// sha.cpp - modified by Wei Dai from Steve Reid's public domain sha1.c // Steve Reid implemented SHA-1. Wei Dai implemented SHA-2. Jeffrey // Walton implemented Intel SHA extensions based on Intel articles and code // by Sean Gulley. Jeffrey Walton implemented ARM SHA-1 and SHA-256 based // on ARM code and code from Johannes Schneiders, Skip Hovsmith and // Barry O'Rourke. Jeffrey Walton and Bill Schmidt implemented Power8 // SHA-256 and SHA-512. All code is in the public domain. // In August 2017 JW reworked the internals to align all the // implementations. Formerly all hashes were software based, IterHashBase // handled endian conversions, and IterHashBase dispatched a single to // block SHA{N}::Transform. SHA{N}::Transform then performed the single // block hashing. It was repeated for multiple blocks. // // The rework added SHA{N}::HashMultipleBlocks (class) and // SHA{N}_HashMultipleBlocks (free standing). There are also hardware // accelerated variations. Callers enter SHA{N}::HashMultipleBlocks (class) // and the function calls SHA{N}_HashMultipleBlocks (free standing) or // SHA{N}_HashBlock (free standing) as a fallback. // // An added wrinkle is hardware is little endian, C++ is big endian, and // callers use big endian, so SHA{N}_HashMultipleBlock accepts a ByteOrder // for the incoming data arrangement. Hardware based SHA{N}_HashMultipleBlock // can often perform the endian swap much easier by setting an EPI mask. // Endian swap incurs no penalty on Intel SHA, and 4-instruction penalty on // ARM SHA. Under C++ the full software based swap penalty is incurred due // to use of ReverseBytes(). // // In May 2019 JW added Cryptogams ARMv7 and NEON implementations for SHA1, // SHA256 and SHA512. The Cryptogams code closed a performance gap on modern // 32-bit ARM devices. Cryptogams is Andy Polyakov's project used to create // high speed crypto algorithms and share them with other developers. Andy's // code runs 30% to 50% faster than C/C++ code. The Cryptogams code can be // disabled in config_asm.h. An example of integrating Andy's code is at // https://wiki.openssl.org/index.php/Cryptogams_SHA. // use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM sha.cpp" to generate MASM code #include "pch.h" #include "config.h" #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4100 4731) #endif #ifndef CRYPTOPP_IMPORTS #ifndef CRYPTOPP_GENERATE_X64_MASM #include "secblock.h" #include "sha.h" #include "misc.h" #include "cpu.h" #if defined(CRYPTOPP_DISABLE_SHA_ASM) # undef CRYPTOPP_X86_ASM_AVAILABLE # undef CRYPTOPP_X32_ASM_AVAILABLE # undef CRYPTOPP_X64_ASM_AVAILABLE # undef CRYPTOPP_SSE2_ASM_AVAILABLE #endif NAMESPACE_BEGIN(CryptoPP) #if CRYPTOPP_SHANI_AVAILABLE extern void SHA1_HashMultipleBlocks_SHANI(word32 *state, const word32 *data, size_t length, ByteOrder order); extern void SHA256_HashMultipleBlocks_SHANI(word32 *state, const word32 *data, size_t length, ByteOrder order); #endif #if CRYPTOGAMS_ARM_SHA1 extern "C" void cryptogams_sha1_block_data_order(word32* state, const word32 *data, size_t blocks); extern "C" void cryptogams_sha1_block_data_order_neon(word32* state, const word32 *data, size_t blocks); #endif #if CRYPTOPP_ARM_SHA1_AVAILABLE extern void SHA1_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order); #endif #if CRYPTOPP_ARM_SHA2_AVAILABLE extern void SHA256_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order); #endif #if CRYPTOGAMS_ARM_SHA256 extern "C" void cryptogams_sha256_block_data_order(word32* state, const word32 *data, size_t blocks); extern "C" void cryptogams_sha256_block_data_order_neon(word32* state, const word32 *data, size_t blocks); #endif #if CRYPTOPP_ARM_SHA512_AVAILABLE extern void SHA512_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order); #endif #if CRYPTOPP_POWER8_SHA_AVAILABLE extern void SHA256_HashMultipleBlocks_POWER8(word32 *state, const word32 *data, size_t length, ByteOrder order); extern void SHA512_HashMultipleBlocks_POWER8(word64 *state, const word64 *data, size_t length, ByteOrder order); #endif #if CRYPTOGAMS_ARM_SHA512 extern "C" void cryptogams_sha512_block_data_order(word64* state, const word64 *data, size_t blocks); extern "C" void cryptogams_sha512_block_data_order_neon(word64* state, const word64 *data, size_t blocks); #endif // We add extern to export table to sha_simd.cpp, but it // cleared http://github.com/weidai11/cryptopp/issues/502 extern const