// sha.cpp - modified by Wei Dai from Steve Reid's public domain sha1.c // Steve Reid implemented SHA-1. Wei Dai implemented SHA-2. Jeffrey Walton // implemented Intel SHA extensions based on Intel articles and code by // Sean Gulley. All code is in the public domain. // use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM sha.cpp" to generate MASM code #include "pch.h" #include "config.h" #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4100 4731) #endif #ifndef CRYPTOPP_IMPORTS #ifndef CRYPTOPP_GENERATE_X64_MASM #include "secblock.h" #include "sha.h" #include "misc.h" #include "cpu.h" #if defined(CRYPTOPP_DISABLE_SHA_ASM) # undef CRYPTOPP_X86_ASM_AVAILABLE # undef CRYPTOPP_X32_ASM_AVAILABLE # undef CRYPTOPP_X64_ASM_AVAILABLE # undef CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #endif NAMESPACE_BEGIN(CryptoPP) // Function pointer for specific SHA1 or SHA256 Transform function typedef void (*pfnSHATransform)(word32 *state, const word32 *data); typedef void (CRYPTOPP_FASTCALL *pfnSHAHashBlocks)(word32 *state, const word32 *data, size_t length); //////////////////////////////// // start of Steve Reid's code // //////////////////////////////// #define blk0(i) (W[i] = data[i]) #define blk1(i) (W[i&15] = rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1)) #define f1(x,y,z) (z^(x&(y^z))) #define f2(x,y,z) (x^y^z) #define f3(x,y,z) ((x&y)|(z&(x|y))) #define f4(x,y,z) (x^y^z) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30); #define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rotlFixed(v,5);w=rotlFixed(w,30); #define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rotlFixed(v,5);w=rotlFixed(w,30); #define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlFixed(v,5);w=rotlFixed(w,30); #define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlFixed(v,5);w=rotlFixed(w,30); static void SHA1_CXX_Transform(word32 *state, const word32 *data) { word32 W[16]; /* Copy context->state[] to working vars */ word32 a = state[0]; word32 b = state[1]; word32 c = state[2]; word32 d = state[3]; word32 e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } ////////////////////////////// // end of Steve Reid's code // ////////////////////////////// /////////////////////////////////// // start of Walton/Gulley's code // /////////////////////////////////// #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE // Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley. static void SHA1_SSE_SHA_Transform(word32 *state, const word32 *data) { __m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1; __m128i MASK, MSG0, MSG1, MSG2, MSG3; // IteratedHashBase has code to perform this step before HashEndianCorrectedBlock() // is called, but the design does not lend itself to optional hardware components // where SHA1 needs reversing, but SHA256 does not. word32* dataBuf = const_cast(data); ByteReverse(dataBuf, dataBuf, 64); // Load initial values ABCD = _mm_loadu_si128((__m128i*) state); E0 = _mm_set_epi32(state[4], 0, 0, 0); ABCD = _mm_shuffle_epi32(ABCD, 0x1B); MASK = _mm_set_epi64x(W64LIT(0x0001020304050607), W64LIT(0x08090a0b0c0d0e0f)); // Save current hash ABCD_SAVE = ABCD; E0_SAVE = E0; // Rounds 0-3 MSG0 = _mm_loadu_si128((__m128i*) data+0); MSG0 = _mm_shuffle_epi8(MSG0, MASK); E0 = _mm_add_epi32(E0, MSG0); E1 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); // Rounds 4-7 MSG1 = _mm_loadu_si128((__m128i*) (data+4)); MSG1 = _mm_shuffle_epi8(MSG1, MASK); E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); // Rounds 8-11 MSG2 = _mm_loadu_si128((__m128i*) (data+8)); MSG2 = _mm_shuffle_epi8(MSG2, MASK); E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); // Rounds 12-15 MSG3 = _mm_loadu_si128((__m128i*) (data+12)); MSG3 = _mm_shuffle_epi8(MSG3, MASK); E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); // Rounds 16-19 E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); // Rounds 20-23 E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); // Rounds 24-27 E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); // Rounds 28-31 E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); // Rounds 32-35 E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); // Rounds 36-39 E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); // Rounds 40-43 E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); // Rounds 