// rijndael-simd.cpp - written and placed in the public domain by // Jeffrey Walton, Uri Blumenthal and Marcel Raad. // // This source file uses intrinsics to gain access to AES-NI and // ARMv8a AES instructions. A separate source file is needed // because additional CXXFLAGS are required to enable the // appropriate instructions sets in some build configurations. // // ARMv8a AES code based on CriticalBlue code from Johannes Schneiders, // Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping // mbedTLS under a debugger was helped for us to determine problems // with our subkey generation and scheduling. #include "pch.h" #include "config.h" #include "misc.h" // Clang and GCC hoops... #if !(defined(__ARM_FEATURE_CRYPTO) || defined(_MSC_VER)) # undef CRYPTOPP_ARM_AES_AVAILABLE #endif #if (CRYPTOPP_AESNI_AVAILABLE) // Hack... We are supposed to use . GCC 4.8, LLVM Clang 3.5 // and Apple Clang 6.0 conflates SSE4.1 and SSE4.2. If we use // then compile fails with "SSE4.2 instruction set not enabled". Also see // https://gcc.gnu.org/ml/gcc-help/2017-08/msg00015.html. # include "smmintrin.h" # include "wmmintrin.h" #endif #if (CRYPTOPP_ARM_AES_AVAILABLE) # include "arm_neon.h" #endif // Don't include when using Apple Clang. Early Apple compilers // fail to compile with included. Later Apple compilers compile // intrinsics without included. #if (CRYPTOPP_ARM_AES_AVAILABLE) && !defined(CRYPTOPP_APPLE_CLANG_VERSION) # include "arm_acle.h" #endif #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY # include # include #endif #ifndef EXCEPTION_EXECUTE_HANDLER # define EXCEPTION_EXECUTE_HANDLER 1 #endif // Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224 #if (__SUNPRO_CC >= 0x5130) # define MAYBE_CONST #else # define MAYBE_CONST const #endif // Clang __m128i casts #define M128_CAST(x) ((__m128i *)(void *)(x)) #define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x)) NAMESPACE_BEGIN(CryptoPP) #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY extern "C" { typedef void (*SigHandler)(int); static jmp_buf s_jmpSIGILL; static void SigIllHandler(int) { longjmp(s_jmpSIGILL, 1); } }; #endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY #if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64) bool CPU_ProbeAES() { #if (CRYPTOPP_ARM_AES_AVAILABLE) # if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY) volatile bool result = true; __try { // AES encrypt and decrypt uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); uint8x16_t r1 = vaeseq_u8(data, key); uint8x16_t r2 = vaesdq_u8(data, key); r1 = vaesmcq_u8(r1); r2 = vaesimcq_u8(r2); result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); } __except (EXCEPTION_EXECUTE_HANDLER) { return false; } return result; # else // longjmp and clobber warnings. Volatile is required. // http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854 volatile bool result = true; volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler); if (oldHandler == SIG_ERR) return false; volatile sigset_t oldMask; if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask)) return false; if (setjmp(s_jmpSIGILL)) result = false; else { uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); uint8x16_t r1 = vaeseq_u8(data, key); uint8x16_t r2 = vaesdq_u8(data, key); r1 = vaesmcq_u8(r1); r2 = vaesimcq_u8(r2); // Hack... GCC optimizes away the code and returns true result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); } sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR); signal(SIGILL, oldHandler); return result; # endif #else return false; #endif // CRYPTOPP_ARM_AES_AVAILABLE } #endif // ARM32 or ARM64 #if (CRYPTOPP_ARM_AES_AVAILABLE) inline void ARMV8_Enc_Block(uint8x16_t &block, const word32 *subkeys, unsigned int rounds) { const byte *keys = reinterpret_cast(subkeys); // Unroll the loop, profit 0.3 to 0.5 cpb. block = vaeseq_u8(block, vld1q_u8(keys+0)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+16)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+32)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+48)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+64)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+80)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+96)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+112)); block = vaesmcq_u8(block); block = vaeseq_u8(block, vld1q_u8(keys+128)); block = vaesmcq_u8(block); unsigned int i=9; for ( ; i(subkeys); unsigned int i=0; for ( ; i(subkeys); // Unroll the loop, profit 0.3 to 0.5 cpb. block = vaesdq_u8(block, vld1q_u8(keys+0)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+16)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+32)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+48)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+64)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+80)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+96)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+112)); block = vaesimcq_u8(block); block = vaesdq_u8(block, vld1q_u8(keys+128)); block = vaesimcq_u8(block); unsigned int i=9; for ( ; i(subkeys); unsigned int i=0; for ( ; i size_t Rijndael_AdvancedProcessBlocks_ARMV8(F1 func1, F4 func4, const word32 *subkeys, unsigned int rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { size_t blockSize = 16; size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; size_t xorIncrement = xorBlocks ? blockSize : 0; size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; if (flags & BlockTransformation::BT_ReverseDirection) { inBlocks += length - blockSize; xorBlocks += length - blockSize; outBlocks += length - blockSize; inIncrement = 0-inIncrement; xorIncrement = 0-xorIncrement; outIncrement = 0-outIncrement; } if (flags & BlockTransformation::BT_AllowParallel) { while (length >= 4*blockSize) { uint8x16_t block0, block1, block2, block3, temp; block0 = vld1q_u8(inBlocks); if (flags & BlockTransformation::BT_InBlockIsCounter) { uint32x4_t be = vld1q_u32(s_one); block1 = vaddq_u8(block0, vreinterpretq_u8_u32(be)); block2 = vaddq_u8(block1, vreinterpretq_u8_u32(be)); block3 = vaddq_u8(block2, vreinterpretq_u8_u32(be)); temp = vaddq_u8(block3, vreinterpretq_u8_u32(be)); vst1q_u8(const_cast(inBlocks), temp); } else { inBlocks += inIncrement; block1 = vld1q_u8(inBlocks); inBlocks += inIncrement; block2 = vld1q_u8(inBlocks); inBlocks += inIncrement; block3 = vld1q_u8(inBlocks); inBlocks += inIncrement; } if (flags & BlockTransformation::BT_XorInput) { block0 = veorq_u8(block0, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; block1 = veorq_u8(block1, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; block2 = veorq_u8(block2, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; block3 = veorq_u8(block3, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; } func4(block0, block1, block2, block3, subkeys, rounds); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) { block0 = veorq_u8(block0, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; block1 = veorq_u8(block1, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; block2 = veorq_u8(block2, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; block3 = veorq_u8(block3, vld1q_u8(xorBlocks)); xorBlocks += xorIncrement; } vst1q_u8(outBlocks, block0); outBlocks += outIncrement; vst1q_u8(outBlocks, block1); outBlocks += outIncrement; vst1q_u8(outBlocks, block2); outBlocks += outIncrement; vst1q_u8(outBlocks, block3); outBlocks += outIncrement; length -= 4*blockSize; } } while (length >= blockSize) { uint8x16_t block = vld1q_u8(inBlocks); if (flags & BlockTransformation::BT_XorInput) block = veorq_u8(block, vld1q_u8(xorBlocks)); if (flags & BlockTransformation::BT_InBlockIsCounter) const_cast(inBlocks)[15]++; func1(block, subkeys, rounds); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) block = veorq_u8(block, vld1q_u8(xorBlocks)); vst1q_u8(outBlocks, block); inBlocks += inIncrement; outBlocks += outIncrement; xorBlocks += xorIncrement; length -= blockSize; } return length; } size_t Rijndael_Enc_AdvancedProcessBlocks_ARMV8(const word32 *subkeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_ARMV8(ARMV8_Enc_Block, ARMV8_Enc_4_Blocks, subkeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subkeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_ARMV8(ARMV8_Dec_Block, ARMV8_Dec_4_Blocks, subkeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_ARM_AES_AVAILABLE #if (CRYPTOPP_AESNI_AVAILABLE) inline void AESNI_Enc_Block(__m128i &block, MAYBE_CONST __m128i *subkeys, unsigned int rounds) { block = _mm_xor_si128(block, subkeys[0]); for (unsigned int i=1; i inline size_t Rijndael_AdvancedProcessBlocks_AESNI(F1 func1, F4 func4, MAYBE_CONST word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { size_t blockSize = 16; size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; size_t xorIncrement = xorBlocks ? blockSize : 0; size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; MAYBE_CONST __m128i *subkeys = reinterpret_cast(subKeys); if (flags & BlockTransformation::BT_ReverseDirection) { inBlocks += length - blockSize; xorBlocks += length - blockSize; outBlocks += length - blockSize; inIncrement = 0-inIncrement; xorIncrement = 0-xorIncrement; outIncrement = 0-outIncrement; } if (flags & BlockTransformation::BT_AllowParallel) { while (length >= 4*blockSize) { __m128i block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)), block1, block2, block3; if (flags & BlockTransformation::BT_InBlockIsCounter) { const __m128i be1 = *CONST_M128_CAST(s_one); block1 = _mm_add_epi32(block0, be1); block2 = _mm_add_epi32(block1, be1); block3 = _mm_add_epi32(block2, be1); _mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1)); } else { inBlocks += inIncrement; block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; } if (flags & BlockTransformation::BT_XorInput) { // Coverity finding, appears to be false positive. Assert the condition. CRYPTOPP_ASSERT(xorBlocks); block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; } func4(block0, block1, block2, block3, subkeys, static_cast(rounds)); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) { block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; } _mm_storeu_si128(M128_CAST(outBlocks), block0); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block1); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block2); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block3); outBlocks += outIncrement; length -= 4*blockSize; } } while (length >= blockSize) { __m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); if (flags & BlockTransformation::BT_XorInput) block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); if (flags & BlockTransformation::BT_InBlockIsCounter) const_cast(inBlocks)[15]++; func1(block, subkeys, static_cast(rounds)); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); _mm_storeu_si128(M128_CAST(outBlocks), block); inBlocks += inIncrement; outBlocks += outIncrement; xorBlocks += xorIncrement; length -= blockSize; } return length; } size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(MAYBE_CONST word32 *subkeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Enc_Block, AESNI_Enc_4_Blocks, subkeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(MAYBE_CONST word32 *subkeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Dec_Block, AESNI_Dec_4_Blocks, subkeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk) { const unsigned rounds = static_cast(keyLen/4 + 6); static const word32 rcLE[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ }; const word32 *ro = rcLE, *rc = rcLE; CRYPTOPP_UNUSED(ro); __m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16)); std::memcpy(rk, userKey, keyLen); // keySize: m_key allocates 4*(rounds+1 word32's. const size_t keySize = 4*(rounds+1); const word32* end = rk + keySize; while (true) { CRYPTOPP_ASSERT(rc < ro + COUNTOF(rcLE)); rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++); rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4]; rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1]; rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2]; if (rk + keyLen/4 + 4 == end) break; if (keyLen == 24) { rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; CRYPTOPP_ASSERT(keySize >= 12); temp = _mm_insert_epi32(temp, rk[11], 3); } else if (keyLen == 32) { CRYPTOPP_ASSERT(keySize >= 12); temp = _mm_insert_epi32(temp, rk[11], 3); rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; CRYPTOPP_ASSERT(keySize >= 16); temp = _mm_insert_epi32(temp, rk[15], 3); } else { CRYPTOPP_ASSERT(keySize >= 8); temp = _mm_insert_epi32(temp, rk[7], 3); } rk += keyLen/4; } } void Rijndael_UncheckedSetKeyRev_SSE4_AESNI(word32 *key, unsigned int rounds) { unsigned int i, j; __m128i temp; #if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120) // __m128i is an unsigned long long[2], and support for swapping it was not added until C++11. // SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11. vec_swap(*(__m128i *)(key), *(__m128i *)(key+4*rounds)); #else std::swap(*M128_CAST(key), *M128_CAST(key+4*rounds)); #endif for (i = 4, j = 4*rounds-4; i < j; i += 4, j -= 4) { temp = _mm_aesimc_si128(*M128_CAST(key+i)); *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+j)); *M128_CAST(key+j) = temp; } *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i)); } #endif // CRYPTOPP_AESNI_AVAILABLE NAMESPACE_END