word32 SHA256_K[64]; extern const word64 SHA512_K[80]; CRYPTOPP_ALIGN_DATA(16) const word64 SHA512_K[80] = { W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd), W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc), W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019), W64LIT(0x923f82a4af194f9b), W64LIT(0xab1c5ed5da6d8118), W64LIT(0xd807aa98a3030242), W64LIT(0x12835b0145706fbe), W64LIT(0x243185be4ee4b28c), W64LIT(0x550c7dc3d5ffb4e2), W64LIT(0x72be5d74f27b896f), W64LIT(0x80deb1fe3b1696b1), W64LIT(0x9bdc06a725c71235), W64LIT(0xc19bf174cf692694), W64LIT(0xe49b69c19ef14ad2), W64LIT(0xefbe4786384f25e3), W64LIT(0x0fc19dc68b8cd5b5), W64LIT(0x240ca1cc77ac9c65), W64LIT(0x2de92c6f592b0275), W64LIT(0x4a7484aa6ea6e483), W64LIT(0x5cb0a9dcbd41fbd4), W64LIT(0x76f988da831153b5), W64LIT(0x983e5152ee66dfab), W64LIT(0xa831c66d2db43210), W64LIT(0xb00327c898fb213f), W64LIT(0xbf597fc7beef0ee4), W64LIT(0xc6e00bf33da88fc2), W64LIT(0xd5a79147930aa725), W64LIT(0x06ca6351e003826f), W64LIT(0x142929670a0e6e70), W64LIT(0x27b70a8546d22ffc), W64LIT(0x2e1b21385c26c926), W64LIT(0x4d2c6dfc5ac42aed), W64LIT(0x53380d139d95b3df), W64LIT(0x650a73548baf63de), W64LIT(0x766a0abb3c77b2a8), W64LIT(0x81c2c92e47edaee6), W64LIT(0x92722c851482353b), W64LIT(0xa2bfe8a14cf10364), W64LIT(0xa81a664bbc423001), W64LIT(0xc24b8b70d0f89791), W64LIT(0xc76c51a30654be30), W64LIT(0xd192e819d6ef5218), W64LIT(0xd69906245565a910), W64LIT(0xf40e35855771202a), W64LIT(0x106aa07032bbd1b8), W64LIT(0x19a4c116b8d2d0c8), W64LIT(0x1e376c085141ab53), W64LIT(0x2748774cdf8eeb99), W64LIT(0x34b0bcb5e19b48a8), W64LIT(0x391c0cb3c5c95a63), W64LIT(0x4ed8aa4ae3418acb), W64LIT(0x5b9cca4f7763e373), W64LIT(0x682e6ff3d6b2b8a3), W64LIT(0x748f82ee5defb2fc), W64LIT(0x78a5636f43172f60), W64LIT(0x84c87814a1f0ab72), W64LIT(0x8cc702081a6439ec), W64LIT(0x90befffa23631e28), W64LIT(0xa4506cebde82bde9), W64LIT(0xbef9a3f7b2c67915), W64LIT(0xc67178f2e372532b), W64LIT(0xca273eceea26619c), W64LIT(0xd186b8c721c0c207), W64LIT(0xeada7dd6cde0eb1e), W64LIT(0xf57d4f7fee6ed178), W64LIT(0x06f067aa72176fba), W64LIT(0x0a637dc5a2c898a6), W64LIT(0x113f9804bef90dae), W64LIT(0x1b710b35131c471b), W64LIT(0x28db77f523047d84), W64LIT(0x32caab7b40c72493), W64LIT(0x3c9ebe0a15c9bebc), W64LIT(0x431d67c49c100d4c), W64LIT(0x4cc5d4becb3e42b6), W64LIT(0x597f299cfc657e2a), W64LIT(0x5fcb6fab3ad6faec), W64LIT(0x6c44198c4a475817) }; CRYPTOPP_ALIGN_DATA(16) const word32 SHA256_K[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; //////////////////////////////// // start of Steve Reid's code // //////////////////////////////// ANONYMOUS_NAMESPACE_BEGIN #define blk0(i) (W[i] = data[i]) #define blk1(i) (W[i&15] = rotlConstant<1>(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15])) #define f1(x,y,z) (z^(x&(y^z))) #define f2(x,y,z) (x^y^z) #define f3(x,y,z) ((x&y)|(z&(x|y))) #define f4(x,y,z) (x^y^z) /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */ #define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rotlConstant<5>(v);w=rotlConstant<30>(w); #define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rotlConstant<5>(v);w=rotlConstant<30>(w); #define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rotlConstant<5>(v);w=rotlConstant<30>(w); #define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlConstant<5>(v);w=rotlConstant<30>(w); #define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlConstant<5>(v);w=rotlConstant<30>(w); void SHA1_HashBlock_CXX(word32 *state, const word32 *data) { CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data); word32 W[16]; /* Copy context->state[] to working vars */ word32 a = state[0]; word32 b = state[1]; word32 c = state[2]; word32 d = state[3]; word32 e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); /* Add the working vars back into context.state[] */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; } #undef blk0 #undef blk1 #undef f1 #undef f2 #undef f3 #undef f4 #undef R1 #undef R2 #undef R3 #undef R4 ANONYMOUS_NAMESPACE_END ////////////////////////////// // end of Steve Reid's code // ////////////////////////////// std::string SHA1::AlgorithmProvider() const { #if CRYPTOPP_SHANI_AVAILABLE if (HasSHA()) return "SHANI"; #endif #if CRYPTOPP_SSE2_ASM_AVAILABLE if (HasSSE2()) return "SSE2"; #endif #if CRYPTOGAMS_ARM_SHA1 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) return "NEON"; else # endif if (HasARMv7()) return "ARMv7"; #endif #if CRYPTOPP_ARM_SHA1_AVAILABLE