// modes.cpp - originally written and placed in the public domain by Wei Dai #include "pch.h" #ifndef CRYPTOPP_IMPORTS #include "modes.h" #include "misc.h" #if defined(CRYPTOPP_DEBUG) #include "des.h" #endif NAMESPACE_BEGIN(CryptoPP) #if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING) void Modes_TestInstantiations() { CFB_Mode::Encryption m0; CFB_Mode::Decryption m1; OFB_Mode::Encryption m2; CTR_Mode::Encryption m3; ECB_Mode::Encryption m4; CBC_Mode::Encryption m5; } #endif void CipherModeBase::ResizeBuffers() { m_register.New(m_cipher->BlockSize()); } void CFB_ModePolicy::Iterate(byte *output, const byte *input, CipherDir dir, size_t iterationCount) { CRYPTOPP_ASSERT(input); CRYPTOPP_ASSERT(output); CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation()); // CFB mode needs the "encrypt" direction of the underlying block cipher, even to decrypt CRYPTOPP_ASSERT(m_feedbackSize == BlockSize()); const unsigned int s = BlockSize(); if (dir == ENCRYPTION) { m_cipher->ProcessAndXorBlock(m_register, input, output); if (iterationCount > 1) m_cipher->AdvancedProcessBlocks(output, input+s, output+s, (iterationCount-1)*s, 0); memcpy(m_register, output+(iterationCount-1)*s, s); } else { memcpy(m_temp, input+(iterationCount-1)*s, s); // make copy first in case of in-place decryption if (iterationCount > 1) m_cipher->AdvancedProcessBlocks(input, input+s, output+s, (iterationCount-1)*s, BlockTransformation::BT_ReverseDirection); m_cipher->ProcessAndXorBlock(m_register, input, output); memcpy(m_register, m_temp, s); } } void CFB_ModePolicy::TransformRegister() { CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation()); // CFB mode needs the "encrypt" direction of the underlying block cipher, even to decrypt m_cipher->ProcessBlock(m_register, m_temp); unsigned int updateSize = BlockSize()-m_feedbackSize; memmove_s(m_register, m_register.size(), m_register+m_feedbackSize, updateSize); memcpy_s(m_register+updateSize, m_register.size()-updateSize, m_temp, m_feedbackSize); } void CFB_ModePolicy::CipherResynchronize(const byte *iv, size_t length) { CRYPTOPP_ASSERT(length == BlockSize()); CopyOrZero(m_register, iv, length); TransformRegister(); } void CFB_ModePolicy::SetFeedbackSize(unsigned int feedbackSize) { if (feedbackSize > BlockSize()) throw InvalidArgument("CFB_Mode: invalid feedback size"); m_feedbackSize = feedbackSize ? feedbackSize : BlockSize(); } void CFB_ModePolicy::ResizeBuffers() { CipherModeBase::ResizeBuffers(); m_temp.New(BlockSize()); } void OFB_ModePolicy::WriteKeystream(byte *keystreamBuffer, size_t iterationCount) { CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation()); // OFB mode needs the "encrypt" direction of the underlying block cipher, even to decrypt unsigned int s = BlockSize(); m_cipher->ProcessBlock(m_register, keystreamBuffer); if (iterationCount > 1) m_cipher->AdvancedProcessBlocks(keystreamBuffer, NULLPTR, keystreamBuffer+s, s*(iterationCount-1), 0); memcpy(m_register, keystreamBuffer+s*(iterationCount-1), s); } void OFB_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length) { CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length); CRYPTOPP_ASSERT(length == BlockSize()); CopyOrZero(m_register, iv, length); } void CTR_ModePolicy::SeekToIteration(lword iterationCount) { int carry=0; for (int i=BlockSize()-1; i>=0; i--) { unsigned int sum = m_register[i] + byte(iterationCount) + carry; m_counterArray[i] = (byte) sum; carry = sum >> 8; iterationCount >>= 8; } } void CTR_ModePolicy::IncrementCounterBy256() { IncrementCounterByOne(m_counterArray, BlockSize()-1); } void CTR_ModePolicy::OperateKeystream(KeystreamOperation /*operation*/, byte *output, const byte *input, size_t iterationCount) { CRYPTOPP_ASSERT(m_cipher->IsForwardTransformation()); // CTR mode needs the "encrypt" direction of the underlying block cipher, even to decrypt unsigned int s = BlockSize(); unsigned int inputIncrement = input ? s : 0; while (iterationCount) { byte lsb = m_counterArray[s-1]; size_t blocks = UnsignedMin(iterationCount, 256U-lsb); m_cipher->AdvancedProcessBlocks(m_counterArray, input, output, blocks*s, BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_AllowParallel); if ((m_counterArray[s-1] = lsb + (byte)blocks) == 0) IncrementCounterBy256(); output += blocks*s; input += blocks*inputIncrement; iterationCount -= blocks; } } void CTR_ModePolicy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length) { CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length); CRYPTOPP_ASSERT(length == BlockSize()); CopyOrZero(m_register, iv, length); m_counterArray = m_register; } void BlockOrientedCipherModeBase::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs ¶ms) { m_cipher->SetKey(key, length, params); ResizeBuffers(); if (IsResynchronizable()) { size_t ivLength; const byte *iv = GetIVAndThrowIfInvalid(params, ivLength); Resynchronize(iv, (int)ivLength); } } void BlockOrientedCipherModeBase::ResizeBuffers() { CipherModeBase::ResizeBuffers(); m_buffer.New(BlockSize()); } void ECB_OneWay::ProcessData(byte *outString, const byte *inString, size_t length) { CRYPTOPP_ASSERT(length%BlockSize()==0); m_cipher->AdvancedProcessBlocks(inString, NULLPTR, outString, length, BlockTransformation::BT_AllowParallel); } void CBC_Encryption::ProcessData(byte *outString, const byte *inString, size_t length) { if (!length) return; CRYPTOPP_ASSERT(length%BlockSize()==0); unsigned int blockSize = BlockSize(); m_cipher->AdvancedProcessBlocks(inString, m_register, outString, blockSize, BlockTransformation::BT_XorInput); if (length > blockSize) m_cipher->AdvancedProcessBlocks(inString+blockSize, outString, outString+blockSize, length-blockSize, BlockTransformation::BT_XorInput); memcpy(m_register, outString + length - blockSize, blockSize); } void CBC_CTS_Encryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length) { if (length <= BlockSize()) { if (!m_stolenIV) throw InvalidArgument("CBC_Encryption: message is too short for ciphertext stealing"); // steal from IV memcpy(outString, m_register, length); outString = m_stolenIV; } else { // steal from next to last block xorbuf(m_register, inString, BlockSize()); m_cipher->ProcessBlock(m_register); inString += BlockSize(); length -= BlockSize(); memcpy(outString+BlockSize(), m_register, length); } // output last full ciphertext block xorbuf(m_register, inString, length); m_cipher->ProcessBlock(m_register); memcpy(outString, m_register, BlockSize()); } void CBC_Decryption::ResizeBuffers() { BlockOrientedCipherModeBase::ResizeBuffers(); m_temp.New(BlockSize()); } void CBC_Decryption::ProcessData(byte *outString, const byte *inString, size_t length) { if (!length) return; CRYPTOPP_ASSERT(length%BlockSize()==0); unsigned int blockSize = BlockSize(); memcpy(m_temp, inString+length-blockSize, blockSize); // save copy now in case of in-place decryption if (length > blockSize) m_cipher->AdvancedProcessBlocks(inString+blockSize, inString, outString+blockSize, length-blockSize, BlockTransformation::BT_ReverseDirection|BlockTransformation::BT_AllowParallel); m_cipher->ProcessAndXorBlock(inString, m_register, outString); m_register.swap(m_temp); } void CBC_CTS_Decryption::ProcessLastBlock(byte *outString, const byte *inString, size_t length) { const byte *pn, *pn1; bool stealIV = length <= BlockSize(); if (stealIV) { pn = inString; pn1 = m_register; } else { pn = inString + BlockSize(); pn1 = inString; length -= BlockSize(); } // decrypt last partial plaintext block memcpy(m_temp, pn1, BlockSize()); m_cipher->ProcessBlock(m_temp); xorbuf(m_temp, pn, length); if (stealIV) memcpy(outString, m_temp, length); else { memcpy(outString+BlockSize(), m_temp, length); // decrypt next to last plaintext block memcpy(m_temp, pn, length); m_cipher->ProcessBlock(m_temp); xorbuf(outString, m_temp, m_register, BlockSize()); } } NAMESPACE_END #endif