44-47 E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); // Rounds 48-51 E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); // Rounds 52-55 E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2); MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1); MSG3 = _mm_xor_si128(MSG3, MSG1); // Rounds 56-59 E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2); MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2); MSG0 = _mm_xor_si128(MSG0, MSG2); // Rounds 60-63 E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3); MSG1 = _mm_xor_si128(MSG1, MSG3); // Rounds 64-67 E0 = _mm_sha1nexte_epu32(E0, MSG0); E1 = ABCD; MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3); MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0); MSG2 = _mm_xor_si128(MSG2, MSG0); // Rounds 68-71 E1 = _mm_sha1nexte_epu32(E1, MSG1); E0 = ABCD; MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1); ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); MSG3 = _mm_xor_si128(MSG3, MSG1); // Rounds 72-75 E0 = _mm_sha1nexte_epu32(E0, MSG2); E1 = ABCD; MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2); ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3); // Rounds 76-79 E1 = _mm_sha1nexte_epu32(E1, MSG3); E0 = ABCD; ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3); // Add values back to state E0 = _mm_sha1nexte_epu32(E0, E0_SAVE); ABCD = _mm_add_epi32(ABCD, ABCD_SAVE); // Save state ABCD = _mm_shuffle_epi32(ABCD, 0x1B); _mm_storeu_si128((__m128i*) state, ABCD); state[4] = _mm_extract_epi32(E0, 3); } #endif ///////////////////////////////// // end of Walton/Gulley's code // ///////////////////////////////// pfnSHATransform InitializeSHA1Transform() { #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE if (HasSHA()) return &SHA1_SSE_SHA_Transform; else #endif return &SHA1_CXX_Transform; } void SHA1::InitState(HashWordType *state) { state[0] = 0x67452301L; state[1] = 0xEFCDAB89L; state[2] = 0x98BADCFEL; state[3] = 0x10325476L; state[4] = 0xC3D2E1F0L; } void SHA1::Transform(word32 *state, const word32 *data) { static const pfnSHATransform s_pfn = InitializeSHA1Transform(); s_pfn(state, data); } // ************************************************************* void SHA224::InitState(HashWordType *state) { static const word32 s[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4}; memcpy(state, s, sizeof(s)); } void SHA256::InitState(HashWordType *state) { static const word32 s[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; memcpy(state, s, sizeof(s)); } #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE CRYPTOPP_ALIGN_DATA(16) extern const word32 SHA256_K[64] CRYPTOPP_SECTION_ALIGN16 = { #else extern const word32 SHA256_K[64] = { #endif 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)) static void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len) { #define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ #define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4] #define G(i) H(i+1) #define F(i) H(i+2) #define E(i) H(i+3) #define D(i) H(i+4) #define C(i) H(i+5) #define B(i) H(i+6) #define A(i) H(i+7) #define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4 #define Wt_2(i) Wt((i)-2) #define Wt_15(i) Wt((i)-15) #define Wt_7(i) Wt((i)-7) #define K_END [BASE+8*4+16*4+0*WORD_SZ] #define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ] #define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ] #define DATA_END [BASE+8*4+16*4+3*WORD_SZ] #define Kt(i) WORD_REG(si)+(i)*4 #if CRYPTOPP_BOOL_X32 #define BASE esp+8 #elif CRYPTOPP_BOOL_X86 #define BASE esp+4 #elif defined(__GNUC__) #define BASE r8 #else #define BASE rsp #endif #define RA0(i, edx, edi) \ AS2( add edx, [Kt(i)] )\ AS2( add edx, [Wt(i)] )\ AS2( add edx, H(i) )\ #define RA1(i, edx, edi) #define RB0(i, edx, edi) #define RB1(i, edx, edi) \ AS2( mov AS_REG_7d, [Wt_2(i)] )\ AS2( mov edi, [Wt_15(i)])\ AS2( mov ebx, AS_REG_7d )\ AS2( shr AS_REG_7d, 10 )\ AS2( ror ebx, 17 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\ AS2( add ebx, [Wt_7(i)])\ AS2( mov AS_REG_7d, edi )\ AS2( shr AS_REG_7d, 3 )\ AS2( ror edi, 7 )\ AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\ AS2( xor AS_REG_7d, edi )\ AS2( add edx, [Kt(i)])\ AS2( ror edi, 11 )\ AS2( add edx, H(i) )\ AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\ AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\ AS2( mov [Wt(i)], AS_REG_7d)\ AS2( add edx, AS_REG_7d )\ #define ROUND(i, r, eax, ecx, edi, edx)\ /* in: edi = E */\ /* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\ AS2( mov edx, F(i) )\ AS2( xor edx, G(i) )\ AS2( and edx, edi )\ AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\ AS2( mov AS_REG_7d, edi )\ AS2( ror edi, 6 )\ AS2( ror AS_REG_7d, 25 )\ RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ AS2( xor AS_REG_7d, edi )\ AS2( ror edi, 5 )\ AS2( xor AS_REG_7d, edi )/* S1(E) */\ AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\ RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ /* in: ecx = A, eax = B^C, edx = T1 */\ /* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\ AS2( mov ebx, ecx )\ AS2( xor ecx, B(i) )/* A^B */\ AS2( and eax, ecx )\ AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\ AS2( mov AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( add eax, edx )/* T1 + Maj(A,B,C) */\ AS2( add edx, D(i) )\ AS2( mov D(i), edx )\ AS2( ror AS_REG_7d, 22 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 11 )\ AS2( xor AS_REG_7d, ebx )\ AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\ AS2( mov H(i), eax )\ // Unroll the use of CRYPTOPP_BOOL_X64 in assembler math. The GAS assembler on X32 (version 2.25) // complains "Error: invalid operands (*ABS* and *UND* sections) for `*` and `-`" #if CRYPTOPP_BOOL_X64 #define SWAP_COPY(i) \ AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\ AS1( bswap WORD_REG(bx))\ AS2( mov [Wt(i*2+1)], WORD_REG(bx)) #else // X86 and X32 #define SWAP_COPY(i) \ AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\ AS1( bswap WORD_REG(bx))\ AS2( mov [Wt(i)], WORD_REG(bx)) #endif #if defined(__GNUC__) #if CRYPTOPP_BOOL_X64 FixedSizeAlignedSecBlock workspace; #endif __asm__ __volatile__ ( #if CRYPTOPP_BOOL_X64 "lea %4, %%r8;" #endif INTEL_NOPREFIX #elif defined(CRYPTOPP_GENERATE_X64_MASM) ALIGN 8 X86_SHA256_HashBlocks PROC FRAME rex_push_reg rsi push_reg rdi push_reg rbx push_reg rbp alloc_stack(LOCALS_SIZE+8) .endprolog mov rdi, r8 lea rsi, [?SHA256_K@CryptoPP@@3QBIB + 48*4] #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 #ifndef __GNUC__ AS2( mov edi, [len]) AS2( lea WORD_REG(si), [SHA256_K+48*4]) #endif #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_PUSH_IF86(bx) #endif AS_PUSH_IF86(bp) AS2( mov ebx, esp) AS2( and esp, -16) AS2( sub WORD_REG(sp), LOCALS_SIZE) AS_PUSH_IF86(bx) #endif AS2( mov STATE_SAVE, WORD_REG(cx)) AS2( mov DATA_SAVE, WORD_REG(dx)) AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)]) AS2( mov DATA_END, WORD_REG(ax)) AS2( mov K_END, WORD_REG(si)) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 AS2( test edi, 1) ASJ( jnz, 2, f) AS1( dec DWORD PTR K_END) #endif AS2( movdqa xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16]) AS2( movdqa xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16]) #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASJ( jmp, 0, f) #endif ASL(2) // non-SSE2 AS2( mov esi, ecx) AS2( lea edi, A(0)) AS2( mov ecx, 8) ATT_NOPREFIX AS1( rep movsd) INTEL_NOPREFIX AS2( mov esi, K_END) ASJ( jmp, 3, f) #endif #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASL(0) AS2( movdqa E(0), xmm1) AS2( movdqa A(0), xmm0) #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 ASL(3) #endif AS2( sub WORD_REG(si), 48*4) SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3) SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7) #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11) SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15) #endif AS2( mov edi, E(0)) // E AS2( mov eax, B(0)) // B AS2( xor eax, C(0)) // B^C AS2( mov ecx, A(0)) // A ROUND(0, 0, eax, ecx, edi, edx) ROUND(1, 0, ecx, eax, edx, edi) ROUND(2, 0, eax, ecx, edi, edx) ROUND(3, 0, ecx, eax, edx, edi) ROUND(4, 0, eax, ecx, edi, edx) ROUND(5, 0, ecx, eax, edx, edi) ROUND(6, 0, eax, ecx, edi, edx) ROUND(7, 0, ecx, eax, edx, edi) ROUND(8, 0, eax, ecx, edi, edx) ROUND(9, 0, ecx, eax, edx, edi) ROUND(10, 0, eax, ecx, edi, edx) ROUND(11, 0, ecx, eax, edx, edi) ROUND(12, 0, eax, ecx, edi, edx) ROUND(13, 0, ecx, eax, edx, edi) ROUND(14, 0, eax, ecx, edi, edx) ROUND(15, 0, ecx, eax, edx, edi) ASL(1) AS2(add WORD_REG(si), 4*16) ROUND(0, 1, eax, ecx, edi, edx) ROUND(1, 