if (HasSHA1()) return "ARMv8"; #endif return "C++"; } void SHA1::InitState(HashWordType *state) { state[0] = 0x67452301; state[1] = 0xEFCDAB89; state[2] = 0x98BADCFE; state[3] = 0x10325476; state[4] = 0xC3D2E1F0; } void SHA1::Transform(word32 *state, const word32 *data) { CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data); #if CRYPTOPP_SHANI_AVAILABLE if (HasSHA()) { SHA1_HashMultipleBlocks_SHANI(state, data, SHA1::BLOCKSIZE, LITTLE_ENDIAN_ORDER); return; } #endif // Disabled at the moment due to MDC and SEAL failures #if CRYPTOGAMS_ARM_SHA1 && 0 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) { # if defined(CRYPTOPP_LITTLE_ENDIAN) word32 dataBuf[16]; ByteReverse(dataBuf, data, SHA1::BLOCKSIZE); cryptogams_sha1_block_data_order_neon(state, dataBuf, 1); # else cryptogams_sha1_block_data_order_neon(state, data, 1); # endif return; } else # endif if (HasARMv7()) { # if defined(CRYPTOPP_LITTLE_ENDIAN) word32 dataBuf[16]; ByteReverse(dataBuf, data, SHA1::BLOCKSIZE); cryptogams_sha1_block_data_order(state, data, 1); # else cryptogams_sha1_block_data_order(state, data, 1); # endif return; } #endif #if CRYPTOPP_ARM_SHA1_AVAILABLE if (HasSHA1()) { SHA1_HashMultipleBlocks_ARMV8(state, data, SHA1::BLOCKSIZE, LITTLE_ENDIAN_ORDER); return; } #endif SHA1_HashBlock_CXX(state, data); } size_t SHA1::HashMultipleBlocks(const word32 *input, size_t length) { CRYPTOPP_ASSERT(input); CRYPTOPP_ASSERT(length >= SHA1::BLOCKSIZE); #if CRYPTOPP_SHANI_AVAILABLE if (HasSHA()) { SHA1_HashMultipleBlocks_SHANI(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA1::BLOCKSIZE - 1); } #endif #if CRYPTOGAMS_ARM_SHA1 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) { cryptogams_sha1_block_data_order_neon(m_state, input, length / SHA1::BLOCKSIZE); return length & (SHA1::BLOCKSIZE - 1); } else # endif if (HasARMv7()) { cryptogams_sha1_block_data_order(m_state, input, length / SHA1::BLOCKSIZE); return length & (SHA1::BLOCKSIZE - 1); } #endif #if CRYPTOPP_ARM_SHA1_AVAILABLE if (HasSHA1()) { SHA1_HashMultipleBlocks_ARMV8(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA1::BLOCKSIZE - 1); } #endif const bool noReverse = NativeByteOrderIs(this->GetByteOrder()); word32 *dataBuf = this->DataBuf(); do { if (noReverse) { SHA1_HashBlock_CXX(m_state, input); } else { ByteReverse(dataBuf, input, SHA1::BLOCKSIZE); SHA1_HashBlock_CXX(m_state, dataBuf); } input += SHA1::BLOCKSIZE/sizeof(word32); length -= SHA1::BLOCKSIZE; } while (length >= SHA1::BLOCKSIZE); return length; } // ************************************************************* ANONYMOUS_NAMESPACE_BEGIN #define a(i) T[(0-i)&7] #define b(i) T[(1-i)&7] #define c(i) T[(2-i)&7] #define d(i) T[(3-i)&7] #define e(i) T[(4-i)&7] #define f(i) T[(5-i)&7] #define g(i) T[(6-i)&7] #define h(i) T[(7-i)&7] #define blk0(i) (W[i] = data[i]) #define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15])) #define Ch(x,y,z) (z^(x&(y^z))) #define Maj(x,y,z) (y^((x^y)&(y^z))) #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\ d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)) // for SHA256 #define s0(x) (rotrConstant<7>(x)^rotrConstant<18>(x)^(x>>3)) #define s1(x) (rotrConstant<17>(x)^rotrConstant<19>(x)^(x>>10)) #define S0(x) (rotrConstant<2>(x)^rotrConstant<13>(x)^rotrConstant<22>(x)) #define S1(x) (rotrConstant<6>(x)^rotrConstant<11>(x)^rotrConstant<25>(x)) void SHA256_HashBlock_CXX(word32 *state, const word32 *data) { word32 W[16]={0}, T[8]; /* Copy context->state[] to working vars */ std::memcpy(T, state, sizeof(T)); /* 64 operations, partially loop unrolled */ for (unsigned int j=0; j<64; j+=16) { R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); } /* Add the working vars back into context.state[] */ state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } #undef Ch #undef Maj #undef s0 #undef s1 #undef S0 #undef S1 #undef blk0 #undef blk1 #undef blk2 #undef R #undef a #undef b #undef c #undef d #undef e #undef f #undef g #undef h ANONYMOUS_NAMESPACE_END std::string SHA256_AlgorithmProvider() { #if CRYPTOPP_SHANI_AVAILABLE if (HasSHA()) return "SHANI"; #endif #if CRYPTOPP_SSE2_ASM_AVAILABLE if (HasSSE2()) return "SSE2"; #endif #if CRYPTOGAMS_ARM_SHA256 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) return "NEON"; else # endif if (HasARMv7()) return "ARMv7"; #endif #if CRYPTOPP_ARM_SHA2_AVAILABLE if (HasSHA2()) return "ARMv8"; #endif #if (CRYPTOPP_POWER8_SHA_AVAILABLE) if (HasSHA256()) return "Power8"; #endif return "C++"; } std::string SHA224::AlgorithmProvider() const { return SHA256_AlgorithmProvider(); } void SHA224::InitState(HashWordType *state) { static const word32 s[8] = { 0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4}; std::memcpy(state, s, sizeof(s)); } void SHA256::InitState(HashWordType *state) { static const word32 s[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19}; std::memcpy(state, s, sizeof(s)); } #endif // Not CRYPTOPP_GENERATE_X64_MASM #if defined(CRYPTOPP_X86_ASM_AVAILABLE) ANONYMOUS_NAMESPACE_BEGIN void CRYPTOPP_FASTCALL SHA256_HashMultipleBlocks_SSE2(word32 *state, const word32 *data, size_t len) { #define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ #define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4] #define G(i) H(i+1) #define F(i) H(i+2) #define E(i) H(i+3) #define D(i) H(i+4) #define C(i) H(i+5) #define B(i) H(i+6) #define A(i) H(i+7) #define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4 #define Wt_2(i) Wt((i)-2) #define Wt_15(i) Wt((i)-15) #define Wt_7(i) Wt((i)-7) #define K_END [BASE+8*4+16*4+0*WORD_SZ] #define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ] #define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ] #define DATA_END [BASE+8*4+16*4+3*WORD_SZ] #define Kt(i) WORD_REG(si)+(i)*4 #if CRYPTOPP_BOOL_X86 #define BASE esp+4 #elif defined(__GNUC__) #define BASE r8 #else #define BASE rsp #endif #define RA0(i, edx, edi) \ AS2( add edx, [Kt(i)] )\ AS2( add edx, [Wt(i)] )\ AS2( add edx, H(i) )\ #define RA1(i, edx, edi) #define RB0(i, edx, edi) #define RB1(i, edx, edi) \ AS2( mov AS_REG_7d, [Wt_2(i)] )\ AS2( mov edi, [Wt_15(i)])\ AS2( mov ebx, AS_REG_7d )\ AS2( shr AS_REG_7d, 10 )\ AS2( ror ebx, 17 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\ AS2( add ebx, [Wt_7(i)])\ AS2( mov AS_REG_7d, edi )\ AS2( shr AS_REG_7d, 3 )\ AS2( ror edi, 7 )\ AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\ AS2( xor AS_REG_7d, edi )\ AS2( add edx, [Kt(i)])\ AS2( ror edi, 11 )\ AS2( add edx, H(i) )\ AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\ AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\ AS2( mov [Wt(i)], AS_REG_7d)\ AS2( add edx, AS_REG_7d )\ #define ROUND(i, r, eax, ecx, edi, edx)\ /* in: edi = E */\ /* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\ AS2( mov edx, F(i) )\ AS2( xor edx, G(i) )\ AS2( and edx, edi )\ AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\ AS2( mov AS_REG_7d, edi )\ AS2( ror edi, 6 )\ AS2( ror AS_REG_7d, 25 )\ RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ AS2( xor AS_REG_7d, edi )\ AS2( ror edi, 5 )\ AS2( xor AS_REG_7d, edi )/* S1(E) */\ AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\ RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\ /* in: ecx = A, eax = B^C, edx = T1 */\ /* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\ AS2( mov ebx, ecx )\ AS2( xor ecx, B(i) )/* A^B */\ AS2( and eax, ecx )\ AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\ AS2( mov AS_REG_7d, ebx )\ AS2( ror ebx, 2 )\ AS2( add eax, edx )/* T1 + Maj(A,B,C) */\ AS2( add edx, D(i) )\ AS2( mov D(i), edx )\ AS2( ror AS_REG_7d, 22 )\ AS2( xor AS_REG_7d, ebx )\ AS2( ror ebx, 11 )\ AS2( xor AS_REG_7d, ebx )\ AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\ AS2( mov H(i), eax )\ // Unroll the use of CRYPTOPP_BOOL_X64 in assembler math. The GAS assembler on X32 (version 2.25) // complains "Error: invalid operands (*ABS* and *UND* sections) for `*` and `-`" #if CRYPTOPP_BOOL_X64 #define SWAP_COPY(i) \ AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\ AS1( bswap WORD_REG(bx))\ AS2( mov [Wt(i*2+1)], WORD_REG(bx)) #else // X86 and X32 #define SWAP_COPY(i) \ AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\ AS1( bswap WORD_REG(bx))\ AS2( mov [Wt(i)], WORD_REG(bx)) #endif #if defined(__GNUC__) #if CRYPTOPP_BOOL_X64 FixedSizeAlignedSecBlock workspace; #endif __asm__ __volatile__ ( #if CRYPTOPP_BOOL_X64 "lea %4, %%r8;" #endif INTEL_NOPREFIX #elif defined(CRYPTOPP_GENERATE_X64_MASM) ALIGN 8 SHA256_HashMultipleBlocks_SSE2 PROC FRAME rex_push_reg rsi push_reg rdi push_reg rbx push_reg rbp alloc_stack(LOCALS_SIZE+8) .endprolog mov rdi, r8 lea rsi, [?SHA256_K@CryptoPP@@3QBIB + 48*4] #endif #if CRYPTOPP_BOOL_X86 #ifndef __GNUC__ AS2( mov edi, [len]) AS2( lea WORD_REG(si), [SHA256_K+48*4]) #endif #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_PUSH_IF86(bx) #endif