// lsh.cpp - written and placed in the public domain by Jeffrey Walton // Based on the specification and source code provided by // Korea Internet & Security Agency (KISA) website. Also // see https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do // and https://seed.kisa.or.kr/kisa/Board/22/detailView.do. // We are hitting some sort of GCC bug in the LSH AVX2 code path. // Clang is OK on the AVX2 code path. We believe it is GCC Issue // 82735, https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82735. It // makes using zeroupper a little tricky. #include "pch.h" #include "config.h" #include "lsh.h" #include "cpu.h" #include "misc.h" ANONYMOUS_NAMESPACE_BEGIN /* LSH Constants */ const unsigned int LSH256_MSG_BLK_BYTE_LEN = 128; // const unsigned int LSH256_MSG_BLK_BIT_LEN = 1024; // const unsigned int LSH256_CV_BYTE_LEN = 64; const unsigned int LSH256_HASH_VAL_MAX_BYTE_LEN = 32; // const unsigned int MSG_BLK_WORD_LEN = 32; const unsigned int CV_WORD_LEN = 16; const unsigned int CONST_WORD_LEN = 8; const unsigned int HASH_VAL_MAX_WORD_LEN = 8; // const unsigned int WORD_BIT_LEN = 32; const unsigned int NUM_STEPS = 26; const unsigned int ROT_EVEN_ALPHA = 29; const unsigned int ROT_EVEN_BETA = 1; const unsigned int ROT_ODD_ALPHA = 5; const unsigned int ROT_ODD_BETA = 17; const unsigned int LSH_TYPE_256_256 = 0x0000020; const unsigned int LSH_TYPE_256_224 = 0x000001C; // const unsigned int LSH_TYPE_224 = LSH_TYPE_256_224; // const unsigned int LSH_TYPE_256 = LSH_TYPE_256_256; /* Error Code */ const unsigned int LSH_SUCCESS = 0x0; // const unsigned int LSH_ERR_NULL_PTR = 0x2401; // const unsigned int LSH_ERR_INVALID_ALGTYPE = 0x2402; const unsigned int LSH_ERR_INVALID_DATABITLEN = 0x2403; const unsigned int LSH_ERR_INVALID_STATE = 0x2404; /* Index into our state array */ const unsigned int AlgorithmType = 80; const unsigned int RemainingBits = 81; NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(LSH) /* -------------------------------------------------------- * * LSH: iv * -------------------------------------------------------- */ //extern const word32 LSH256_IV224[CV_WORD_LEN]; //extern const word32 LSH256_IV256[CV_WORD_LEN]; //extern const word32 LSH256_StepConstants[CONST_WORD_LEN * NUM_STEPS]; CRYPTOPP_ALIGN_DATA(32) extern const word32 LSH256_IV224[CV_WORD_LEN] = { 0x068608D3, 0x62D8F7A7, 0xD76652AB, 0x4C600A43, 0xBDC40AA8, 0x1ECA0B68, 0xDA1A89BE, 0x3147D354, 0x707EB4F9, 0xF65B3862, 0x6B0B2ABE, 0x56B8EC0A, 0xCF237286, 0xEE0D1727, 0x33636595, 0x8BB8D05F }; CRYPTOPP_ALIGN_DATA(32) extern const word32 LSH256_IV256[CV_WORD_LEN] = { 0x46a10f1f, 0xfddce486, 0xb41443a8, 0x198e6b9d, 0x3304388d, 0xb0f5a3c7, 0xb36061c4, 0x7adbd553, 0x105d5378, 0x2f74de54, 0x5c2f2d95, 0xf2553fbe, 0x8051357a, 0x138668c8, 0x47aa4484, 0xe01afb41 }; /* -------------------------------------------------------- * * LSH: step constants * -------------------------------------------------------- */ extern const word32 LSH256_StepConstants[CONST_WORD_LEN * NUM_STEPS] = { 0x917caf90, 0x6c1b10a2, 0x6f352943, 0xcf778243, 0x2ceb7472, 0x29e96ff2, 0x8a9ba428, 0x2eeb2642, 0x0e2c4021, 0x872bb30e, 0xa45e6cb2, 0x46f9c612, 0x185fe69e, 0x1359621b, 0x263fccb2, 0x1a116870, 0x3a6c612f, 0xb2dec195, 0x02cb1f56, 0x40bfd858, 0x784684b6, 0x6cbb7d2e, 0x660c7ed8, 0x2b79d88a, 0xa6cd9069, 0x91a05747, 0xcdea7558, 0x00983098, 0xbecb3b2e, 0x2838ab9a, 0x728b573e, 0xa55262b5, 0x745dfa0f, 0x31f79ed8, 0xb85fce25, 0x98c8c898, 0x8a0669ec, 0x60e445c2, 0xfde295b0, 0xf7b5185a, 0xd2580983, 0x29967709, 0x182df3dd, 0x61916130, 0x90705676, 0x452a0822, 0xe07846ad, 0xaccd7351, 0x2a618d55, 0xc00d8032, 0x4621d0f5, 0xf2f29191, 0x00c6cd06, 0x6f322a67, 0x58bef48d, 0x7a40c4fd, 0x8beee27f, 0xcd8db2f2, 0x67f2c63b, 0xe5842383, 0xc793d306, 0xa15c91d6, 0x17b381e5, 0xbb05c277, 0x7ad1620a, 0x5b40a5bf, 0x5ab901a2, 0x69a7a768, 0x5b66d9cd, 0xfdee6877, 0xcb3566fc, 0xc0c83a32, 0x4c336c84, 0x9be6651a, 0x13baa3fc, 0x114f0fd1, 0xc240a728, 0xec56e074, 0x009c63c7, 0x89026cf2, 0x7f9ff0d0, 0x824b7fb5, 0xce5ea00f, 0x605ee0e2, 0x02e7cfea, 0x43375560, 0x9d002ac7, 0x8b6f5f7b, 0x1f90c14f, 0xcdcb3537, 0x2cfeafdd, 0xbf3fc342, 0xeab7b9ec, 0x7a8cb5a3, 0x9d2af264, 0xfacedb06, 0xb052106e, 0x99006d04, 0x2bae8d09, 0xff030601, 0xa271a6d6, 0x0742591d, 0xc81d5701, 0xc9a9e200, 0x02627f1e, 0x996d719d, 0xda3b9634, 0x02090800, 0x14187d78, 0x499b7624, 0xe57458c9, 0x738be2c9, 0x64e19d20, 0x06df0f36, 0x15d1cb0e, 0x0b110802, 0x2c95f58c, 0xe5119a6d, 0x59cd22ae, 0xff6eac3c, 0x467ebd84, 0xe5ee453c, 0xe79cd923, 0x1c190a0d, 0xc28b81b8, 0xf6ac0852, 0x26efd107, 0x6e1ae93b, 0xc53c41ca, 0xd4338221, 0x8475fd0a, 0x35231729, 0x4e0d3a7a, 0xa2b45b48, 0x16c0d82d, 0x890424a9, 0x017e0c8f, 0x07b5a3f5, 0xfa73078e, 0x583a405e, 0x5b47b4c8, 0x570fa3ea, 0xd7990543, 0x8d28ce32, 0x7f8a9b90, 0xbd5998fc, 0x6d7a9688, 0x927a9eb6, 0xa2fc7d23, 0x66b38e41, 0x709e491a, 0xb5f700bf, 0x0a262c0f, 0x16f295b9, 0xe8111ef5, 0x0d195548, 0x9f79a0c5, 0x1a41cfa7, 0x0ee7638a, 0xacf7c074, 0x30523b19, 0x09884ecf, 0xf93014dd, 0x266e9d55, 0x191a6664, 0x5c1176c1, 0xf64aed98, 0xa4b83520, 0x828d5449, 0x91d71dd8, 0x2944f2d6, 0x950bf27b, 0x3380ca7d, 0x6d88381d, 0x4138868e, 0x5ced55c4, 0x0fe19dcb, 0x68f4f669, 0x6e37c8ff, 0xa0fe6e10, 0xb44b47b0, 0xf5c0558a, 0x79bf14cf, 0x4a431a20, 0xf17f68da, 0x5deb5fd1, 0xa600c86d, 0x9f6c7eb0, 0xff92f864, 0xb615e07f, 0x38d3e448, 0x8d5d3a6a, 0x70e843cb, 0x494b312e, 0xa6c93613, 0x0beb2f4f, 0x928b5d63, 0xcbf66035, 0x0cb82c80, 0xea97a4f7, 0x592c0f3b, 0x947c5f77, 0x6fff49b9, 0xf71a7e5a, 0x1de8c0f5, 0xc2569600, 0xc4e4ac8c, 0x823c9ce1 }; NAMESPACE_END // LSH NAMESPACE_END // Crypto++ ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::rotlFixed; using CryptoPP::rotlConstant; using