// rsa.h - originally written and placed in the public domain by Wei Dai
/// \file rsa.h
/// \brief Classes for the RSA cryptosystem
/// \details This file contains classes that implement the RSA
/// ciphers and signature schemes as defined in PKCS #1 v2.0.
#ifndef CRYPTOPP_RSA_H
#define CRYPTOPP_RSA_H
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "pkcspad.h"
#include "oaep.h"
#include "emsa2.h"
#include "asn.h"
NAMESPACE_BEGIN(CryptoPP)
/// \class RSAFunction
/// \brief RSA trapdoor function using the public key
/// \since Crypto++ 1.0
class CRYPTOPP_DLL RSAFunction : public TrapdoorFunction, public X509PublicKey
{
typedef RSAFunction ThisClass;
public:
/// \brief Initialize a RSA public key
/// \param n the modulus
/// \param e the public exponent
void Initialize(const Integer &n, const Integer &e)
{m_n = n; m_e = e;}
// X509PublicKey
OID GetAlgorithmID() const;
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePublicKey(BufferedTransformation &bt) const;
// CryptoMaterial
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
// TrapdoorFunction
Integer ApplyFunction(const Integer &x) const;
Integer PreimageBound() const {return m_n;}
Integer ImageBound() const {return m_n;}
// non-derived
const Integer & GetModulus() const {return m_n;}
const Integer & GetPublicExponent() const {return m_e;}
void SetModulus(const Integer &n) {m_n = n;}
void SetPublicExponent(const Integer &e) {m_e = e;}
protected:
Integer m_n, m_e;
};
/// \class InvertibleRSAFunction
/// \brief RSA trapdoor function using the private key
/// \since Crypto++ 1.0
class CRYPTOPP_DLL InvertibleRSAFunction : public RSAFunction, public TrapdoorFunctionInverse, public PKCS8PrivateKey
{
typedef InvertibleRSAFunction ThisClass;
public:
/// \brief Create a RSA private key
/// \param rng a RandomNumberGenerator derived class
/// \param modulusBits the size of the modulus, in bits
/// \param e the desired public exponent
/// \details Initialize() creates a new keypair using a public exponent of 17.
/// \details This function overload of Initialize() creates a new private key because it
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
/// then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits, const Integer &e = 17);
/// \brief Initialize a RSA private key
/// \param n modulus
/// \param e public exponent
/// \param d private exponent
/// \param p first prime factor
/// \param q second prime factor
/// \param dp d mod p
/// \param dq d mod q
/// \param u q-1 mod p
/// \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const Integer &n, const Integer &e, const Integer &d, const Integer &p, const Integer &q, const Integer &dp, const Integer &dq, const Integer &u)
{m_n = n; m_e = e; m_d = d; m_p = p; m_q = q; m_dp = dp; m_dq = dq; m_u = u;}
/// \brief Initialize a RSA private key
/// \param n modulus
/// \param e public exponent
/// \param d private exponent
/// \details This Initialize() function overload initializes a private key from existing parameters.
/// Initialize() will factor n using d and populate {p,q,dp,dq,u}.
void Initialize(const Integer &n, const Integer &e, const Integer &d);
// PKCS8PrivateKey
void BERDecode(BufferedTransformation &bt)
{PKCS8PrivateKey::BERDecode(bt);}
void DEREncode(BufferedTransformation &bt) const
{PKCS8PrivateKey::DEREncode(bt);}
void Load(BufferedTransformation &bt)
{PKCS8PrivateKey::BERDecode(bt);}
void Save(BufferedTransformation &bt) const
{PKCS8PrivateKey::DEREncode(bt);}
OID GetAlgorithmID() const {return RSAFunction::GetAlgorithmID();}
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePrivateKey(BufferedTransformation &bt) const;
// TrapdoorFunctionInverse
Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const;
// GeneratableCryptoMaterial
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
// parameters: (ModulusSize, PublicExponent (default 17))
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
// non-derived interface
const Integer& GetPrime1() const {return m_p;}
const Integer& GetPrime2() const {return m_q;}
const Integer& GetPrivateExponent() const {return m_d;}
const Integer& GetModPrime1PrivateExponent() const {return m_dp;}
const Integer& GetModPrime2PrivateExponent() const {return m_dq;}
const Integer& GetMultiplicativeInverseOfPrime2ModPrime1() const {return m_u;}
void SetPrime1(const Integer &p) {m_p = p;}
void SetPrime2(const Integer &q) {m_q = q;}
void SetPrivateExponent(const Integer &d) {m_d = d;}
void SetModPrime1PrivateExponent(const Integer &dp) {m_dp = dp;}
void SetModPrime2PrivateExponent(const Integer &dq) {m_dq = dq;}
void SetMultiplicativeInverseOfPrime2ModPrime1(const Integer &u) {m_u = u;}
protected:
Integer m_d, m_p, m_q, m_dp, m_dq, m_u;
};
/// \class RSAFunction_ISO
/// \brief RSA trapdoor function using the public key
/// \since Crypto++ 1.0
class CRYPTOPP_DLL RSAFunction_ISO : public RSAFunction
{
public:
Integer ApplyFunction(const Integer &x) const;
Integer PreimageBound() const {return ++(m_n>>1);}
};
/// \class InvertibleRSAFunction_ISO
/// \brief RSA trapdoor function using the private key
/// \since Crypto++ 1.0
class CRYPTOPP_DLL InvertibleRSAFunction_ISO : public InvertibleRSAFunction
{
public:
Integer CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const;
Integer PreimageBound() const {return ++(m_n>>1);}
};
/// \class RSA
/// \brief RSA algorithm
/// \since Crypto++ 1.0
struct CRYPTOPP_DLL RSA
{
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "RSA";}
typedef RSAFunction PublicKey;
typedef InvertibleRSAFunction PrivateKey;
};
/// \class RSAES
/// \brief RSA encryption algorithm
/// \tparam STANDARD signature standard
/// \sa RSA cryptosystem
/// \since Crypto++ 1.0
template
struct RSAES : public TF_ES
{
};
/// \class RSASS
/// \brief RSA signature algorithm
/// \tparam STANDARD signature standard
/// \tparam H hash transformation
/// \details See documentation of PKCS1v15 for a list of hash functions that can be used with it.