1, ecx, eax, edx, edi) ROUND(2, 1, eax, ecx, edi, edx) ROUND(3, 1, ecx, eax, edx, edi) ROUND(4, 1, eax, ecx, edi, edx) ROUND(5, 1, ecx, eax, edx, edi) ROUND(6, 1, eax, ecx, edi, edx) ROUND(7, 1, ecx, eax, edx, edi) ROUND(8, 1, eax, ecx, edi, edx) ROUND(9, 1, ecx, eax, edx, edi) ROUND(10, 1, eax, ecx, edi, edx) ROUND(11, 1, ecx, eax, edx, edi) ROUND(12, 1, eax, ecx, edi, edx) ROUND(13, 1, ecx, eax, edx, edi) ROUND(14, 1, eax, ecx, edi, edx) ROUND(15, 1, ecx, eax, edx, edi) AS2( cmp WORD_REG(si), K_END) ATT_NOPREFIX ASJ( jb, 1, b) INTEL_NOPREFIX AS2( mov WORD_REG(dx), DATA_SAVE) AS2( add WORD_REG(dx), 64) AS2( mov AS_REG_7, STATE_SAVE) AS2( mov DATA_SAVE, WORD_REG(dx)) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 AS2( test DWORD PTR K_END, 1) ASJ( jz, 4, f) #endif AS2( movdqa xmm1, XMMWORD_PTR [AS_REG_7+1*16]) AS2( movdqa xmm0, XMMWORD_PTR [AS_REG_7+0*16]) AS2( paddd xmm1, E(0)) AS2( paddd xmm0, A(0)) AS2( movdqa [AS_REG_7+1*16], xmm1) AS2( movdqa [AS_REG_7+0*16], xmm0) AS2( cmp WORD_REG(dx), DATA_END) ATT_NOPREFIX ASJ( jb, 0, b) INTEL_NOPREFIX #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASJ( jmp, 5, f) ASL(4) // non-SSE2 #endif AS2( add [AS_REG_7+0*4], ecx) // A AS2( add [AS_REG_7+4*4], edi) // E AS2( mov eax, B(0)) AS2( mov ebx, C(0)) AS2( mov ecx, D(0)) AS2( add [AS_REG_7+1*4], eax) AS2( add [AS_REG_7+2*4], ebx) AS2( add [AS_REG_7+3*4], ecx) AS2( mov eax, F(0)) AS2( mov ebx, G(0)) AS2( mov ecx, H(0)) AS2( add [AS_REG_7+5*4], eax) AS2( add [AS_REG_7+6*4], ebx) AS2( add [AS_REG_7+7*4], ecx) AS2( mov ecx, AS_REG_7d) AS2( cmp WORD_REG(dx), DATA_END) ASJ( jb, 2, b) #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE ASL(5) #endif #endif AS_POP_IF86(sp) AS_POP_IF86(bp) #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_POP_IF86(bx) #endif #ifdef CRYPTOPP_GENERATE_X64_MASM add rsp, LOCALS_SIZE+8 pop rbp pop rbx pop rdi pop rsi ret X86_SHA256_HashBlocks ENDP #endif #ifdef __GNUC__ ATT_PREFIX : : "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len) #if CRYPTOPP_BOOL_X64 , "m" (workspace[0]) #endif : "memory", "cc", "%eax" #if CRYPTOPP_BOOL_X64 , "%rbx", "%r8", "%r10" #endif ); #endif } #endif // (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_GENERATE_X64_MASM)) #ifndef CRYPTOPP_GENERATE_X64_MASM #ifdef CRYPTOPP_X64_MASM_AVAILABLE extern "C" { void CRYPTOPP_FASTCALL X86_SHA256_HashBlocks(word32 *state, const word32 *data, size_t len); } #endif #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE static void CRYPTOPP_FASTCALL SHA256_SSE_SHA_HashBlocks(word32 *state, const word32 *data, size_t length); #endif #if (defined(CRYPTOPP_X86_ASM_AVAILABLE) || defined(CRYPTOPP_X32_ASM_AVAILABLE) || defined(CRYPTOPP_X64_MASM_AVAILABLE)) && !defined(CRYPTOPP_DISABLE_SHA_ASM) pfnSHAHashBlocks InitializeSHA256HashBlocks() { #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE if (HasSHA()) return &SHA256_SSE_SHA_HashBlocks; else #endif return &X86_SHA256_HashBlocks; } size_t SHA256::HashMultipleBlocks(const word32 *input, size_t length) { static const pfnSHAHashBlocks s_pfn = InitializeSHA256HashBlocks(); s_pfn(m_state, input, (length&(size_t(0)-BLOCKSIZE)) - !HasSSE2()); return length % BLOCKSIZE; } size_t SHA224::HashMultipleBlocks(const word32 *input, size_t length) { static const pfnSHAHashBlocks s_pfn = InitializeSHA256HashBlocks(); s_pfn(m_state, input, (length&(size_t(0)-BLOCKSIZE)) - !HasSSE2()); return length % BLOCKSIZE; } #endif #define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15])) #define Ch(x,y,z) (z^(x&(y^z))) #define Maj(x,y,z) (y^((x^y)&(y^z))) #define a(i) T[(0-i)&7] #define b(i) T[(1-i)&7] #define c(i) T[(2-i)&7] #define d(i) T[(3-i)&7] #define e(i) T[(4-i)&7] #define f(i) T[(5-i)&7] #define g(i) T[(6-i)&7] #define h(i) T[(7-i)&7] #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\ d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)) // for SHA256 #define S0(x) (rotrFixed(x,2)^rotrFixed(x,13)^rotrFixed(x,22)) #define S1(x) (rotrFixed(x,6)^rotrFixed(x,11)^rotrFixed(x,25)) #define s0(x) (rotrFixed(x,7)^rotrFixed(x,18)^(x>>3)) #define s1(x) (rotrFixed(x,17)^rotrFixed(x,19)^(x>>10)) #if defined(__OPTIMIZE_SIZE__) // Smaller but slower void SHA256_CXX_Transform(word32 *state, const word32 *data) { word32 W[32], T[20]; unsigned int i = 0, j = 0; word32 *t = T+8; memcpy(t, state, 8*4); word32 e = t[4], a = t[0]; do { word32 w = data[j]; W[j] = w; w += SHA256_K[j]; w += t[7]; w += S1(e); w += Ch(e, t[5], t[6]); e = t[3] + w; t[3] = t[3+8] = e; w += S0(t[0]); a = w + Maj(a, t[1], t[2]); t[-1] = t[7] = a; --t; ++j; if (j%8 == 0) t += 8; } while (j<16); do { i = j&0xf; word32 w = s1(W[i+16-2]) + s0(W[i+16-15]) + W[i] + W[i+16-7]; W[i+16] = W[i] = w; w += SHA256_K[j]; w += t[7]; w += S1(e); w += Ch(e, t[5], t[6]); e = t[3] + w; t[3] = t[3+8] = e; w += S0(t[0]); a = w + Maj(a, t[1], t[2]); t[-1] = t[7] = a; w = s1(W[(i+1)+16-2]) + s0(W[(i+1)+16-15]) + W[(i+1)] + W[(i+1)+16-7]; W[(i+1)+16] = W[(i+1)] = w; w += SHA256_K[j+1]; w += (t-1)[7]; w += S1(e); w += Ch(e, (t-1)[5], (t-1)[6]); e = (t-1)[3] + w; (t-1)[3] = (t-1)[3+8] = e; w += S0((t-1)[0]); a = w + Maj(a, (t-1)[1], (t-1)[2]); (t-1)[-1] = (t-1)[7] = a; t-=2; j+=2; if (j%8 == 0) t += 8; } while (j<64); state[0] += a; state[1] += t[1]; state[2] += t[2]; state[3] += t[3]; state[4] += e; state[5] += t[5]; state[6] += t[6]; state[7] += t[7]; } #else // Bigger but faster void SHA256_CXX_Transform(word32 *state, const word32 *data) { word32 W[16], T[8]; /* Copy context->state[] to working vars */ memcpy(T, state, sizeof(T)); /* 64 operations, partially loop unrolled */ for (unsigned int j=0; j<64; j+=16) { R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); } /* Add the working vars back into context.state[] */ state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } #endif // __OPTIMIZE_SIZE__ #undef S0 #undef S1 #undef s0 #undef s1 #undef R #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE static void SHA256_SSE2_Transform(word32 *state, const word32 *data) { // this byte reverse is a waste of time, but this function is only called by MDC word32 W[16]; ByteReverse(W, data, SHA256::BLOCKSIZE); X86_SHA256_HashBlocks(state, W, SHA256::BLOCKSIZE - !HasSSE2()); } #endif // CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE static void SHA256_SSE_SHA_Transform(word32 *state, const word32 *data) { return SHA256_SSE_SHA_HashBlocks(state, data, SHA256::BLOCKSIZE); } #endif // CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE /////////////////////////////////// // start of Walton/Gulley's code // /////////////////////////////////// #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE // Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley. static void CRYPTOPP_FASTCALL SHA256_SSE_SHA_HashBlocks(word32 *state, const word32 *data, size_t length) { CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data); CRYPTOPP_ASSERT(length % SHA256::BLOCKSIZE == 0); __m128i STATE0, STATE1; __m128i MSG, TMP, MASK; __m128i TMSG0, TMSG1, TMSG2, TMSG3; __m128i ABEF_SAVE, CDGH_SAVE; // Load initial values TMP = _mm_loadu_si128((__m128i*) &state[0]); STATE1 = _mm_loadu_si128((__m128i*) &state[4]); MASK = _mm_set_epi64x(W64LIT(0x0c0d0e0f08090a0b), W64LIT(0x0405060700010203)); TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH while (length) { // Save current hash ABEF_SAVE = STATE0; CDGH_SAVE = STATE1; // Rounds 0-3 MSG = _mm_loadu_si128((__m128i*) data+0); TMSG0 = _mm_shuffle_epi8(MSG, MASK); MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0xE9B5DBA5B5C0FBCF), W64LIT(0x71374491428A2F98))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); // Rounds 4-7 TMSG1 = _mm_loadu_si128((__m128i*) (data+4)); TMSG1 = _mm_shuffle_epi8(TMSG1, MASK); MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0xAB1C5ED5923F82A4), W64LIT(0x59F111F13956C25B))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1); // Rounds 8-11 TMSG2 = _mm_loadu_si128((__m128i*) (data+8)); TMSG2 = _mm_shuffle_epi8(TMSG2, MASK); MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0x550C7DC3243185BE), W64LIT(0x12835B01D807AA98))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2); // Rounds 12-15 TMSG3 = _mm_loadu_si128((__m128i*) (data+12)); TMSG3 = _mm_shuffle_epi8(TMSG3, MASK); MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0xC19BF1749BDC06A7), W64LIT(0x80DEB1FE72BE5D74))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4); TMSG0 = _mm_add_epi32(TMSG0, TMP); TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3); // Rounds 16-19 MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0x240CA1CC0FC19DC6), W64LIT(0xEFBE4786E49B69C1))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4); TMSG1 = _mm_add_epi32(TMSG1, TMP); TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0); // Rounds 20-23 MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0x76F988DA5CB0A9DC), W64LIT(0x4A7484AA2DE92C6F))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4); TMSG2 = _mm_add_epi32(TMSG2, TMP); TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1); // Rounds 24-27 MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0xBF597FC7B00327C8), W64LIT(0xA831C66D983E5152))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4); TMSG3 = _mm_add_epi32(TMSG3, TMP); TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2); // Rounds 28-31 MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0x1429296706CA6351), W64LIT(0xD5A79147C6E00BF3))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4); TMSG0 = _mm_add_epi32(TMSG0, TMP); TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3); // Rounds 32-35 MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0x53380D134D2C6DFC), W64LIT(0x2E1B213827B70A85))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4); TMSG1 = _mm_add_epi32(TMSG1, TMP); TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0); // Rounds 36-39 MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0x92722C8581C2C92E), W64LIT(0x766A0ABB650A7354))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4); TMSG2 = _mm_add_epi32(TMSG2, TMP); TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1); // Rounds 40-43 MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0xC76C51A3C24B8B70), W64LIT(0xA81A664BA2BFE8A1))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4); TMSG3 = _mm_add_epi32(TMSG3, TMP); TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2); // Rounds 44-47 MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0x106AA070F40E3585), W64LIT(0xD6990624D192E819))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4); TMSG0 = _mm_add_epi32(TMSG0, TMP); TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3); // Rounds 48-51 MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0x34B0BCB52748774C), W64LIT(0x1E376C0819A4C116))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4); TMSG1 = _mm_add_epi32(TMSG1, TMP); TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0); // Rounds 52-55 MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0x682E6FF35B9CCA4F), W64LIT(0x4ED8AA4A391C0CB3))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4); TMSG2 = _mm_add_epi32(TMSG2, TMP); TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); // Rounds 56-59 MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0x8CC7020884C87814), W64LIT(0x78A5636F748F82EE))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4); TMSG3 = _mm_add_epi32(TMSG3, TMP); TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); // Rounds 60-63 MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0xC67178F2BEF9A3F7), W64LIT(0xA4506CEB90BEFFFA))); STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG); MSG = _mm_shuffle_epi32(MSG, 0x0E); STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG); // Add values back to state STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE); STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE); data += 16; length -= SHA256::BLOCKSIZE; } TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF // Save state _mm_storeu_si128((__m128i*) &state[0], STATE0); _mm_storeu_si128((__m128i*) &state[4], STATE1); } #endif // CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE ///////////////////////////////// // end of Walton/Gulley's code // ///////////////////////////////// pfnSHATransform InitializeSHA256Transform() { #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE if (HasSHA()) return &SHA256_SSE_SHA_Transform; else #endif #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE if (HasSSE2()) return &SHA256_SSE2_Transform; else #endif return &SHA256_CXX_Transform; } void SHA256::Transform(word32 *state, const word32 *data) { static const pfnSHATransform s_pfn = InitializeSHA256Transform(); s_pfn(state, data); } // ************************************************************* void SHA384::InitState(HashWordType *state) { static const word64 