CryptoPP::GetBlock; using CryptoPP::LittleEndian; using CryptoPP::ConditionalByteReverse; using CryptoPP::LITTLE_ENDIAN_ORDER; using CryptoPP::LSH::LSH256_IV224; using CryptoPP::LSH::LSH256_IV256; using CryptoPP::LSH::LSH256_StepConstants; typedef byte lsh_u8; typedef word32 lsh_u32; typedef word32 lsh_uint; typedef word32 lsh_err; typedef word32 lsh_type; struct LSH256_Context { LSH256_Context(word32* state, word32 algType, word32& remainingBitLength) : cv_l(state+0), cv_r(state+8), sub_msgs(state+16), last_block(reinterpret_cast(state+48)), remain_databitlen(remainingBitLength), alg_type(static_cast(algType)) {} lsh_u32* cv_l; // start of our state block lsh_u32* cv_r; lsh_u32* sub_msgs; lsh_u8* last_block; lsh_u32& remain_databitlen; lsh_type alg_type; }; struct LSH256_Internal { LSH256_Internal(word32* state) : submsg_e_l(state+16), submsg_e_r(state+24), submsg_o_l(state+32), submsg_o_r(state+40) { } lsh_u32* submsg_e_l; /* even left sub-message */ lsh_u32* submsg_e_r; /* even right sub-message */ lsh_u32* submsg_o_l; /* odd left sub-message */ lsh_u32* submsg_o_r; /* odd right sub-message */ }; const word32 g_gamma256[8] = { 0, 8, 16, 24, 24, 16, 8, 0 }; /* LSH AlgType Macro */ inline bool LSH_IS_LSH512(lsh_uint val) { return (val & 0xf0000) == 0; } inline lsh_uint LSH_GET_SMALL_HASHBIT(lsh_uint val) { return val >> 24; } inline lsh_uint LSH_GET_HASHBYTE(lsh_uint val) { return val & 0xffff; } inline lsh_uint LSH_GET_HASHBIT(lsh_uint val) { return (LSH_GET_HASHBYTE(val) << 3) - LSH_GET_SMALL_HASHBIT(val); } inline lsh_u32 loadLE32(lsh_u32 v) { return ConditionalByteReverse(LITTLE_ENDIAN_ORDER, v); } lsh_u32 ROTL(lsh_u32 x, lsh_u32 r) { return rotlFixed(x, r); } // Original code relied upon unaligned lsh_u32 buffer inline void load_msg_blk(LSH256_Internal* i_state, const lsh_u8 msgblk[LSH256_MSG_BLK_BYTE_LEN]) { CRYPTOPP_ASSERT(i_state != NULLPTR); lsh_u32* submsg_e_l = i_state->submsg_e_l; lsh_u32* submsg_e_r = i_state->submsg_e_r; lsh_u32* submsg_o_l = i_state->submsg_o_l; lsh_u32* submsg_o_r = i_state->submsg_o_r; typedef GetBlock InBlock; InBlock input(msgblk); input(submsg_e_l[0])(submsg_e_l[1])(submsg_e_l[2])(submsg_e_l[3]) (submsg_e_l[4])(submsg_e_l[5])(submsg_e_l[6])(submsg_e_l[7]) (submsg_e_r[0])(submsg_e_r[1])(submsg_e_r[2])(submsg_e_r[3]) (submsg_e_r[4])(submsg_e_r[5])(submsg_e_r[6])(submsg_e_r[7]) (submsg_o_l[0])(submsg_o_l[1])(submsg_o_l[2])(submsg_o_l[3]) (submsg_o_l[4])(submsg_o_l[5])(submsg_o_l[6])(submsg_o_l[7]) (submsg_o_r[0])(submsg_o_r[1])(submsg_o_r[2])(submsg_o_r[3]) (submsg_o_r[4])(submsg_o_r[5])(submsg_o_r[6])(submsg_o_r[7]); } inline void msg_exp_even(LSH256_Internal* i_state) { CRYPTOPP_ASSERT(i_state != NULLPTR); lsh_u32* submsg_e_l = i_state->submsg_e_l; lsh_u32* submsg_e_r = i_state->submsg_e_r; lsh_u32* submsg_o_l = i_state->submsg_o_l; lsh_u32* submsg_o_r = i_state->submsg_o_r; lsh_u32 temp; temp = submsg_e_l[0]; submsg_e_l[0] = submsg_o_l[0] + submsg_e_l[3]; submsg_e_l[3] = submsg_o_l[3] + submsg_e_l[1]; submsg_e_l[1] = submsg_o_l[1] + submsg_e_l[2]; submsg_e_l[2] = submsg_o_l[2] + temp; temp = submsg_e_l[4]; submsg_e_l[4] = submsg_o_l[4] + submsg_e_l[7]; submsg_e_l[7] = submsg_o_l[7] + submsg_e_l[6]; submsg_e_l[6] = submsg_o_l[6] + submsg_e_l[5]; submsg_e_l[5] = submsg_o_l[5] + temp; temp = submsg_e_r[0]; submsg_e_r[0] = submsg_o_r[0] + submsg_e_r[3]; submsg_e_r[3] = submsg_o_r[3] + submsg_e_r[1]; submsg_e_r[1] = submsg_o_r[1] + submsg_e_r[2]; submsg_e_r[2] = submsg_o_r[2] + temp; temp = submsg_e_r[4]; submsg_e_r[4] = submsg_o_r[4] + submsg_e_r[7]; submsg_e_r[7] = submsg_o_r[7] + submsg_e_r[6]; submsg_e_r[6] = submsg_o_r[6] + submsg_e_r[5]; submsg_e_r[5] = submsg_o_r[5] + temp; } inline void msg_exp_odd(LSH256_Internal* i_state) { CRYPTOPP_ASSERT(i_state != NULLPTR); lsh_u32* submsg_e_l = i_state->submsg_e_l; lsh_u32* submsg_e_r = i_state->submsg_e_r; lsh_u32* submsg_o_l = i_state->submsg_o_l; lsh_u32* submsg_o_r = i_state->submsg_o_r; lsh_u32 temp; temp = submsg_o_l[0]; submsg_o_l[0] = submsg_e_l[0] + submsg_o_l[3]; submsg_o_l[3] = submsg_e_l[3] + submsg_o_l[1]; submsg_o_l[1] = submsg_e_l[1] + submsg_o_l[2]; submsg_o_l[2] = submsg_e_l[2] + temp; temp = submsg_o_l[4]; submsg_o_l[4] = submsg_e_l[4] + submsg_o_l[7]; submsg_o_l[7] = submsg_e_l[7] + submsg_o_l[6]; submsg_o_l[6] = submsg_e_l[6] + submsg_o_l[5]; submsg_o_l[5] = submsg_e_l[5] + temp; temp = submsg_o_r[0]; submsg_o_r[0] = submsg_e_r[0] + submsg_o_r[3]; submsg_o_r[3] = submsg_e_r[3] + submsg_o_r[1]; submsg_o_r[1] = submsg_e_r[1] + submsg_o_r[2]; submsg_o_r[2] = submsg_e_r[2] + temp; temp = submsg_o_r[4]; submsg_o_r[4] = submsg_e_r[4] + submsg_o_r[7]; submsg_o_r[7] = submsg_e_r[7] + submsg_o_r[6]; submsg_o_r[6] = submsg_e_r[6] + submsg_o_r[5]; submsg_o_r[5] = submsg_e_r[5] + temp; } inline void load_sc(const lsh_u32** p_const_v, size_t i) { CRYPTOPP_ASSERT(p_const_v != NULLPTR); *p_const_v = &LSH256_StepConstants[i]; } inline void msg_add_even(lsh_u32 cv_l[8], lsh_u32 cv_r[8], LSH256_Internal* i_state) { CRYPTOPP_ASSERT(i_state != NULLPTR); lsh_u32* submsg_e_l = i_state->submsg_e_l; lsh_u32* submsg_e_r = i_state->submsg_e_r; cv_l[0] ^= submsg_e_l[0]; cv_l[1] ^= submsg_e_l[1]; cv_l[2] ^= submsg_e_l[2]; cv_l[3] ^= submsg_e_l[3]; cv_l[4] ^= submsg_e_l[4]; cv_l[5] ^= submsg_e_l[5]; cv_l[6] ^= submsg_e_l[6]; cv_l[7] ^= submsg_e_l[7]; cv_r[0] ^= submsg_e_r[0]; cv_r[1] ^= submsg_e_r[1]; cv_r[2] ^= submsg_e_r[2]; cv_r[3] ^= submsg_e_r[3]; cv_r[4] ^= submsg_e_r[4]; cv_r[5] ^= submsg_e_r[5]; cv_r[6] ^= submsg_e_r[6]; cv_r[7] ^= submsg_e_r[7]; } inline void msg_add_odd(lsh_u32 cv_l[8], lsh_u32 cv_r[8], LSH256_Internal* i_state) { CRYPTOPP_ASSERT(i_state != NULLPTR); lsh_u32* submsg_o_l = i_state->submsg_o_l; lsh_u32* submsg_o_r = i_state->submsg_o_r; cv_l[0] ^= submsg_o_l[0]; cv_l[1] ^= submsg_o_l[1]; cv_l[2] ^= submsg_o_l[2]; cv_l[3] ^= submsg_o_l[3]; cv_l[4] ^= submsg_o_l[4]; cv_l[5] ^= submsg_o_l[5]; cv_l[6] ^= submsg_o_l[6]; cv_l[7] ^= submsg_o_l[7]; cv_r[0] ^= submsg_o_r[0]; cv_r[1] ^= submsg_o_r[1]; cv_r[2] ^= submsg_o_r[2]; cv_r[3] ^= submsg_o_r[3]; cv_r[4] ^= submsg_o_r[4]; cv_r[5] ^= submsg_o_r[5]; cv_r[6] ^= submsg_o_r[6]; cv_r[7] ^= submsg_o_r[7]; } inline void add_blk(lsh_u32 cv_l[8], lsh_u32 cv_r[8]) { cv_l[0] += cv_r[0]; cv_l[1] += cv_r[1]; cv_l[2] += cv_r[2]; cv_l[3] += cv_r[3]; cv_l[4] += cv_r[4]; cv_l[5] += cv_r[5]; cv_l[6] += cv_r[6]; cv_l[7] += cv_r[7]; } template inline void rotate_blk(lsh_u32 cv[8]) { cv[0] = rotlConstant(cv[0]); cv[1] = rotlConstant(cv[1]); cv[2] = rotlConstant(cv[2]); cv[3] = rotlConstant(cv[3]); cv[4] = rotlConstant(cv[4]); cv[5] = rotlConstant(cv[5]); cv[6] = rotlConstant(cv[6]); cv[7] = rotlConstant(cv[7]); } inline void xor_with_const(lsh_u32 cv_l[8], const lsh_u32 const_v[8]) { cv_l[0] ^= const_v[0]; cv_l[1] ^= const_v[1]; cv_l[2] ^= const_v[2]; cv_l[3] ^= const_v[3]; cv_l[4] ^= const_v[4]; cv_l[5] ^= const_v[5]; cv_l[6] ^= const_v[6]; cv_l[7] ^= const_v[7]; } inline void rotate_msg_gamma(lsh_u32 cv_r[8]) { cv_r[1] = rotlFixed(cv_r[1], g_gamma256[1]); cv_r[2] = rotlFixed(cv_r[2], g_gamma256[2]); cv_r[3] = rotlFixed(cv_r[3], g_gamma256[3]); cv_r[4] = rotlFixed(cv_r[4], g_gamma256[4]); cv_r[5] = rotlFixed(cv_r[5], g_gamma256[5]); cv_r[6] = rotlFixed(cv_r[6], g_gamma256[6]); } inline void word_perm(lsh_u32 cv_l[8], lsh_u32 cv_r[8]) { lsh_u32 temp; temp = cv_l[0]; cv_l[0] = cv_l[6]; cv_l[6] = cv_r[6]; cv_r[6] = cv_r[2]; cv_r[2] = cv_l[1]; cv_l[1] = cv_l[4]; cv_l[4] = cv_r[4]; cv_r[4] = cv_r[0]; cv_r[0] = cv_l[2]; cv_l[2] = cv_l[5]; cv_l[5] = cv_r[7]; cv_r[7] = cv_r[1]; cv_r[1] = temp; temp = cv_l[3]; cv_l[3] = cv_l[7]; cv_l[7] = cv_r[5]; cv_r[5] = cv_r[3]; cv_r[3] = temp; } /* -------------------------------------------------------- * * step function * -------------------------------------------------------- */ template inline void mix(lsh_u32 cv_l[8], lsh_u32 cv_r[8], const lsh_u32 const_v[8]) { add_blk(cv_l, cv_r); rotate_blk(cv_l); xor_with_const(cv_l, const_v); add_blk(cv_r, cv_l); rotate_blk(cv_r); add_blk(cv_l, cv_r); rotate_msg_gamma(cv_r); } /* -------------------------------------------------------- * * compression function * -------------------------------------------------------- */ inline void compress(LSH256_Context* ctx, const lsh_u8 pdMsgBlk[LSH256_MSG_BLK_BYTE_LEN]) { CRYPTOPP_ASSERT(ctx != NULLPTR); LSH256_Internal s_state(ctx->cv_l); LSH256_Internal* i_state = &s_state; const lsh_u32* const_v = NULL; lsh_u32* cv_l = ctx->cv_l; lsh_u32* cv_r = ctx->cv_r; load_msg_blk(i_state, pdMsgBlk); msg_add_even(cv_l, cv_r, i_state); load_sc(&const_v, 0); mix(cv_l, cv_r, const_v); word_perm(cv_l, cv_r); msg_add_odd(cv_l, cv_r, i_state); load_sc(&const_v, 8); mix(cv_l, cv_r, const_v); word_perm(cv_l, cv_r); for (size_t i = 1; i < NUM_STEPS / 2; i++) { msg_exp_even(i_state); msg_add_even(cv_l, cv_r, i_state); load_sc(&const_v, 16 * i); mix(cv_l, cv_r, const_v); word_perm(cv_l, cv_r); msg_exp_odd(i_state); msg_add_odd(cv_l, cv_r, i_state); load_sc(&const_v, 16 * i + 8); mix(cv_l, cv_r, const_v); word_perm(cv_l, cv_r); } msg_exp_even(i_state); msg_add_even(cv_l, cv_r, i_state); } /* -------------------------------------------------------- */ inline void load_iv(lsh_u32 cv_l[8], lsh_u32 cv_r[8], const lsh_u32 iv[16]) { cv_l[0] = iv[0]; cv_l[1] = iv[1]; cv_l[2] = iv[2]; cv_l[3] = iv[3]; cv_l[4] = iv[4]; cv_l[5] = iv[5]; cv_l[6] = iv[6]; cv_l[7] = iv[7]; cv_r[0] = iv[8]; cv_r[1] = iv[9]; cv_r[2] = iv[10]; cv_r[3] = iv[11]; cv_r[4] = iv[12]; cv_r[5] = iv[13]; cv_r[6] = iv[14]; cv_r[7] = iv[15]; } inline void zero_iv(lsh_u32 cv_l[8], lsh_u32 cv_r[8]) { std::memset(cv_l, 0x00, 8*sizeof(lsh_u32)); std::memset(cv_r, 0x00, 8*sizeof(lsh_u32)); } inline void zero_submsgs(LSH256_Context* ctx) { CRYPTOPP_ASSERT(ctx != NULLPTR); lsh_u32* sub_msgs = ctx->sub_msgs; std::memset(sub_msgs, 0x00, 32*sizeof(lsh_u32)); } inline void init224(LSH256_Context* ctx) { CRYPTOPP_ASSERT(ctx != NULLPTR); zero_submsgs(ctx); load_iv(ctx->cv_l, ctx->cv_r, LSH256_IV224); } inline void init256(LSH256_Context* ctx) { CRYPTOPP_ASSERT(ctx != NULLPTR); zero_submsgs(ctx); load_iv(ctx->cv_l, ctx->cv_r, LSH256_IV256); } /* -------------------------------------------------------- */ inline void fin(LSH256_Context* ctx) { CRYPTOPP_ASSERT(ctx != NULLPTR); for (size_t i = 0; i < HASH_VAL_MAX_WORD_LEN; i++){ ctx->cv_l[i] = loadLE32(ctx->cv_l[i] ^ ctx->cv_r[i]); } } /* -------------------------------------------------------- */ inline void get_hash(LSH256_Context* ctx, lsh_u8* pbHashVal) { CRYPTOPP_ASSERT(ctx != NULLPTR); CRYPTOPP_ASSERT(ctx->alg_type != 0); CRYPTOPP_ASSERT(pbHashVal != NULLPTR); lsh_uint alg_type = ctx->alg_type; lsh_uint hash_val_byte_len = LSH_GET_HASHBYTE(alg_type); lsh_uint hash_val_bit_len = LSH_GET_SMALL_HASHBIT(alg_type); // Multiplying by looks odd... std::memcpy(pbHashVal, ctx->cv_l, hash_val_byte_len); if (hash_val_bit_len){ pbHashVal[hash_val_byte_len-1] &= (((lsh_u8)0xff) << hash_val_bit_len); } } /* -------------------------------------------------------- */ lsh_err lsh256_init(LSH256_Context* ctx) { CRYPTOPP_ASSERT(ctx != NULLPTR); CRYPTOPP_ASSERT(ctx->alg_type != 0); lsh_u32 alg_type = ctx->alg_type; const lsh_u32* const_v = NULL; ctx->remain_databitlen = 0; switch (alg_type) { case LSH_TYPE_256_256: init256(ctx); return LSH_SUCCESS; case LSH_TYPE_256_224: init224(ctx); return LSH_SUCCESS; default: break; } lsh_u32* cv_l = ctx->cv_l; lsh_u32* cv_r = ctx->cv_r; zero_iv(cv_l, cv_r); cv_l[0] = LSH256_HASH_VAL_MAX_BYTE_LEN; cv_l[1] = LSH_GET_HASHBIT(alg_type); for (size_t i = 0; i < NUM_STEPS / 2; i++) { //Mix load_sc(&const_v, i * 16); mix(cv_l, cv_r, const_v); word_perm(cv_l, cv_r); load_sc(&const_v, i * 16 + 8); mix(cv_l, cv_r, const_v); word_perm(cv_l, cv_r); } return LSH_SUCCESS; } lsh_err lsh256_update(LSH256_Context* ctx, const lsh_u8* data, size_t databitlen) { CRYPTOPP_ASSERT(ctx != NULLPTR); CRYPTOPP_ASSERT(data != NULLPTR); CRYPTOPP_ASSERT(databitlen % 8 == 0); CRYPTOPP_ASSERT(ctx->alg_type != 0); if (databitlen == 0){ return LSH_SUCCESS; } // We are byte oriented. tail bits will always be 0. size_t databytelen = databitlen >> 3; // lsh_uint pos2 = databitlen & 0x7; const size_t pos2 = 0; size_t remain_msg_byte = ctx->remain_databitlen >> 3; // lsh_uint remain_msg_bit = ctx->remain_databitlen & 7; const size_t remain_msg_bit = 0; if (remain_msg_byte >= LSH256_MSG_BLK_BYTE_LEN){ return LSH_ERR_INVALID_STATE; } if (remain_msg_bit > 0){ return LSH_ERR_INVALID_DATABITLEN; } if (databytelen + remain_msg_byte < LSH256_MSG_BLK_BYTE_LEN) { std::memcpy(ctx->last_block + remain_msg_byte, data, databytelen); ctx->remain_databitlen += (lsh_uint)databitlen; remain_msg_byte += (lsh_uint)databytelen; if (pos2){ ctx->last_block[remain_msg_byte] = data[databytelen] & ((0xff >> pos2) ^ 0xff); } return LSH_SUCCESS; } if (remain_msg_byte > 0){ size_t more_byte = LSH256_MSG_BLK_BYTE_LEN - remain_msg_byte; std::memcpy(ctx->last_block + remain_msg_byte, data, more_byte); compress(ctx, ctx->last_block); data += more_byte; databytelen -= more_byte; remain_msg_byte = 0; ctx->remain_databitlen = 0; } while (databytelen >= LSH256_MSG_BLK_BYTE_LEN) { // This call to compress caused some trouble. // The data pointer can become unaligned in the // previous block. compress(ctx, data); data += LSH256_MSG_BLK_BYTE_LEN; databytelen -= LSH256_MSG_BLK_BYTE_LEN; } if (databytelen > 0){ std::memcpy(ctx->last_block, data, databytelen); ctx->remain_databitlen = (lsh_uint)(databytelen << 3); } if (pos2){ ctx->last_block[databytelen] = data[databytelen] & ((0xff >> pos2) ^ 0xff); ctx->remain_databitlen += pos2; } return LSH_SUCCESS; } lsh_err lsh256_final(LSH256_Context* ctx, lsh_u8* hashval) { CRYPTOPP_ASSERT(ctx != NULLPTR); CRYPTOPP_ASSERT(hashval != NULLPTR); // We are byte oriented. tail bits will always be 0. size_t remain_msg_byte = ctx->remain_databitlen >> 3; // lsh_uint remain_msg_bit = ctx->remain_databitlen & 7; const size_t remain_msg_bit = 0; if (remain_msg_byte >= LSH256_MSG_BLK_BYTE_LEN){ return LSH_ERR_INVALID_STATE; } if (remain_msg_bit){ ctx->last_block[remain_msg_byte] |= (0x1 << (7 - remain_msg_bit)); } else{ ctx->last_block[remain_msg_byte] = 