AS_PUSH_IF86(bp) AS2( mov ebx, esp) AS2( and esp, -16) AS2( sub WORD_REG(sp), LOCALS_SIZE) AS_PUSH_IF86(bx) #endif AS2( mov STATE_SAVE, WORD_REG(cx)) AS2( mov DATA_SAVE, WORD_REG(dx)) AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)]) AS2( mov DATA_END, WORD_REG(ax)) AS2( mov K_END, WORD_REG(si)) #if CRYPTOPP_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 AS2( test edi, 1) ASJ( jnz, 2, f) AS1( dec DWORD PTR K_END) #endif AS2( movdqu xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16]) AS2( movdqu xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16]) #endif #if CRYPTOPP_BOOL_X86 #if CRYPTOPP_SSE2_ASM_AVAILABLE ASJ( jmp, 0, f) #endif ASL(2) // non-SSE2 AS2( mov esi, ecx) AS2( lea edi, A(0)) AS2( mov ecx, 8) ATT_NOPREFIX AS1( rep movsd) INTEL_NOPREFIX AS2( mov esi, K_END) ASJ( jmp, 3, f) #endif #if CRYPTOPP_SSE2_ASM_AVAILABLE ASL(0) AS2( movdqu E(0), xmm1) AS2( movdqu A(0), xmm0) #endif #if CRYPTOPP_BOOL_X86 ASL(3) #endif AS2( sub WORD_REG(si), 48*4) SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3) SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7) #if CRYPTOPP_BOOL_X86 SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11) SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15) #endif AS2( mov edi, E(0)) // E AS2( mov eax, B(0)) // B AS2( xor eax, C(0)) // B^C AS2( mov ecx, A(0)) // A ROUND(0, 0, eax, ecx, edi, edx) ROUND(1, 0, ecx, eax, edx, edi) ROUND(2, 0, eax, ecx, edi, edx) ROUND(3, 0, ecx, eax, edx, edi) ROUND(4, 0, eax, ecx, edi, edx) ROUND(5, 0, ecx, eax, edx, edi) ROUND(6, 0, eax, ecx, edi, edx) ROUND(7, 0, ecx, eax, edx, edi) ROUND(8, 0, eax, ecx, edi, edx) ROUND(9, 0, ecx, eax, edx, edi) ROUND(10, 0, eax, ecx, edi, edx) ROUND(11, 0, ecx, eax, edx, edi) ROUND(12, 0, eax, ecx, edi, edx) ROUND(13, 0, ecx, eax, edx, edi) ROUND(14, 0, eax, ecx, edi, edx) ROUND(15, 0, ecx, eax, edx, edi) ASL(1) AS2(add WORD_REG(si), 4*16) ROUND(0, 1, eax, ecx, edi, edx) ROUND(1, 1, ecx, eax, edx, edi) ROUND(2, 1, eax, ecx, edi, edx) ROUND(3, 1, ecx, eax, edx, edi) ROUND(4, 1, eax, ecx, edi, edx) ROUND(5, 1, ecx, eax, edx, edi) ROUND(6, 1, eax, ecx, edi, edx) ROUND(7, 1, ecx, eax, edx, edi) ROUND(8, 1, eax, ecx, edi, edx) ROUND(9, 1, ecx, eax, edx, edi) ROUND(10, 1, eax, ecx, edi, edx) ROUND(11, 1, ecx, eax, edx, edi) ROUND(12, 1, eax, ecx, edi, edx) ROUND(13, 1, ecx, eax, edx, edi) ROUND(14, 1, eax, ecx, edi, edx) ROUND(15, 1, ecx, eax, edx, edi) AS2( cmp WORD_REG(si), K_END) ATT_NOPREFIX ASJ( jb, 1, b) INTEL_NOPREFIX AS2( mov WORD_REG(dx), DATA_SAVE) AS2( add WORD_REG(dx), 64) AS2( mov AS_REG_7, STATE_SAVE) AS2( mov DATA_SAVE, WORD_REG(dx)) #if CRYPTOPP_SSE2_ASM_AVAILABLE #if CRYPTOPP_BOOL_X86 AS2( test DWORD PTR K_END, 1) ASJ( jz, 4, f) #endif AS2( movdqu xmm1, XMMWORD_PTR [AS_REG_7+1*16]) AS2( movdqu xmm0, XMMWORD_PTR [AS_REG_7+0*16]) AS2( paddd xmm1, E(0)) AS2( paddd xmm0, A(0)) AS2( movdqu [AS_REG_7+1*16], xmm1) AS2( movdqu [AS_REG_7+0*16], xmm0) AS2( cmp WORD_REG(dx), DATA_END) ATT_NOPREFIX ASJ( jb, 0, b) INTEL_NOPREFIX #endif #if CRYPTOPP_BOOL_X86 #if CRYPTOPP_SSE2_ASM_AVAILABLE ASJ( jmp, 5, f) ASL(4) // non-SSE2 #endif AS2( add [AS_REG_7+0*4], ecx) // A AS2( add [AS_REG_7+4*4], edi) // E AS2( mov eax, B(0)) AS2( mov ebx, C(0)) AS2( mov ecx, D(0)) AS2( add [AS_REG_7+1*4], eax) AS2( add [AS_REG_7+2*4], ebx) AS2( add [AS_REG_7+3*4], ecx) AS2( mov eax, F(0)) AS2( mov ebx, G(0)) AS2( mov ecx, H(0)) AS2( add [AS_REG_7+5*4], eax) AS2( add [AS_REG_7+6*4], ebx) AS2( add [AS_REG_7+7*4], ecx) AS2( mov ecx, AS_REG_7d) AS2( cmp WORD_REG(dx), DATA_END) ASJ( jb, 2, b) #if CRYPTOPP_SSE2_ASM_AVAILABLE ASL(5) #endif #endif AS_POP_IF86(sp) AS_POP_IF86(bp) #if !defined(_MSC_VER) || (_MSC_VER < 1400) AS_POP_IF86(bx) #endif #ifdef CRYPTOPP_GENERATE_X64_MASM add rsp, LOCALS_SIZE+8 pop rbp pop rbx pop rdi pop rsi ret SHA256_HashMultipleBlocks_SSE2 ENDP #endif #ifdef __GNUC__ ATT_PREFIX : : "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len) #if (CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) , "m" (workspace[0]) #endif : "memory", "cc", "%eax" #if (CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) , PERCENT_REG(AS_REG_7), "%rbx", "%r8", "%r10", "%xmm0", "%xmm1" #else , "%ebx" #endif ); #endif } ANONYMOUS_NAMESPACE_END #endif // CRYPTOPP_X86_ASM_AVAILABLE #ifndef CRYPTOPP_GENERATE_X64_MASM #ifdef CRYPTOPP_X64_MASM_AVAILABLE extern "C" { void CRYPTOPP_FASTCALL SHA256_HashMultipleBlocks_SSE2(word32 *state, const