// rijndael_simd.cpp - written and placed in the public domain by // Jeffrey Walton, Uri Blumenthal and Marcel Raad. // AES-NI code originally written by Wei Dai. // // This source file uses intrinsics and built-ins to gain access to // AES-NI, ARMv8a AES and Power8 AES instructions. A separate source // file is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. // // ARMv8a AES code based on CriticalBlue code from Johannes Schneiders, // Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping // mbedTLS under a debugger was helped for us to determine problems // with our subkey generation and scheduling. // // AltiVec and Power8 code based on http://github.com/noloader/AES-Intrinsics and // http://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/ // For Power8 do not remove the casts, even when const-ness is cast away. It causes // failed compiles and a 0.3 to 0.6 cpb drop in performance. The IBM documentation // absolutely sucks. Thanks to Andy Polyakov, Paul R and Trudeaun for answering // questions and filling the gaps in the IBM documentation. // #include "pch.h" #include "config.h" #include "misc.h" #if (CRYPTOPP_AESNI_AVAILABLE) # include "adv_simd.h" # include # include # include #endif // Android makes available with ARMv7-a #if (CRYPTOPP_BOOL_ARMV8) # include "adv_simd.h" # if (CRYPTOPP_ARM_NEON_HEADER) # include # endif # if (CRYPTOPP_ARM_ACLE_HEADER) # include # include # endif #endif #if defined(_M_ARM64) # include "adv_simd.h" #endif #if defined(CRYPTOPP_POWER8_AES_AVAILABLE) # include "adv_simd.h" # include "ppc_simd.h" #endif #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY # include # include #endif #ifndef EXCEPTION_EXECUTE_HANDLER # define EXCEPTION_EXECUTE_HANDLER 1 #endif // Squash MS LNK4221 and libtool warnings extern const char RIJNDAEL_SIMD_FNAME[] = __FILE__; NAMESPACE_BEGIN(CryptoPP) // ************************* Feature Probes ************************* // #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY extern "C" { typedef void (*SigHandler)(int); static jmp_buf s_jmpSIGILL; static void SigIllHandler(int) { longjmp(s_jmpSIGILL, 1); } } #endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY #if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8) bool CPU_ProbeAES() { #if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES) return false; #elif (CRYPTOPP_ARM_AES_AVAILABLE) # if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY) volatile bool result = true; __try { // AES encrypt and decrypt uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); uint8x16_t r1 = vaeseq_u8(data, key); uint8x16_t r2 = vaesdq_u8(data, key); r1 = vaesmcq_u8(r1); r2 = vaesimcq_u8(r2); result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); } __except (EXCEPTION_EXECUTE_HANDLER) { return false; } return result; # else // longjmp and clobber warnings. Volatile is required. // http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854 volatile bool result = true; volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler); if (oldHandler == SIG_ERR) return false; volatile sigset_t oldMask; if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask)) { signal(SIGILL, oldHandler); return false; } if (setjmp(s_jmpSIGILL)) result = false; else { uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); uint8x16_t r1 = vaeseq_u8(data, key); uint8x16_t r2 = vaesdq_u8(data, key); r1 = vaesmcq_u8(r1); r2 = vaesimcq_u8(r2); // Hack... GCC optimizes away the code and returns true result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); } sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR); signal(SIGILL, oldHandler); return result; # endif #else return false; #endif // CRYPTOPP_ARM_AES_AVAILABLE } #endif // ARM32 or ARM64 // ***************************** ARMv8 ***************************** // #if (CRYPTOPP_ARM_AES_AVAILABLE) ANONYMOUS_NAMESPACE_BEGIN inline void ARMV8_Enc_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds) { CRYPTOPP_ASSERT(subkeys); const byte *keys = reinterpret_cast(subkeys); uint8x16_t block = vreinterpretq_u8_u64(data); // AES single round encryption block = vaeseq_u8(block, vld1q_u8(keys+0*16)); // AES mix columns block = vaesmcq_u8(block); for (unsigned int i=1; i(subkeys); uint8x16_t block0 = vreinterpretq_u8_u64(data0); uint8x16_t block1 = vreinterpretq_u8_u64(data1); uint8x16_t block2 = vreinterpretq_u8_u64(data2); uint8x16_t block3 = vreinterpretq_u8_u64(data3); uint8x16_t block4 = vreinterpretq_u8_u64(data4); uint8x16_t block5 = vreinterpretq_u8_u64(data5); uint8x16_t key; for (unsigned int i=0; i(subkeys); uint8x16_t block = vreinterpretq_u8_u64(data); // AES single round decryption block = vaesdq_u8(block, vld1q_u8(keys+0*16)); // AES inverse mix columns block = vaesimcq_u8(block); for (unsigned int i=1; i(subkeys); uint8x16_t block0 = vreinterpretq_u8_u64(data0); uint8x16_t block1 = vreinterpretq_u8_u64(data1); uint8x16_t block2 = vreinterpretq_u8_u64(data2); uint8x16_t block3 = vreinterpretq_u8_u64(data3); uint8x16_t block4 = vreinterpretq_u8_u64(data4); uint8x16_t block5 = vreinterpretq_u8_u64(data5); uint8x16_t key; for (unsigned int i=0; i(subkeys); block = _mm_xor_si128(block, skeys[0]); for (unsigned int i=1; i(subkeys); __m128i rk = skeys[0]; block0 = _mm_xor_si128(block0, rk); block1 = _mm_xor_si128(block1, rk); block2 = _mm_xor_si128(block2, rk); block3 = _mm_xor_si128(block3, rk); for (unsigned int i=1; i(subkeys); block = _mm_xor_si128(block, skeys[0]); for (unsigned int i=1; i(subkeys); __m128i rk = skeys[0]; block0 = _mm_xor_si128(block0, rk); block1 = _mm_xor_si128(block1, rk); block2 = _mm_xor_si128(block2, rk); block3 = _mm_xor_si128(block3, rk); for (unsigned int i=1; i(subkeys); uint32x4_p k = VecLoadAligned(keys); block = VecXor(block, k); for (size_t i=1; i(subkeys); uint32x4_p k = VecLoadAligned(keys); block0 = VecXor(block0, k); block1 = VecXor(block1, k); block2 = VecXor(block2, k); block3 = VecXor(block3, k); block4 = VecXor(block4, k); block5 = VecXor(block5, k); for (size_t i=1; i(subkeys); uint32x4_p k = VecLoadAligned(rounds*16, keys); block = VecXor(block, k); for (size_t i=rounds-1; i>1; i-=2) { block = VecDecrypt(block, VecLoadAligned( i*16, keys)); block = VecDecrypt(block, VecLoadAligned((i-1)*16, keys)); } block = VecDecrypt(block, VecLoadAligned(16, keys)); block = VecDecryptLast(block, VecLoadAligned(0, keys)); } inline void POWER8_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1, uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4, uint32x4_p &block5, const word32 *subkeys, unsigned int rounds) { CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16)); const byte *keys = reinterpret_cast(subkeys); uint32x4_p k = VecLoadAligned(rounds*16, keys); block0 = VecXor(block0, k); block1 = VecXor(block1, k); block2 = VecXor(block2, k); block3 = VecXor(block3, k); block4 = VecXor(block4, k); block5 = VecXor(block5, k); for (size_t i=rounds-1; i>0; --i) { k = VecLoadAligned(i*16, keys); block0 = VecDecrypt(block0, k); block1 = VecDecrypt(block1, k); block2 = VecDecrypt(block2, k); block3 = VecDecrypt(block3, k); block4 = VecDecrypt(block4, k); block5 = VecDecrypt(block5, k); } k = VecLoadAligned(0, keys); block0 = VecDecryptLast(block0, k); block1 = VecDecryptLast(block1, k); block2 = VecDecryptLast(block2, k); block3 = VecDecryptLast(block3, k); block4 = VecDecryptLast(block4, k); block5 = VecDecryptLast(block5, k); } ANONYMOUS_NAMESPACE_END void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk, const byte* Se) { const size_t rounds = keyLen / 4 + 6; const word32 *rc = s_rconBE; word32 *rkey = rk, temp; GetUserKey(BIG_ENDIAN_ORDER, rkey, keyLen/4, userKey, keyLen); // keySize: m_key allocates 4*(rounds+1) word32's. const size_t keySize = 4*(rounds+1); const word32* end = rkey + keySize; while (true) { temp = rkey[keyLen/4-1]; word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^ (word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)]; rkey[keyLen/4] = rkey[0] ^ x ^ *(rc++); rkey[keyLen/4+1] = rkey[1] ^ rkey[keyLen/4]; rkey[keyLen/4+2] = rkey[2] ^ rkey[keyLen/4+1]; rkey[keyLen/4+3] = rkey[3] ^ rkey[keyLen/4+2]; if (rkey + keyLen/4 + 4 == end) break; if (keyLen == 24) { rkey[10] = rkey[ 4] ^ rkey[ 9]; rkey[11] = rkey[ 5] ^ rkey[10]; } else if (keyLen == 32) { temp = rkey[11]; rkey[12] = rkey[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)]; rkey[13] = rkey[ 5] ^ rkey[12]; rkey[14] = rkey[ 6] ^ rkey[13]; rkey[15] = rkey[ 7] ^ rkey[14]; } rkey += keyLen/4; } #if (CRYPTOPP_LITTLE_ENDIAN) rkey = rk; const uint8x16_p mask = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3}; unsigned int i=0; for (i=0; i