// nbtheory.h - originally written and placed in the public domain by Wei Dai /// \file nbtheory.h /// \brief Classes and functions for number theoretic operations #ifndef CRYPTOPP_NBTHEORY_H #define CRYPTOPP_NBTHEORY_H #include "cryptlib.h" #include "integer.h" #include "algparam.h" NAMESPACE_BEGIN(CryptoPP) // obtain pointer to small prime table and get its size CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size); // ************ primality testing **************** /// \brief Generates a provable prime /// \param rng a RandomNumberGenerator to produce keying material /// \param bits the number of bits in the prime number /// \returns Integer() meeting Maurer's tests for primality CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); /// \brief Generates a provable prime /// \param rng a RandomNumberGenerator to produce keying material /// \param bits the number of bits in the prime number /// \returns Integer() meeting Mihailescu's tests for primality /// \details Mihailescu's methods performs a search using algorithmic progressions. CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); /// \brief Tests whether a number is a small prime /// \param p a candidate prime to test /// \returns true if p is a small prime, false otherwise /// \details Internally, the library maintains a table fo the first 32719 prime numbers /// in sorted order. IsSmallPrime() searches the table and returns true if p is /// in the table. CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p); /// /// \returns true if p is divisible by some prime less than bound. /// \details TrialDivision() true if p is divisible by some prime less than bound. bound not be /// greater than the largest entry in the prime table, which is 32719. CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound); // returns true if p is NOT divisible by small primes CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p); // These is no reason to use these two, use the ones below instead CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b); CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n); CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b); CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n); // Rabin-Miller primality test, i.e. repeating the strong probable prime test // for several rounds with random bases CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds); /// \brief Verifies a prime number /// \param p a candidate prime to test /// \returns true if p is a probable prime, false otherwise /// \details IsPrime() is suitable for testing candidate primes when creating them. Internally, /// IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime(). CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p); /// \brief Verifies a prime number /// \param rng a RandomNumberGenerator for randomized testing /// \param p a candidate prime to test /// \param level the level of thoroughness of testing /// \returns true if p is a strong probable prime, false otherwise /// \details VerifyPrime() is suitable for testing candidate primes created by others. Internally, /// VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candiate passes and /// level is greater than 1, then 10 round RabinMillerTest() primality testing is performed. CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); /// \class PrimeSelector /// \brief Application callback to signal suitability of a cabdidate prime class CRYPTOPP_DLL PrimeSelector { public: const PrimeSelector *GetSelectorPointer() const {return this;} virtual bool IsAcceptable(const Integer &candidate) const =0; }; /// \brief Finds a random prime of special form /// \param p an Integer reference to receive the prime /// \param max the maximum value /// \param equiv the equivalence class based on the parameter mod /// \param mod the modulus used to reduce the equivalence class /// \param pSelector pointer to a PrimeSelector function for the application to signal suitability /// \returns true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime() /// returns false, then no such prime exists and the value of p is undefined /// \details FirstPrime() uses a fast sieve to find the first probable prime /// in {x | p<=x<=max and x%mod==equiv} CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max); CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); // ********** other number theoretic functions ************ inline Integer GCD(const Integer &a, const Integer &b) {return Integer::Gcd(a,b);} inline bool RelativelyPrime(const Integer &a, const Integer &b) {return Integer::Gcd(a,b) == Integer::One();} inline Integer LCM(const Integer &a, const Integer &b) {return a/Integer::Gcd(a,b)*b;} inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) {return a.InverseMod(b);} // use Chinese Remainder Theorem to calculate x given x mod p and x mod q, and u = inverse of p mod q CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); // if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise // check a number theory book for what Jacobi symbol means when b is not prime CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b); // calculates the Lucas function V_e(p, 1) mod n CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n); // calculates x such that m==Lucas(e, x, p*q), p q primes, u=inverse of p mod q CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m) {return a_exp_b_mod_c(a, e, m);} // returns x such that x*x%p == a, p prime CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p); // returns x such that a==ModularExponentiation(x, e, p*q), p q primes, // and e relatively prime to (p-1)*(q-1) // dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1)) // and u=inverse of p mod q CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); // find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime // returns true if solutions exist CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); // returns log base 2 of estimated number of operations to calculate discrete log or factor a number CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength); CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength); // ******************************************************** /// \class PrimeAndGenerator /// \brief Generator of prime numbers of special forms class CRYPTOPP_DLL PrimeAndGenerator { public: /// \brief Construct a PrimeAndGenerator PrimeAndGenerator() {} /// \brief Construct a PrimeAndGenerator /// \param delta +1 or -1 /// \param rng a RandomNumberGenerator derived class /// \param pbits the number of bits in the prime p /// \details PrimeAndGenerator() generates a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is /// also prime. Internally the constructor calls Generate(delta, rng, pbits, pbits-1). /// \pre pbits > 5 /// \warning This PrimeAndGenerator() is slow because primes of this form are harder to find. PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits) {Generate(delta, rng, pbits, pbits-1);} /// \brief Construct a PrimeAndGenerator /// \param delta +1 or -1 /// \param rng a RandomNumberGenerator derived class /// \param pbits the number of bits in the prime p /// \param qbits the number of bits in the prime q /// \details PrimeAndGenerator() generates a random prime p of the form 2*r*q+delta, where q is also prime. /// Internally the constructor calls Generate(delta, rng, pbits, qbits). /// \pre qbits > 4 && pbits > qbits PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits) {Generate(delta, rng, pbits, qbits);} /// \brief Generate a Prime and Generator /// \param delta +1 or -1 /// \param rng a RandomNumberGenerator derived class /// \param pbits the number of bits in the prime p /// \param qbits the number of bits in the prime q /// \details Generate() generates a random prime p of the form 2*r*q+delta, where q is also prime. void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits); /// \brief Retrieve first prime /// \returns Prime() returns the prime p. const Integer& Prime() const {return p;} /// \brief Retrieve second prime /// \returns SubPrime() returns the prime q. const Integer& SubPrime() const {return q;} /// \brief Retrieve the generator /// \returns Generator() returns the the generator g. const Integer& Generator() const {return g;} private: Integer p, q, g; }; NAMESPACE_END #endif