word32 *data, size_t len); } #endif std::string SHA256::AlgorithmProvider() const { return SHA256_AlgorithmProvider(); } void SHA256::Transform(word32 *state, const word32 *data) { CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data); #if CRYPTOPP_SHANI_AVAILABLE if (HasSHA()) { SHA256_HashMultipleBlocks_SHANI(state, data, SHA256::BLOCKSIZE, LITTLE_ENDIAN_ORDER); return; } #endif // Disabled at the moment due to MDC and SEAL failures #if CRYPTOGAMS_ARM_SHA256 && 0 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) { # if defined(CRYPTOPP_LITTLE_ENDIAN) word32 dataBuf[16]; ByteReverse(dataBuf, data, SHA256::BLOCKSIZE); cryptogams_sha256_block_data_order_neon(state, dataBuf, 1); # else cryptogams_sha256_block_data_order_neon(state, data, 1); # endif return; } else # endif if (HasARMv7()) { # if defined(CRYPTOPP_LITTLE_ENDIAN) word32 dataBuf[16]; ByteReverse(dataBuf, data, SHA256::BLOCKSIZE); cryptogams_sha256_block_data_order(state, data, 1); # else cryptogams_sha256_block_data_order(state, data, 1); # endif return; } #endif #if CRYPTOPP_ARM_SHA2_AVAILABLE if (HasSHA2()) { SHA256_HashMultipleBlocks_ARMV8(state, data, SHA256::BLOCKSIZE, LITTLE_ENDIAN_ORDER); return; } #endif #if CRYPTOPP_POWER8_SHA_AVAILABLE if (HasSHA256()) { SHA256_HashMultipleBlocks_POWER8(state, data, SHA256::BLOCKSIZE, LITTLE_ENDIAN_ORDER); return; } #endif SHA256_HashBlock_CXX(state, data); } size_t SHA256::HashMultipleBlocks(const word32 *input, size_t length) { CRYPTOPP_ASSERT(input); CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE); #if CRYPTOPP_SHANI_AVAILABLE if (HasSHA()) { SHA256_HashMultipleBlocks_SHANI(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA256::BLOCKSIZE - 1); } #endif #if CRYPTOPP_SSE2_ASM_AVAILABLE || CRYPTOPP_X64_MASM_AVAILABLE if (HasSSE2()) { const size_t res = length & (SHA256::BLOCKSIZE - 1); SHA256_HashMultipleBlocks_SSE2(m_state, input, length-res); return res; } #endif #if CRYPTOGAMS_ARM_SHA256 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) { cryptogams_sha256_block_data_order_neon(m_state, input, length / SHA256::BLOCKSIZE); return length & (SHA256::BLOCKSIZE - 1); } else # endif if (HasARMv7()) { cryptogams_sha256_block_data_order(m_state, input, length / SHA256::BLOCKSIZE); return length & (SHA256::BLOCKSIZE - 1); } #endif #if CRYPTOPP_ARM_SHA2_AVAILABLE if (HasSHA2()) { SHA256_HashMultipleBlocks_ARMV8(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA256::BLOCKSIZE - 1); } #endif #if CRYPTOPP_POWER8_SHA_AVAILABLE if (HasSHA256()) { SHA256_HashMultipleBlocks_POWER8(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA256::BLOCKSIZE - 1); } #endif const bool noReverse = NativeByteOrderIs(this->GetByteOrder()); word32 *dataBuf = this->DataBuf(); do { if (noReverse) { SHA256_HashBlock_CXX(m_state, input); } else { ByteReverse(dataBuf, input, SHA256::BLOCKSIZE); SHA256_HashBlock_CXX(m_state, dataBuf); } input += SHA256::BLOCKSIZE/sizeof(word32); length -= SHA256::BLOCKSIZE; } while (length >= SHA256::BLOCKSIZE); return length; } size_t SHA224::HashMultipleBlocks(const word32 *input, size_t length) { CRYPTOPP_ASSERT(input); CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE); #if CRYPTOPP_SHANI_AVAILABLE if (HasSHA()) { SHA256_HashMultipleBlocks_SHANI(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA256::BLOCKSIZE - 1); } #endif #if CRYPTOPP_SSE2_ASM_AVAILABLE || CRYPTOPP_X64_MASM_AVAILABLE if (HasSSE2()) { const size_t res = length & (SHA256::BLOCKSIZE - 1); SHA256_HashMultipleBlocks_SSE2(m_state, input, length-res); return res; } #endif #if CRYPTOGAMS_ARM_SHA256 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) { cryptogams_sha256_block_data_order_neon(m_state, input, length / SHA256::BLOCKSIZE); return length & (SHA256::BLOCKSIZE - 1); } else # endif if (HasARMv7()) { cryptogams_sha256_block_data_order(m_state, input, length / SHA256::BLOCKSIZE); return length & (SHA256::BLOCKSIZE - 1); } #endif #if CRYPTOPP_ARM_SHA2_AVAILABLE if (HasSHA2()) { SHA256_HashMultipleBlocks_ARMV8(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA256::BLOCKSIZE - 1); } #endif #if CRYPTOPP_POWER8_SHA_AVAILABLE if (HasSHA256()) { SHA256_HashMultipleBlocks_POWER8(m_state, input, length, BIG_ENDIAN_ORDER); return length & (SHA256::BLOCKSIZE - 1); } #endif const bool noReverse = NativeByteOrderIs(this->GetByteOrder()); word32 *dataBuf = this->DataBuf(); do { if (noReverse) { SHA256_HashBlock_CXX(m_state, input); } else { ByteReverse(dataBuf, input, SHA256::BLOCKSIZE); SHA256_HashBlock_CXX(m_state, dataBuf); } input += SHA256::BLOCKSIZE/sizeof(word32); length -= SHA256::BLOCKSIZE; } while (length >= SHA256::BLOCKSIZE); return length; } // ************************************************************* std::string SHA512_AlgorithmProvider() { #if CRYPTOPP_SSE2_ASM_AVAILABLE if (HasSSE2()) return "SSE2"; #endif #if CRYPTOGAMS_ARM_SHA512 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) return "NEON"; else # endif if (HasARMv7()) return "ARMv7"; #endif #if (CRYPTOPP_POWER8_SHA_AVAILABLE) if (HasSHA512()) return "Power8"; #endif return "C++"; } std::string SHA384::AlgorithmProvider() const { return SHA512_AlgorithmProvider(); } std::string SHA512::AlgorithmProvider() const { return SHA512_AlgorithmProvider(); } void SHA384::InitState(HashWordType *state) { const word64 s[8] = { W64LIT(0xcbbb9d5dc1059ed8), W64LIT(0x629a292a367cd507), W64LIT(0x9159015a3070dd17), W64LIT(0x152fecd8f70e5939), W64LIT(0x67332667ffc00b31), W64LIT(0x8eb44a8768581511), W64LIT(0xdb0c2e0d64f98fa7), W64LIT(0x47b5481dbefa4fa4)}; std::memcpy(state, s, sizeof(s)); } void SHA512::InitState(HashWordType *state) { const word64 s[8] = { W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b), W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1), W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f), W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)}; std::memcpy(state, s, sizeof(s)); } #if CRYPTOPP_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86) ANONYMOUS_NAMESPACE_BEGIN // No inlining due to https://github.com/weidai11/cryptopp/issues/684 // g++ -DNDEBUG -g2 -O3 -pthread -pipe -c sha.cpp // sha.cpp: Assembler messages: // sha.cpp:1155: Error: symbol `SHA512_Round' is already defined // sha.cpp:1155: Error: symbol `SHA512_Round' is already defined CRYPTOPP_NOINLINE CRYPTOPP_NAKED void CRYPTOPP_FASTCALL SHA512_HashBlock_SSE2(word64 *state, const word64 *data) { #ifdef __GNUC__ __asm__ __volatile__ ( INTEL_NOPREFIX AS_PUSH_IF86( bx) AS2( mov ebx, eax) #else AS1( push ebx) AS1( push esi) AS1( push edi) AS2( lea ebx, SHA512_K) #endif AS2( mov eax, esp) AS2( and esp, 0xfffffff0) AS2( sub esp, 27*16) // 17*16 for expanded data, 20*8 for state AS_PUSH_IF86( ax) AS2( xor eax, eax) AS2( lea edi, [esp+4+8*8]) // start at middle of state buffer. will decrement pointer each round to avoid copying AS2( lea esi, [esp+4+20*8+8]) // 16-byte alignment, then add 8 AS2( movdqu xmm0, [ecx+0*16]) AS2( movdq2q mm4, xmm0) AS2( movdqu [edi+0*16], xmm0) AS2( movdqu xmm0, [ecx+1*16]) AS2( movdqu [edi+1*16], xmm0) AS2( movdqu xmm0, [ecx+2*16]) AS2( movdq2q mm5, xmm0) AS2( movdqu [edi+2*16], xmm0) AS2( movdqu xmm0, [ecx+3*16]) AS2( movdqu [edi+3*16], xmm0) ASJ( jmp, 0, f) #define SSE2_S0_S1(r, a, b, c) \ AS2( movq mm6, r)\ AS2( psrlq r, a)\ AS2( movq mm7, r)\ AS2( psllq mm6, 64-c)\ AS2( pxor mm7, mm6)\ AS2( psrlq r, b-a)\ AS2( pxor mm7, r)\ AS2( psllq mm6, c-b)\ AS2( pxor mm7, mm6)\ AS2( psrlq r, c-b)\ AS2( pxor r, mm7)\ AS2( psllq mm6, b-a)\ AS2( pxor r, mm6) #define SSE2_s0(r, a, b, c) \ AS2( movdqu xmm6, r)\ AS2( psrlq r, a)\ AS2( movdqu xmm7, r)\ AS2( psllq xmm6, 64-c)\ AS2( pxor xmm7, xmm6)\ AS2( psrlq r, b-a)\ AS2( pxor xmm7, r)\ AS2( psrlq r, c-b)\ AS2( pxor r, xmm7)\ AS2( psllq xmm6, c-a)\ AS2( pxor r, xmm6) #define SSE2_s1(r, a, b, c) \ AS2( movdqu xmm6, r)\ AS2( psrlq r, a)\ AS2( movdqu xmm7, r)\ AS2( psllq xmm6, 64-c)\ AS2( pxor xmm7, xmm6)\ AS2( psrlq r, b-a)\ AS2( pxor xmm7, r)\ AS2( psllq xmm6, c-b)\ AS2( pxor xmm7, xmm6)\ AS2( psrlq r, c-b)\ AS2( pxor r, xmm7) ASL(SHA512_Round) // k + w is in mm0, a is in mm4, e is in mm5 AS2( paddq mm0, [edi+7*8]) // h AS2( movq mm2, [edi+5*8]) // f AS2( movq mm3, [edi+6*8]) // g AS2( pxor mm2, mm3) AS2( pand mm2, mm5) SSE2_S0_S1(mm5,14,18,41) AS2( pxor mm2, mm3) AS2( paddq mm0, mm2) // h += Ch(e,f,g) AS2( paddq mm5, mm0) // h += S1(e) AS2( movq mm2, [edi+1*8]) // b AS2( movq mm1, mm2) AS2( por mm2, mm4) AS2( pand mm2, [edi+2*8]) // c AS2( pand mm1, mm4) AS2( por mm1, mm2) AS2( paddq mm1, mm5) // temp = h + Maj(a,b,c) AS2( paddq mm5, [edi+3*8]) // e = d + h AS2( movq [edi+3*8], mm5) AS2( movq [edi+11*8], mm5) SSE2_S0_S1(mm4,28,34,39) // S0(a) AS2( paddq mm4, mm1) // a = temp + S0(a) AS2( movq [edi-8], mm4) AS2( movq [edi+7*8], mm4) AS1( ret) // first 16 rounds ASL(0) AS2( movq mm0, [edx+eax*8]) AS2( movq [esi+eax*8], mm0) AS2( movq [esi+eax*8+16*8], mm0) AS2( paddq mm0, [ebx+eax*8]) ASC( call, SHA512_Round) AS1( inc eax) AS2( sub edi, 8) AS2( test eax, 7) ASJ( jnz, 0, b) AS2( add edi, 8*8) AS2( cmp eax, 16) ASJ( jne, 0, b) // rest of the rounds AS2( movdqu xmm0, [esi+(16-2)*8]) ASL(1) // data expansion, W[i-2] already in xmm0 AS2( movdqu xmm3, [esi]) AS2( paddq xmm3, [esi+(16-7)*8]) AS2( movdqu xmm2, [esi+(16-15)*8]) SSE2_s1(xmm0, 6, 19, 61) AS2( paddq xmm0, xmm3) SSE2_s0(xmm2, 1, 7, 8) AS2( paddq xmm0, xmm2) AS2( movdq2q mm0, xmm0) AS2( movhlps xmm1, xmm0) AS2( paddq mm0, [ebx+eax*8]) AS2( movlps [esi], xmm0) AS2( movlps [esi+8], xmm1) AS2( movlps [esi+8*16], xmm0) AS2( movlps [esi+8*17], xmm1) // 2 rounds ASC( call, SHA512_Round) AS2( sub edi, 8) AS2( movdq2q mm0, xmm1) AS2( paddq mm0, [ebx+eax*8+8]) ASC( call, SHA512_Round) // update indices and loop AS2( add esi, 16) AS2( add eax, 2) AS2( sub edi, 8) AS2( test eax, 7) ASJ( jnz, 1, b) // do housekeeping every 8 rounds AS2( mov esi, 0xf) AS2( and esi, eax) AS2( lea esi, [esp+4+20*8+8+esi*8]) AS2( add edi, 8*8) AS2( cmp eax, 80) ASJ( jne, 1, b) #define SSE2_CombineState(i) \ AS2( movdqu xmm0, [edi+i*16])\ AS2( paddq xmm0, [ecx+i*16])\ AS2( movdqu [ecx+i*16], xmm0) SSE2_CombineState(0) SSE2_CombineState(1) SSE2_CombineState(2) SSE2_CombineState(3) AS_POP_IF86( sp) AS1( emms) #if defined(__GNUC__) AS_POP_IF86( bx) ATT_PREFIX : : "a" (SHA512_K), "c" (state), "d" (data) : "%ebx", "%esi", "%edi", "memory", "cc" #if (CRYPTOPP_BOOL_X64) , "%mm0", "%mm1", "%mm2", "%mm3", "%mm4", "%mm5", "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7" #endif ); #else AS1( pop edi) AS1( pop esi) AS1( pop ebx) AS1( ret) #endif } ANONYMOUS_NAMESPACE_END #endif // CRYPTOPP_SSE2_ASM_AVAILABLE ANONYMOUS_NAMESPACE_BEGIN #define a(i) T[(0-i)&7] #define b(i) T[(1-i)&7] #define c(i) T[(2-i)&7] #define d(i) T[(3-i)&7] #define e(i) T[(4-i)&7] #define f(i) T[(5-i)&7] #define g(i) T[(6-i)&7] #define h(i) T[(7-i)&7] #define blk0(i) (W[i]=data[i]) #define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15])) #define Ch(x,y,z) (z^(x&(y^z))) #define Maj(x,y,z) (y^((x^y)&(y^z))) #define s0(x) (rotrConstant<1>(x)^rotrConstant<8>(x)^(x>>7)) #define s1(x) (rotrConstant<19>(x)^rotrConstant<61>(x)^(x>>6)) #define S0(x) (rotrConstant<28>(x)^rotrConstant<34>(x)^rotrConstant<39>(x)) #define S1(x) (rotrConstant<14>(x)^rotrConstant<18>(x)^rotrConstant<41>(x)) #define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+\ (j?blk2(i):blk0(i));d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i)); void SHA512_HashBlock_CXX(word64 *state, const word64 *data) { CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data); word64 W[16]={0}, T[8]; /* Copy context->state[] to working vars */ std::memcpy(T, state, sizeof(T)); /* 80 operations, partially loop unrolled */ for (unsigned int j=0; j<80; j+=16) { R( 0); R( 1); R( 2); R( 3); R( 4); R( 5); R( 6); R( 7); R( 8); R( 9); R(10); R(11); R(12); R(13); R(14); R(15); } state[0] += a(0); state[1] += b(0); state[2] += c(0); state[3] += d(0); state[4] += e(0); state[5] += f(0); state[6] += g(0); state[7] += h(0); } ANONYMOUS_NAMESPACE_END void SHA512::Transform(word64 *state, const word64 *data) { CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data); #if CRYPTOPP_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86) if (HasSSE2()) { SHA512_HashBlock_SSE2(state, data); return; } #endif #if CRYPTOGAMS_ARM_SHA512 # if CRYPTOPP_ARM_NEON_AVAILABLE if (HasNEON()) { # if (CRYPTOPP_LITTLE_ENDIAN) word64 dataBuf[16]; ByteReverse(dataBuf, data, SHA512::BLOCKSIZE); cryptogams_sha512_block_data_order_neon(state, dataBuf, 1); # else cryptogams_sha512_block_data_order_neon(state, data, 1); # endif return; } else # endif if (HasARMv7()) { # if (CRYPTOPP_LITTLE_ENDIAN) word64 dataBuf[16]; ByteReverse(dataBuf, data, SHA512::BLOCKSIZE); cryptogams_sha512_block_data_order(state, dataBuf, 1); # else cryptogams_sha512_block_data_order(state, data, 1); # endif return; } #endif #if CRYPTOPP_POWER8_SHA_AVAILABLE if (HasSHA512()) { SHA512_HashMultipleBlocks_POWER8(state, data, SHA512::BLOCKSIZE, BIG_ENDIAN_ORDER); return; } #endif SHA512_HashBlock_CXX(state, data); } #undef Ch #undef Maj #undef s0 #undef s1 #undef S0 #undef S1 #undef blk0 #undef blk1 #undef blk2 #undef R #undef a #undef b #undef c #undef d #undef e #undef f #undef g #undef h NAMESPACE_END #endif // Not CRYPTOPP_GENERATE_X64_MASM #endif // Not CRYPTOPP_IMPORTS