeft32<1>(val), RotateLeft32<8>(val))); } inline void SIMON64_Enc_Block(uint32x4_t &block1, uint32x4_t &block0, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2); } if (rounds & 1) { const uint32x4_t rk = vld1q_dup_u32(subkeys+rounds-1); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk); std::swap(x1, y1); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); } inline void SIMON64_Dec_Block(uint32x4_t &block0, uint32x4_t &block1, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; if (rounds & 1) { std::swap(x1, y1); const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1); y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i+1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); } inline void SIMON64_Enc_6_Blocks(uint32x4_t &block0, uint32x4_t &block1, uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; uint32x4_t x2 = vuzpq_u32(block2, block3).val[1]; uint32x4_t y2 = vuzpq_u32(block2, block3).val[0]; uint32x4_t x3 = vuzpq_u32(block4, block5).val[1]; uint32x4_t y3 = vuzpq_u32(block4, block5).val[0]; for (int i = 0; i < static_cast(rounds & ~1) - 1; i += 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1); y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk1); y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2); x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk2); x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk2); } if (rounds & 1) { const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk); y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk); y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk); std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); block2 = UnpackLow32(y2, x2); block3 = UnpackHigh32(y2, x2); block4 = UnpackLow32(y3, x3); block5 = UnpackHigh32(y3, x3); } inline void SIMON64_Dec_6_Blocks(uint32x4_t &block0, uint32x4_t &block1, uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; uint32x4_t x2 = vuzpq_u32(block2, block3).val[1]; uint32x4_t y2 = vuzpq_u32(block2, block3).val[0]; uint32x4_t x3 = vuzpq_u32(block4, block5).val[1]; uint32x4_t y3 = vuzpq_u32(block4, block5).val[0]; if (rounds & 1) { std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1); y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1)); y2 = veorq_u32(veorq_u32(y2, rk), SIMON64_f(x2)); y3 = veorq_u32(veorq_u32(y3, rk), SIMON64_f(x3)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys + i + 1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1); x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk1); x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys + i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2); y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk2); y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk2); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); block2 = UnpackLow32(y2, x2); block3 = UnpackHigh32(y2, x2); block4 = UnpackLow32(y3, x3); block5 = UnpackHigh32(y3, x3); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE // ***************************** IA-32 ***************************** // #if defined(CRYPTOPP_SSE41_AVAILABLE) inline void Swap128(__m128i& a,__m128i& b) { #if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120) // __m128i is an unsigned long long[2], and support for swapping it was not added until C++11. // SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11. vec_swap(a, b); #else std::swap(a, b); #endif } template inline __m128i RotateLeft32(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, R); #else return _mm_or_si128( _mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R)); #endif } template inline __m128i RotateRight32(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, 32-R); #else return _mm_or_si128( _mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R)); #endif } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> __m128i RotateLeft32<8>(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, 8); #else const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3); return _mm_shuffle_epi8(val, mask); #endif } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> __m128i RotateRight32<8>(const __m128i& val) { #if defined(__XOP__) return _mm_roti_epi32(val, 32-8); #else const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1); return _mm_shuffle_epi8(val, mask); #endif } inline __m128i SIMON64_f(const __m128i& v) { return _mm_xor_si128(RotateLeft32<2>(v), _mm_and_si128(RotateLeft32<1>(v), RotateLeft32<8>(v))); } inline void SIMON64_Enc_Block(__m128i &block0, __m128i &block1, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2); } if (rounds & 1) { const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk); Swap128(x1, y1); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); } inline void SIMON64_Dec_Block(__m128i &block0, __m128i &block1, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); if (rounds & 1) { Swap128(x1, y1); const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); } inline void SIMON64_Enc_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); const __m128 t2 = _mm_castsi128_ps(block2); const __m128 t3 = _mm_castsi128_ps(block3); __m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1))); __m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0))); const __m128 t4 = _mm_castsi128_ps(block4); const __m128 t5 = _mm_castsi128_ps(block5); __m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1))); __m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0))); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk1); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2); x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk2); x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk2); } if (rounds & 1) { const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk); Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); block2 = _mm_unpacklo_epi32(y2, x2); block3 = _mm_unpackhi_epi32(y2, x2); block4 = _mm_unpacklo_epi32(y3, x3); block5 = _mm_unpackhi_epi32(y3, x3); } inline void SIMON64_Dec_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word32 *subkeys, unsigned int rounds) { // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); const __m128 t2 = _mm_castsi128_ps(block2); const __m128 t3 = _mm_castsi128_ps(block3); __m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1))); __m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0))); const __m128 t4 = _mm_castsi128_ps(block4); const __m128 t5 = _mm_castsi128_ps(block5); __m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1))); __m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0))); if (rounds & 1) { Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3); const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1)); y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON64_f(x2)); y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON64_f(x3)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1); x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk1); x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk2); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk2); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); block2 = _mm_unpacklo_epi32(y2, x2); block3 = _mm_unpackhi_epi32(y2, x2); block4 = _mm_unpacklo_epi32(y3, x3); block5 = _mm_unpackhi_epi32(y3, x3); } #endif // CRYPTOPP_SSE41_AVAILABLE // ***************************** Altivec ***************************** // #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) using CryptoPP::uint8x16_p; using CryptoPP::uint32x4_p; using CryptoPP::VecAnd; using CryptoPP::VecXor; using CryptoPP::VecLoad; using CryptoPP::VecLoadBE; using CryptoPP::VecPermute; // Rotate left by bit count template inline uint32x4_p RotateLeft32(const uint32x4_p val) { const uint32x4_p m = {C, C, C, C}; return vec_rl(val, m); } // Rotate right by bit count template inline uint32x4_p RotateRight32(const uint32x4_p val) { const uint32x4_p m = {32-C, 32-C, 32-C, 32-C}; return vec_rl(val, m); } inline uint32x4_p SIMON64_f(const uint32x4_p val) { return VecXor(RotateLeft32<2>(val), VecAnd(RotateLeft32<1>(val), RotateLeft32<8>(val))); } inline void SIMON64_Enc_Block(uint32x4_p &block0, uint32x4_p &block1, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_p x1 = VecPermute(block0, block1, m1); uint32x4_p y1 = VecPermute(block0, block1, m2); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk1 = vec_splats(subkeys[i]); const uint32x4_p rk2 = vec_splats(subkeys[i+1]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk1 = VecLoad(subkeys+i); uint32x4_p rk2 = VecLoad(subkeys+i+1); rk1 = VecPermute(rk1, rk1, m); rk2 = VecPermute(rk2, rk2, m); #endif y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk1); x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk2); } if (rounds & 1) { #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[rounds-1]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+rounds-1); rk = VecPermute(rk, rk, m); #endif y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk); std::swap(x1, y1); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); } inline void SIMON64_Dec_Block(uint32x4_p &block0, uint32x4_p &block1, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_p x1 = VecPermute(block0, block1, m1); uint32x4_p y1 = VecPermute(block0, block1, m2); if (rounds & 1) { std::swap(x1, y1); #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[rounds-1]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+rounds-1); rk = VecPermute(rk, rk, m); #endif y1 = VecXor(VecXor(y1, rk), SIMON64_f(x1)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk1 = vec_splats(subkeys[i+1]); const uint32x4_p rk2 = vec_splats(subkeys[i]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk1 = VecLoad(subkeys+i+1); uint32x4_p rk2 = VecLoad(subkeys+i); rk1 = VecPermute(rk1, rk1, m); rk2 = VecPermute(rk2, rk2, m); #endif x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk1); y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk2); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); } inline void SIMON64_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1, uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4, uint32x4_p &block5, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... uint32x4_p x1 = (uint32x4_p)VecPermute(block0, block1, m1); uint32x4_p y1 = (uint32x4_p)VecPermute(block0, block1, m2); uint32x4_p