// modarith.h - originally written and placed in the public domain by Wei Dai /// \file modarith.h /// \brief Class file for performing modular arithmetic. #ifndef CRYPTOPP_MODARITH_H #define CRYPTOPP_MODARITH_H // implementations are in integer.cpp #include "cryptlib.h" #include "integer.h" #include "algebra.h" #include "secblock.h" #include "misc.h" #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4231 4275) #endif NAMESPACE_BEGIN(CryptoPP) CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain; /// \brief Ring of congruence classes modulo n /// \details This implementation represents each congruence class as /// the smallest non-negative integer in that class. /// \details const Element& returned by member functions are /// references to internal data members. Since each object may have /// only one such data member for holding results, you should use the /// class like this: ///
    abcd = group.Add(a, group.Add(b, group.Add(c,d));
/// The following code will produce incorrect results: ///
    abcd = group.Add(group.Add(a,b), group.Add(c,d));
/// \details If a ModularArithmetic() is copied or assigned the modulus /// is copied, but not the internal data members. The internal data /// members are undefined after copy or assignment. /// \sa Integer on the /// Crypto++ wiki. class CRYPTOPP_DLL ModularArithmetic : public AbstractRing { public: typedef int RandomizationParameter; typedef Integer Element; virtual ~ModularArithmetic() {} /// \brief Construct a ModularArithmetic /// \param modulus congruence class modulus ModularArithmetic(const Integer &modulus = Integer::One()) : m_modulus(modulus), m_result(static_cast(0), modulus.reg.size()) {} /// \brief Copy construct a ModularArithmetic /// \param ma other ModularArithmetic ModularArithmetic(const ModularArithmetic &ma) : AbstractRing(ma), m_modulus(ma.m_modulus), m_result(static_cast(0), m_modulus.reg.size()) {} /// \brief Assign a ModularArithmetic /// \param ma other ModularArithmetic ModularArithmetic& operator=(const ModularArithmetic &ma) { if (this != &ma) { m_modulus = ma.m_modulus; m_result = Integer(static_cast(0), m_modulus.reg.size()); } return *this; } /// \brief Construct a ModularArithmetic /// \param bt BER encoded ModularArithmetic ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters /// \brief Clone a ModularArithmetic /// \return pointer to a new ModularArithmetic /// \details Clone effectively copy constructs a new ModularArithmetic. The caller is /// responsible for deleting the pointer returned from this method. virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);} /// \brief Encodes in DER format /// \param bt BufferedTransformation object void DEREncode(BufferedTransformation &bt) const; /// \brief Encodes element in DER format /// \param out BufferedTransformation object /// \param a Element to encode void DEREncodeElement(BufferedTransformation &out, const Element &a) const; /// \brief Decodes element in DER format /// \param in BufferedTransformation object /// \param a Element to decode void BERDecodeElement(BufferedTransformation &in, Element &a) const; /// \brief Retrieves the modulus /// \return the modulus const Integer& GetModulus() const {return m_modulus;} /// \brief Sets the modulus /// \param newModulus the new modulus void SetModulus(const Integer &newModulus) {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());} /// \brief Retrieves the representation /// \return true if the if the modulus is in Montgomery form for multiplication, false otherwise virtual bool IsMontgomeryRepresentation() const {return false;} /// \brief Reduces an element in the congruence class /// \param a element to convert /// \return the reduced element /// \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which /// must convert between representations. virtual Integer ConvertIn(const Integer &a) const {return a%m_modulus;} /// \brief Reduces an element in the congruence class /// \param a element to convert /// \return the reduced element /// \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which /// must convert between representations. virtual Integer ConvertOut(const Integer &a) const {return a;} /// \brief Divides an element by 2 /// \param a element to convert const Integer& Half(const Integer &a) const; /// \brief Compare two elements for equality /// \param a first element /// \param b second element /// \return true if the elements are equal, false otherwise /// \details Equal() tests the elements for equality using a==b bool Equal(const Integer &a, const Integer &b) const {return a==b;} /// \brief Provides the Identity element /// \return the Identity element const Integer& Identity() const {return Integer::Zero();} /// \brief Adds elements in the ring /// \param a first element /// \param b second element /// \return the sum of a and b const Integer& Add(const Integer &a, const Integer &b) const; /// \brief TODO /// \param a first element /// \param b second element /// \return TODO Integer& Accumulate(Integer &a, const Integer &b) const; /// \brief Inverts the element in the ring /// \param a first element /// \return the inverse of the element const Integer& Inverse(const Integer &a) const; /// \brief Subtracts elements in the ring /// \param a first element /// \param b second element /// \return the difference of a and b. The element a must provide a Subtract member function. const Integer& Subtract(const Integer &a, const Integer &b) const; /// \brief TODO /// \param a first element /// \param b second element /// \return TODO Integer& Reduce(Integer &a, const Integer &b) const; /// \brief Doubles an element in the ring /// \param a the element /// \return the element doubled /// \details Double returns Add(a, a). The element a must provide an Add member function. const Integer& Double(const Integer &a) const {return Add(a, a);} /// \brief Retrieves the multiplicative identity /// \return the multiplicative identity /// \details the base class implementations returns 1. const Integer& MultiplicativeIdentity() const {return Integer::One();} /// \brief Multiplies elements in the ring /// \param a the multiplicand /// \param b the multiplier /// \return the product of a and b /// \details Multiply returns a*b\%n. const Integer& Multiply(const Integer &a, const Integer &b) const {return m_result1 = a*b%m_modulus;} /// \brief Square an element in the ring /// \param a the element /// \return the element squared /// \details Square returns a*a\%n. The element a must provide a Square member function. const Integer& Square(const Integer &a) const {return m_result1 = a.Squared()%m_modulus;} /// \brief Determines whether an element is a unit in the ring /// \param a the element /// \return true if the element is a unit after reduction, false otherwise. bool IsUnit(const Integer &a) const {return Integer::Gcd(a, m_modulus).IsUnit();} /// \brief Calculate the multiplicative inverse of an element in the ring /// \param a the element /// \details MultiplicativeInverse returns a-1\%n. The element a must /// provide a InverseMod member function. const Integer& MultiplicativeInverse(const Integer &a) const {return m_result1 = a.InverseMod(m_modulus);} /// \brief Divides elements in the ring /// \param a the dividend /// \param b the divisor /// \return the quotient /// \details Divide returns a*b-1\%n. const Integer& Divide(const Integer &a, const Integer &b) const {return Multiply(a, MultiplicativeInverse(b));} /// \brief TODO /// \param x first element /// \param e1 first exponent /// \param y second element /// \param e2 second exponent /// \return TODO Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const; /// \brief Exponentiates a base to multiple exponents in the ring /// \param results an array of Elements /// \param base the base to raise to the exponents /// \param exponents an array of exponents /// \param exponentsCount the number of exponents in the array /// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the /// result at the respective position in the results array. /// \details SimultaneousExponentiate() must be implemented in a derived class. /// \pre COUNTOF(results) == exponentsCount /// \pre COUNTOF(exponents) == exponentsCount void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; /// \brief Provides the maximum bit size of an element in the ring /// \return maximum bit size of an element unsigned int MaxElementBitLength() const {return (m_modulus-1).BitCount();} /// \brief Provides the maximum byte size of an element in the ring /// \return maximum byte size of an element unsigned int MaxElementByteLength() const {return (m_modulus-1).ByteCount();} /// \brief Provides a random element in the ring /// \param rng RandomNumberGenerator used to generate material /// \param ignore_for_now unused /// \return a random element that is uniformly distributed /// \details RandomElement constructs a new element in the range [0,n-1], inclusive. /// The element's class must provide a constructor with the signature Element(RandomNumberGenerator rng, /// Element min, Element max). Element RandomElement(RandomNumberGenerator &rng, const RandomizationParameter &ignore_for_now = 0) const // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct { CRYPTOPP_UNUSED(ignore_for_now); return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ; } /// \brief Compares two ModularArithmetic for equality /// \param rhs other ModularArithmetic /// \return true if this is equal to the other, false otherwise /// \details The operator tests for equality using this.m_modulus == rhs.m_modulus. bool operator==(const ModularArithmetic &rhs) const {return m_modulus == rhs.m_modulus;} static const RandomizationParameter DefaultRandomizationParameter; private: // TODO: Clang on OS X needs a real operator=. // Squash warning on missing assignment operator. // ModularArithmetic& operator=(const ModularArithmetic &ma); protected: Integer m_modulus; mutable Integer m_result, m_result1; }; // const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ; /// \brief Performs modular arithmetic in Montgomery representation for increased speed /// \details The Montgomery representation represents each congruence class [a] as /// a*r\%n, where r is a convenient power of 2. /// \details const Element& returned by member functions are references to /// internal data members. Since each object may have only one such data member for holding /// results, the following code will produce incorrect results: ///
    abcd = group.Add(group.Add(a,b), group.Add(c,d));
/// But this should be fine: ///
    abcd = group.Add(a, group.Add(b, group.Add(c,d));
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic { public: virtual ~MontgomeryRepresentation() {} /// \brief Construct a MontgomeryRepresentation /// \param modulus congruence class modulus /// \note The modulus must be odd. MontgomeryRepresentation(const Integer &modulus); /// \brief Clone a MontgomeryRepresentation /// \return pointer to a new MontgomeryRepresentation /// \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is /// responsible for deleting the pointer returned from this method. virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);} bool IsMontgomeryRepresentation() const {return true;} Integer ConvertIn(const Integer &a) const {return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;} Integer ConvertOut(const Integer &a) const; const Integer& MultiplicativeIdentity() const {return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;} const Integer& Multiply(const Integer &a, const Integer &b) const; const Integer& Square(const Integer &a) const; const Integer& MultiplicativeInverse(const Integer &a) const; Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const {return AbstractRing::CascadeExponentiate(x, e1, y, e2);} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {AbstractRing::SimultaneousExponentiate(results, base, exponents, exponentsCount);} private: Integer m_u; mutable IntegerSecBlock m_workspace; }; NAMESPACE_END #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif #endif