/// \sa RSA signature scheme with appendix
/// \since Crypto++ 1.0
template
struct RSASS : public TF_SS
{
};
/// \class RSA_ISO
/// \brief RSA algorithm
/// \since Crypto++ 1.0
struct CRYPTOPP_DLL RSA_ISO
{
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "RSA-ISO";}
typedef RSAFunction_ISO PublicKey;
typedef InvertibleRSAFunction_ISO PrivateKey;
};
/// \class RSASS_ISO
/// \brief RSA signature algorithm
/// \tparam H hash transformation
/// \since Crypto++ 1.0
template
struct RSASS_ISO : public TF_SS
{
};
/// \brief \ref RSAES "RSAES::Decryptor" typedef
/// \details RSA encryption scheme defined in PKCS #1 v2.0
DOCUMENTED_TYPEDEF(RSAES::Decryptor, RSAES_PKCS1v15_Decryptor);
/// \brief \ref RSAES "RSAES::Encryptor" typedef
/// \details RSA encryption scheme defined in PKCS #1 v2.0
DOCUMENTED_TYPEDEF(RSAES::Encryptor, RSAES_PKCS1v15_Encryptor);
/// \brief \ref RSAES "RSAES>::Decryptor" typedef
/// \details RSA encryption scheme defined in PKCS #1 v2.0
DOCUMENTED_TYPEDEF(RSAES >::Decryptor, RSAES_OAEP_SHA_Decryptor);
/// \brief \ref RSAES "RSAES>::Encryptor" typedef
/// \details RSA encryption scheme defined in PKCS #1 v2.0
DOCUMENTED_TYPEDEF(RSAES >::Encryptor, RSAES_OAEP_SHA_Encryptor);
#ifdef CRYPTOPP_DOXYGEN_PROCESSING
/// \brief \ref RSASS "RSASS::Signer" typedef
/// \details RSA signature schemes defined in PKCS #1 v2.0
/// \since Crypto++ 1.0
class RSASSA_PKCS1v15_SHA_Signer : public RSASS::Signer {};
/// \brief \ref RSASS "RSASS::Verifier" typedef
/// \details RSA signature schemes defined in PKCS #1 v2.0
/// \since Crypto++ 1.0
class RSASSA_PKCS1v15_SHA_Verifier : public RSASS::Verifier {};
namespace Weak {
/// \brief \ref RSASS "RSASS::Signer" typedef
/// \details RSA signature schemes defined in PKCS #1 v2.0
/// \since Crypto++ 1.0
class RSASSA_PKCS1v15_MD2_Signer : public RSASS::Signer {};
/// \brief \ref RSASS "RSASS::Verifier" typedef
/// \details RSA signature schemes defined in PKCS #1 v2.0
/// \since Crypto++ 1.0
class RSASSA_PKCS1v15_MD2_Verifier : public RSASS::Verifier {};
/// \brief \ref RSASS "RSASS::Signer" typedef
/// \details RSA signature schemes defined in PKCS #1 v2.0
/// \since Crypto++ 1.0
class RSASSA_PKCS1v15_MD5_Signer : public RSASS::Signer {};
/// \brief \ref RSASS "RSASS::Verifier" typedef
/// \details RSA signature schemes defined in PKCS #1 v2.0
/// \since Crypto++ 1.0
class RSASSA_PKCS1v15_MD5_Verifier : public RSASS::Verifier {};
}
#else
typedef RSASS::Signer RSASSA_PKCS1v15_SHA_Signer;
typedef RSASS::Verifier RSASSA_PKCS1v15_SHA_Verifier;
namespace Weak {
typedef RSASS::Signer RSASSA_PKCS1v15_MD2_Signer;
typedef RSASS::Verifier RSASSA_PKCS1v15_MD2_Verifier;
typedef RSASS::Signer RSASSA_PKCS1v15_MD5_Signer;
typedef RSASS::Verifier RSASSA_PKCS1v15_MD5_Verifier;
}
#endif // CRYPTOPP_DOXYGEN_PROCESSING
NAMESPACE_END
#endif