x2 = (uint32x4_p)VecPermute(block2, block3, m1); uint32x4_p y2 = (uint32x4_p)VecPermute(block2, block3, m2); uint32x4_p x3 = (uint32x4_p)VecPermute(block4, block5, m1); uint32x4_p y3 = (uint32x4_p)VecPermute(block4, block5, m2); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk1 = vec_splats(subkeys[i]); const uint32x4_p rk2 = vec_splats(subkeys[i+1]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk1 = VecLoad(subkeys+i); uint32x4_p rk2 = VecLoad(subkeys+i+1); rk1 = VecPermute(rk1, rk1, m); rk2 = VecPermute(rk2, rk2, m); #endif y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk1); y2 = VecXor(VecXor(y2, SIMON64_f(x2)), rk1); y3 = VecXor(VecXor(y3, SIMON64_f(x3)), rk1); x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk2); x2 = VecXor(VecXor(x2, SIMON64_f(y2)), rk2); x3 = VecXor(VecXor(x3, SIMON64_f(y3)), rk2); } if (rounds & 1) { #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[rounds-1]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+rounds-1); rk = VecPermute(rk, rk, m); #endif y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk); y2 = VecXor(VecXor(y2, SIMON64_f(x2)), rk); y3 = VecXor(VecXor(y3, SIMON64_f(x3)), rk); std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); block2 = (uint32x4_p)VecPermute(x2, y2, m3); block3 = (uint32x4_p)VecPermute(x2, y2, m4); block4 = (uint32x4_p)VecPermute(x3, y3, m3); block5 = (uint32x4_p)VecPermute(x3, y3, m4); } inline void SIMON64_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1, uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4, uint32x4_p &block5, const word32 *subkeys, unsigned int rounds) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m1 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; const uint8x16_p m2 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; #else const uint8x16_p m1 = {3,2,1,0, 11,10,9,8, 19,18,17,16, 27,26,25,24}; const uint8x16_p m2 = {7,6,5,4, 15,14,13,12, 23,22,21,20, 31,30,29,28}; #endif // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... uint32x4_p x1 = (uint32x4_p)VecPermute(block0, block1, m1); uint32x4_p y1 = (uint32x4_p)VecPermute(block0, block1, m2); uint32x4_p x2 = (uint32x4_p)VecPermute(block2, block3, m1); uint32x4_p y2 = (uint32x4_p)VecPermute(block2, block3, m2); uint32x4_p x3 = (uint32x4_p)VecPermute(block4, block5, m1); uint32x4_p y3 = (uint32x4_p)VecPermute(block4, block5, m2); if (rounds & 1) { std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk = vec_splats(subkeys[rounds-1]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk = VecLoad(subkeys+rounds-1); rk = VecPermute(rk, rk, m); #endif y1 = VecXor(VecXor(y1, rk), SIMON64_f(x1)); y2 = VecXor(VecXor(y2, rk), SIMON64_f(x2)); y3 = VecXor(VecXor(y3, rk), SIMON64_f(x3)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { #if CRYPTOPP_POWER8_AVAILABLE const uint32x4_p rk1 = vec_splats(subkeys[i+1]); const uint32x4_p rk2 = vec_splats(subkeys[i]); #else const uint8x16_p m = {0,1,2,3, 0,1,2,3, 0,1,2,3, 0,1,2,3}; uint32x4_p rk1 = VecLoad(subkeys+i+1); uint32x4_p rk2 = VecLoad(subkeys+i); rk1 = VecPermute(rk1, rk1, m); rk2 = VecPermute(rk2, rk2, m); #endif x1 = VecXor(VecXor(x1, SIMON64_f(y1)), rk1); x2 = VecXor(VecXor(x2, SIMON64_f(y2)), rk1); x3 = VecXor(VecXor(x3, SIMON64_f(y3)), rk1); y1 = VecXor(VecXor(y1, SIMON64_f(x1)), rk2); y2 = VecXor(VecXor(y2, SIMON64_f(x2)), rk2); y3 = VecXor(VecXor(y3, SIMON64_f(x3)), rk2); } #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p m3 = {19,18,17,16, 3,2,1,0, 23,22,21,20, 7,6,5,4}; const uint8x16_p m4 = {27,26,25,24, 11,10,9,8, 31,30,29,28, 15,14,13,12}; #else const uint8x16_p m3 = {3,2,1,0, 19,18,17,16, 7,6,5,4, 23,22,21,20}; const uint8x16_p m4 = {11,10,9,8, 27,26,25,24, 15,14,13,12, 31,30,29,28}; #endif // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = (uint32x4_p)VecPermute(x1, y1, m3); block1 = (uint32x4_p)VecPermute(x1, y1, m4); block2 = (uint32x4_p)VecPermute(x2, y2, m3); block3 = (uint32x4_p)VecPermute(x2, y2, m4); block4 = (uint32x4_p)VecPermute(x3, y3, m3); block5 = (uint32x4_p)VecPermute(x3, y3, m4); } #endif // CRYPTOPP_ALTIVEC_AVAILABLE ANONYMOUS_NAMESPACE_END /////////////////////////////////////////////////////////////////////// NAMESPACE_BEGIN(CryptoPP) // *************************** ARM NEON **************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) size_t SIMON64_Enc_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SIMON64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE // ***************************** IA-32 ***************************** // #if defined(CRYPTOPP_SSE41_AVAILABLE) size_t SIMON64_Enc_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SIMON64_Dec_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // ***************************** Altivec ***************************** // #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) size_t SIMON64_Enc_AdvancedProcessBlocks_ALTIVEC(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_ALTIVEC(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SIMON64_Dec_AdvancedProcessBlocks_ALTIVEC(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_ALTIVEC(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif NAMESPACE_END