#ifndef CRYPTOPP_MODARITH_H #define CRYPTOPP_MODARITH_H // implementations are in integer.cpp #include "cryptlib.h" #include "misc.h" #include "integer.h" #include "algebra.h" NAMESPACE_BEGIN(CryptoPP) CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain; //! . class CRYPTOPP_DLL ModularArithmetic : public AbstractRing { public: typedef int RandomizationParameter; typedef Integer Element; ModularArithmetic(const Integer &modulus = Integer::One()) : modulus(modulus), result((word)0, modulus.reg.size()) {} ModularArithmetic(const ModularArithmetic &ma) : modulus(ma.modulus), result((word)0, modulus.reg.size()) {} ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);} void DEREncode(BufferedTransformation &bt) const; void DEREncodeElement(BufferedTransformation &out, const Element &a) const; void BERDecodeElement(BufferedTransformation &in, Element &a) const; const Integer& GetModulus() const {return modulus;} void SetModulus(const Integer &newModulus) {modulus = newModulus; result.reg.resize(modulus.reg.size());} virtual bool IsMontgomeryRepresentation() const {return false;} virtual Integer ConvertIn(const Integer &a) const {return a%modulus;} virtual Integer ConvertOut(const Integer &a) const {return a;} const Integer& Half(const Integer &a) const; bool Equal(const Integer &a, const Integer &b) const {return a==b;} const Integer& Identity() const {return Integer::Zero();} const Integer& Add(const Integer &a, const Integer &b) const; Integer& Accumulate(Integer &a, const Integer &b) const; const Integer& Inverse(const Integer &a) const; const Integer& Subtract(const Integer &a, const Integer &b) const; Integer& Reduce(Integer &a, const Integer &b) const; const Integer& Double(const Integer &a) const {return Add(a, a);} const Integer& MultiplicativeIdentity() const {return Integer::One();} const Integer& Multiply(const Integer &a, const Integer &b) const {return result1 = a*b%modulus;} const Integer& Square(const Integer &a) const {return result1 = a.Squared()%modulus;} bool IsUnit(const Integer &a) const {return Integer::Gcd(a, modulus).IsUnit();} const Integer& MultiplicativeInverse(const Integer &a) const {return result1 = a.InverseMod(modulus);} const Integer& Divide(const Integer &a, const Integer &b) const {return Multiply(a, MultiplicativeInverse(b));} Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const; void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; unsigned int MaxElementBitLength() const {return (modulus-1).BitCount();} unsigned int MaxElementByteLength() const {return (modulus-1).ByteCount();} Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0 ) const // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct { return Element( rng , Integer( (long) 0) , modulus - Integer( (long) 1 ) ) ; } bool operator==(const ModularArithmetic &rhs) const {return modulus == rhs.modulus;} static const RandomizationParameter DefaultRandomizationParameter ; protected: Integer modulus; mutable Integer result, result1; }; // const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ; //! do modular arithmetics in Montgomery representation for increased speed class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic { public: MontgomeryRepresentation(const Integer &modulus); // modulus must be odd virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);} bool IsMontgomeryRepresentation() const {return true;} Integer ConvertIn(const Integer &a) const {return (a<<(WORD_BITS*modulus.reg.size()))%modulus;} Integer ConvertOut(const Integer &a) const; const Integer& MultiplicativeIdentity() const {return result1 = Integer::Power2(WORD_BITS*modulus.reg.size())%modulus;} const Integer& Multiply(const Integer &a, const Integer &b) const; const Integer& Square(const Integer &a) const; const Integer& MultiplicativeInverse(const Integer &a) const; Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const {return AbstractRing::CascadeExponentiate(x, e1, y, e2);} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {AbstractRing::SimultaneousExponentiate(results, base, exponents, exponentsCount);} private: Integer u; mutable SecAlignedWordBlock workspace; }; NAMESPACE_END #endif