s[8] = { W64LIT(0xcbbb9d5dc1059ed8), W64LIT(0x629a292a367cd507), W64LIT(0x9159015a3070dd17), W64LIT(0x152fecd8f70e5939), W64LIT(0x67332667ffc00b31), W64LIT(0x8eb44a8768581511), W64LIT(0xdb0c2e0d64f98fa7), W64LIT(0x47b5481dbefa4fa4)}; memcpy(state, s, sizeof(s)); } void SHA512::InitState(HashWordType *state) { static const word64 s[8] = { W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b), W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1), W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f), W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)}; memcpy(state, s, sizeof(s)); } #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = { #else CRYPTOPP_ALIGN_DATA(16) static const word64 SHA512_K[80] CRYPTOPP_SECTION_ALIGN16 = { #endif W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd), W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc), W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019), W64LIT(0x923f82a4af194f9b), W64LIT(0xab1c5ed5da6d8118), W64LIT(0xd807aa98a3030242), W64LIT(0x12835b0145706fbe), W64LIT(0x243185be4ee4b28c), W64LIT(0x550c7dc3d5ffb4e2), W64LIT(0x72be5d74f27b896f), W64LIT(0x80deb1fe3b1696b1), W64LIT(0x9bdc06a725c71235), W64LIT(0xc19bf174cf692694), W64LIT(0xe49b69c19ef14ad2), W64LIT(0xefbe4786384f25e3), W64LIT(0x0fc19dc68b8cd5b5), W64LIT(0x240ca1cc77ac9c65), W64LIT(0x2de92c6f592b0275), W64LIT(0x4a7484aa6ea6e483), W64LIT(0x5cb0a9dcbd41fbd4), W64LIT(0x76f988da831153b5), W64LIT(0x983e5152ee66dfab), W64LIT(0xa831c66d2db43210), W64LIT(0xb00327c898fb213f), W64LIT(0xbf597fc7beef0ee4), W64LIT(0xc6e00bf33da88fc2), W64LIT(0xd5a79147930aa725), W64LIT(0x06ca6351e003826f), W64LIT(0x142929670a0e6e70), W64LIT(0x27b70a8546d22ffc), W64LIT(0x2e1b21385c26c926), W64LIT(0x4d2c6dfc5ac42aed), W64LIT(0x53380d139d95b3df), W64LIT(0x650a73548baf63de), W64LIT(0x766a0abb3c77b2a8), W64LIT(0x81c2c92e47edaee6), W64LIT(0x92722c851482353b), W64LIT(0xa2bfe8a14cf10364), W64LIT(0xa81a664bbc423001), W64LIT(0xc24b8b70d0f89791), W64LIT(0xc76c51a30654be30), W64LIT(0xd192e819d6ef5218), W64LIT(0xd69906245565a910), W64LIT(0xf40e35855771202a), W64LIT(0x106aa07032bbd1b8), W64LIT(0x19a4c116b8d2d0c8), W64LIT(0x1e376c085141ab53), W64LIT(0x2748774cdf8eeb99), W64LIT(0x34b0bcb5e19b48a8), W64LIT(0x391c0cb3c5c95a63), W64LIT(0x4ed8aa4ae3418acb), W64LIT(0x5b9cca4f7763e373), W64LIT(0x682e6ff3d6b2b8a3), W64LIT(0x748f82ee5defb2fc), W64LIT(0x78a5636f43172f60), W64LIT(0x84c87814a1f0ab72), W64LIT(0x8cc702081a6439ec), W64LIT(0x90befffa23631e28), W64LIT(0xa4506cebde82bde9), W64LIT(0xbef9a3f7b2c67915), W64LIT(0xc67178f2e372532b), W64LIT(0xca273eceea26619c), W64LIT(0xd186b8c721c0c207), W64LIT(0xeada7dd6cde0eb1e), W64LIT(0xf57d4f7fee6ed178), W64LIT(0x06f067aa72176fba), W64LIT(0x0a637dc5a2c898a6), W64LIT(0x113f9804bef90dae), W64LIT(0x1b710b35131c471b), W64LIT(0x28db77f523047d84), W64LIT(0x32caab7b40c72493), W64LIT(0x3c9ebe0a15c9bebc), W64LIT(0x431d67c49c100d4c), W64LIT(0x4cc5d4becb3e42b6), W64LIT(0x597f299cfc657e2a), W64LIT(0x5fcb6fab3ad6faec), W64LIT(0x6c44198c4a475817) }; #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) // put assembly version in separate function, otherwise MSVC 2005 SP1 doesn't generate correct code for the non-assembly version CRYPTOPP_NAKED static void CRYPTOPP_FASTCALL SHA512_SSE2_Transform(word64 *state, const word64 *data) { #ifdef __GNUC__ __asm__ __volatile__ ( INTEL_NOPREFIX AS_PUSH_IF86( bx) AS2( mov ebx, eax) #else AS1( push ebx) AS1( push esi) AS1( push edi) AS2( lea ebx, SHA512_K) #endif AS2( mov eax, esp) AS2( and esp, 0xfffffff0) AS2( sub esp, 27*16) // 17*16 for expanded data, 20*8 for state AS_PUSH_IF86( ax) AS2( xor eax, eax) #if CRYPTOPP_BOOL_X32 AS2( lea edi, [esp+8+8*8]) // start at middle of state buffer. will decrement pointer each round to avoid copying AS2( lea esi, [esp+8+20*8+8]) // 16-byte alignment, then add 8 #else AS2( lea edi, [esp+4+8*8]) // start at middle of state buffer. will decrement pointer each round to avoid copying AS2( lea esi, [esp+4+20*8+8]) // 16-byte alignment, then add 8 #endif AS2( movdqa xmm0, [ecx+0*16]) AS2( movdq2q mm4, xmm0) AS2( movdqa [edi+0*16], xmm0) AS2( movdqa xmm0, [ecx+1*16]) AS2( movdqa [edi+1*16], xmm0) AS2( movdqa xmm0, [ecx+2*16]) AS2( movdq2q mm5, xmm0) AS2( movdqa [edi+2*16], xmm0) AS2( movdqa xmm0, [ecx+3*16]) AS2( movdqa [edi+3*16], xmm0) ASJ( jmp, 0, f) #define SSE2_S0_S1(r, a, b, c) \ AS2( movq mm6, r)\ AS2( psrlq r, a)\ AS2( movq mm7, r)\ AS2( psllq mm6, 64-c)\ AS2( pxor mm7, mm6)\ AS2( psrlq r, b-a)\ AS2( pxor mm7, r)\ AS2( psllq mm6, c-b)\ AS2( pxor mm7, mm6)\ AS2( psrlq r, c-b)\ AS2( pxor r, mm7)\ AS2( psllq mm6, b-a)\ AS2( pxor r, mm6) #define SSE2_s0(r, a, b, c) \ AS2( movdqa xmm6, r)\ AS2( psrlq r, a)\ AS2( movdqa xmm7, r)\ AS2( psllq xmm6, 64-c)\ AS2( pxor xmm7, xmm6)\ AS2( psrlq r, b-a)\ AS2( pxor xmm7, r)\ AS2( psrlq r, c-b)\ AS2( pxor r, xmm7)\ AS2( psllq xmm6, c-a)\ AS2( pxor r, xmm6) #define SSE2_s1(r, a, b, c) \ AS2( movdqa xmm6, r)\ AS2( psrlq r, a)\ AS2( movdqa xmm7, r)\ AS2( psllq xmm6, 64-c)\ AS2( pxor xmm7, xmm6)\ AS2( psrlq r, b-a)\ AS2( pxor xmm7, r)\ AS2( psllq xmm6, c-b)\ AS2( pxor xmm7, xmm6)\ AS2( psrlq r, c-b)\ AS2( pxor r, xmm7) ASL(SHA512_Round) // k + w is in mm0, a is in mm4, e is in mm5 AS2( paddq mm0, [edi+7*8]) // h AS2( movq mm2, [edi+5*8]) // f AS2( movq mm3, [edi+6*8]) // g AS2( pxor mm2, mm3) AS2( pand mm2, mm5) SSE2_S0_S1(mm5,14,18,41) AS2( pxor mm2, mm3) AS2( paddq mm0, mm2) // h += Ch(e,f,g) AS2( paddq mm5, mm0) // h += S1(e) AS2( movq mm2, [edi+1*8]) // b AS2( movq mm1, mm2) AS2( por mm2, mm4) AS2( pand mm2, [edi+2*8]) // c AS2( pand mm1, mm4) AS2( por mm1, mm2) AS2( paddq mm1, mm5) // temp = h + Maj(a,b,c) AS2( paddq mm5, [edi+3*8]) // e = d + h AS2( movq [edi+3*8], mm5) AS2( movq [edi+11*8], mm5) SSE2_S0_S1(mm4,28,34,39) // S0(a) AS2( paddq mm4, mm1) // a = temp + S0(a) AS2( movq [edi-8], mm4) AS2( movq [edi+7*8], mm4) AS1( ret) // first 16 rounds ASL(0) AS2( movq mm0, [edx+eax*8]) AS2( movq [esi+eax*8], mm0) AS2( movq [esi+eax*8+16*8], mm0) AS2( paddq mm0, [ebx+eax*8]) ASC( call, SHA512_Round) AS1( inc eax) AS2( sub edi, 8) AS2( test eax, 7) ASJ( jnz, 0, b) AS2( add edi, 8*8) AS2( cmp eax, 16) ASJ( jne, 0, b) // rest of the rounds AS2( movdqu xmm0, [esi+(16-2)*8]) ASL(1) // data expansion, W[i-2] already in xmm0 AS2( movdqu xmm3, [esi]) AS2( paddq xmm3, [esi+(16-7)*8]) AS2( movdqa xmm2, [esi+(16-15)*8]) SSE2_s1(xmm0, 6, 19, 61) AS2( paddq xmm0, xmm3) SSE2_s0(xmm2, 1, 7, 8) AS2( paddq xmm0, xmm2) AS2( movdq2q mm0, xmm0) AS2( movhlps xmm1, xmm0) AS2( paddq mm0, [ebx+eax*8]) AS2( movlps [esi], xmm0) AS2( movlps [esi+8], xmm1) AS2( movlps [esi+8*16], xmm0) AS2( movlps [esi+8*17], xmm1) // 2 rounds ASC( call, SHA512_Round) AS2( sub edi, 8) AS2( movdq2q mm0, xmm1) AS2( paddq mm0, [ebx+eax*8+8]) ASC( call, SHA512_Round) // update indices and loop AS2( add esi, 16) AS2( add eax, 2) AS2( sub edi, 8) AS2( test eax, 7) ASJ( jnz, 1, b) // do housekeeping every 8 rounds AS2( mov esi, 0xf) AS2( and esi, eax) #if CRYPTOPP_BOOL_X32 AS2( lea esi, [esp+8+20*8+8+esi*8]) #else AS2( lea esi, [esp+4+20*8+8+esi*8]) #endif AS2( add edi, 8*8) AS2( cmp eax, 80) ASJ( jne, 1, b) #define SSE2_CombineState(i) \ AS2( movdqa xmm0, [edi+i*16])\ AS2( paddq xmm0, [ecx+i*16])\ AS2( movdqa [ecx+i*16], xmm0) SSE2_CombineState(0) SSE2_CombineState(1) SSE2_CombineState(2) SSE2_CombineState(3) AS_POP_IF86( sp) AS1( emms) #if defined(__GNUC__) AS_POP_IF86( bx) ATT_PREFIX : : "a" (SHA512_K), "c" (state), "d" (data) : "%esi", "%edi", "memory", "cc" ); #else AS1( pop edi) AS1( pop esi) AS1( pop ebx) AS1( ret) #endif } #endif // #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE void SHA512::Transform(word64 *state, const word64 *data) { CRYPTOPP_ASSERT(IsAlignedOn(state, GetAlignmentOf())); CRYPTOPP_ASSERT(IsAlignedOn(data, GetAlignmentOf())); #if CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32) if (HasSSE2()) { SHA512_SSE2_Transform(state, data); return; } #endif #define S0(x) (rotrFixed(x,28)^rotrFixed(x,34)^rotrFixed(x,39)) #define S1(x) (rotrFixed(x,14)^rotrFixed(x,18)^rotrFixed(x,41)) #define s0(x) (rotrFixed(x,1)^rotrFixed(x,8)^(x>>7)) #define s1(x) (rotrFixed(x,19)^rotrFixed(x,61)^(x>>6)) #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+(j?blk2(i):blk0(i));\ d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)) word64 W[16]; word64 T[8]; /* Copy context->state[] to working vars */ memcpy(T, state, sizeof(T)); /* 80 operations, partially loop unrolled */ for (unsigned int j=0; j<80; j+=16) { R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); } /* Add the working vars back into context.state[] */ state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } NAMESPACE_END #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #endif // #ifndef CRYPTOPP_IMPORTS