// rsa.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "rsa.h" #include "asn.h" #include "oids.h" #include "nbtheory.h" #include "sha.h" #include "algparam.h" #include "fips140.h" #include "oaep.cpp" NAMESPACE_BEGIN(CryptoPP) void RSA_TestInstantiations() { RSASSA::Verifier x1(1, 1); RSASSA::Signer x2(NullRNG(), 1); RSASSA::Verifier x3(x2); RSASSA::Verifier x4(x2.GetKey()); RSASSA::Verifier x5(x3); RSASSA::Signer x6 = x2; RSAES::Encryptor x7(x2); RSAES::Encryptor x8(x3); RSAES >::Encryptor x9(x2); x6 = x2; #ifndef __MWERKS__ x3 = x2; #endif x4 = x2.GetKey(); } template class OAEP; OID RSAFunction::GetAlgorithmID() const { return ASN1::rsaEncryption(); } void RSAFunction::BERDecodeKey(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_e.BERDecode(seq); seq.MessageEnd(); } void RSAFunction::DEREncodeKey(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_e.DEREncode(seq); seq.MessageEnd(); } Integer RSAFunction::ApplyFunction(const Integer &x) const { DoQuickSanityCheck(); return a_exp_b_mod_c(x, m_e, m_n); } bool RSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = true; pass = pass && m_n > Integer::One() && m_n.IsOdd(); pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n; return pass; } bool RSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent) ; } void RSAFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent) ; } // ***************************************************************************** class RSAPrimeSelector : public PrimeSelector { public: RSAPrimeSelector(const Integer &e) : m_e(e) {} bool IsAcceptable(const Integer &candidate) const {return RelativelyPrime(m_e, candidate-Integer::One());} Integer m_e; }; void InvertibleRSAFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) { int modulusSize = 2048; alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize); if (modulusSize < 16) throw InvalidArgument("InvertibleRSAFunction: specified modulus size is too small"); m_e = alg.GetValueWithDefault("PublicExponent", Integer(17)); if (m_e < 3 || m_e.IsEven()) throw InvalidArgument("InvertibleRSAFunction: invalid public exponent"); RSAPrimeSelector selector(m_e); const NameValuePairs &primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize) ("PointerToPrimeSelector", selector.GetSelectorPointer()); m_p.GenerateRandom(rng, primeParam); m_q.GenerateRandom(rng, primeParam); m_d = EuclideanMultiplicativeInverse(m_e, LCM(m_p-1, m_q-1)); assert(m_d.IsPositive()); m_dp = m_d % (m_p-1); m_dq = m_d % (m_q-1); m_n = m_p * m_q; m_u = m_q.InverseMod(m_p); if (FIPS_140_2_ComplianceEnabled()) { RSASSA::Signer signer(*this); RSASSA::Verifier verifier(signer); SignaturePairwiseConsistencyTest(signer, verifier); RSAES >::Decryptor decryptor(*this); RSAES >::Encryptor encryptor(decryptor); EncryptionPairwiseConsistencyTest(encryptor, decryptor); } } void InvertibleRSAFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e) { GenerateRandom(rng, MakeParameters("ModulusSize", (int)keybits)("PublicExponent", e+e.IsEven())); } void InvertibleRSAFunction::BERDecodeKey(BufferedTransformation &bt) { BERSequenceDecoder privateKey(bt); word32 version; BERDecodeUnsigned(privateKey, version, INTEGER, 0, 0); // check version m_n.BERDecode(privateKey); m_e.BERDecode(privateKey); m_d.BERDecode(privateKey); m_p.BERDecode(privateKey); m_q.BERDecode(privateKey); m_dp.BERDecode(privateKey); m_dq.BERDecode(privateKey); m_u.BERDecode(privateKey); privateKey.MessageEnd(); } void InvertibleRSAFunction::DEREncodeKey(BufferedTransformation &bt) const { DERSequenceEncoder privateKey(bt); DEREncodeUnsigned(privateKey, 0); // version m_n.DEREncode(privateKey); m_e.DEREncode(privateKey); m_d.DEREncode(privateKey); m_p.DEREncode(privateKey); m_q.DEREncode(privateKey); m_dp.DEREncode(privateKey); m_dq.DEREncode(privateKey); m_u.DEREncode(privateKey); privateKey.MessageEnd(); } Integer InvertibleRSAFunction::CalculateInverse(const Integer &x) const { DoQuickSanityCheck(); // here we follow the notation of PKCS #1 and let u=q inverse mod p // but in ModRoot, u=p inverse mod q, so we reverse the order of p and q return ModularRoot(x, m_dq, m_dp, m_q, m_p, m_u); } bool InvertibleRSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = RSAFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n; pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n; pass = pass && m_d > Integer::One() && m_d.IsOdd() && m_d < m_n; pass = pass && m_dp > Integer::One() && m_dp.IsOdd() && m_dp < m_p; pass = pass && m_dq > Integer::One() && m_dq.IsOdd() && m_dq < m_q; pass = pass && m_u.IsPositive() && m_u < m_p; if (level >= 1) { pass = pass && m_p * m_q == m_n; pass = pass && m_e*m_d % LCM(m_p-1, m_q-1) == 1; pass = pass && m_dp == m_d%(m_p-1) && m_dq == m_d%(m_q-1); pass = pass && m_u * m_q % m_p == 1; } if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; } bool InvertibleRSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) CRYPTOPP_GET_FUNCTION_ENTRY(PrivateExponent) CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime1PrivateExponent) CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime2PrivateExponent) CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } void InvertibleRSAFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) CRYPTOPP_SET_FUNCTION_ENTRY(PrivateExponent) CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime1PrivateExponent) CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime2PrivateExponent) CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } /* bool RSAFunctionInverse_NonCRT::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = true; pass = pass && m_n > Integer::One() && m_n.IsOdd(); pass = pass && m_d > Integer::One() && m_d.IsOdd() && m_d < m_n; return pass; } */ NAMESPACE_END