0x80; } std::memset(ctx->last_block + remain_msg_byte + 1, 0, LSH256_MSG_BLK_BYTE_LEN - remain_msg_byte - 1); compress(ctx, ctx->last_block); fin(ctx); get_hash(ctx, hashval); return LSH_SUCCESS; } ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) #if defined(CRYPTOPP_ENABLE_64BIT_SSE) # if defined(CRYPTOPP_AVX2_AVAILABLE) extern void LSH256_Base_Restart_AVX2(word32* state); extern void LSH256_Base_Update_AVX2(word32* state, const byte *input, size_t size); extern void LSH256_Base_TruncatedFinal_AVX2(word32* state, byte *hash, size_t size); # endif # if defined(CRYPTOPP_SSSE3_AVAILABLE) extern void LSH256_Base_Restart_SSSE3(word32* state); extern void LSH256_Base_Update_SSSE3(word32* state, const byte *input, size_t size); extern void LSH256_Base_TruncatedFinal_SSSE3(word32* state, byte *hash, size_t size); # endif #endif void LSH256_Base_Restart_CXX(word32* state) { state[RemainingBits] = 0; LSH256_Context ctx(state, state[AlgorithmType], state[RemainingBits]); lsh_err err = lsh256_init(&ctx); if (err != LSH_SUCCESS) throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_init failed"); } void LSH256_Base_Update_CXX(word32* state, const byte *input, size_t size) { LSH256_Context ctx(state, state[AlgorithmType], state[RemainingBits]); lsh_err err = lsh256_update(&ctx, input, 8*size); if (err != LSH_SUCCESS) throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_update failed"); } void LSH256_Base_TruncatedFinal_CXX(word32* state, byte *hash, size_t) { LSH256_Context ctx(state, state[AlgorithmType], state[RemainingBits]); lsh_err err = lsh256_final(&ctx, hash); if (err != LSH_SUCCESS) throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_final failed"); } std::string LSH256_Base::AlgorithmProvider() const { #if defined(CRYPTOPP_ENABLE_64BIT_SSE) #if defined(CRYPTOPP_AVX2_AVAILABLE) if (HasAVX2()) return "AVX2"; else #endif #if defined(CRYPTOPP_SSSE3_AVAILABLE) if (HasSSSE3()) return "SSSE3"; else #endif #endif // CRYPTOPP_ENABLE_64BIT_SSE return "C++"; } void LSH256_Base::Restart() { #if defined(CRYPTOPP_AVX2_AVAILABLE) && defined(CRYPTOPP_ENABLE_64BIT_SSE) if (HasAVX2()) LSH256_Base_Restart_AVX2(m_state); else #endif #if defined(CRYPTOPP_SSSE3_AVAILABLE) && defined(CRYPTOPP_ENABLE_64BIT_SSE) if (HasSSSE3()) LSH256_Base_Restart_SSSE3(m_state); else #endif LSH256_Base_Restart_CXX(m_state); } void LSH256_Base::Update(const byte *input, size_t size) { CRYPTOPP_ASSERT(input != NULLPTR); CRYPTOPP_ASSERT(size); #if defined(CRYPTOPP_AVX2_AVAILABLE) && defined(CRYPTOPP_ENABLE_64BIT_SSE) if (HasAVX2()) LSH256_Base_Update_AVX2(m_state, input, size); else #endif #if defined(CRYPTOPP_SSSE3_AVAILABLE) && defined(CRYPTOPP_ENABLE_64BIT_SSE) if (HasSSSE3()) LSH256_Base_Update_SSSE3(m_state, input, size); else #endif LSH256_Base_Update_CXX(m_state, input, size); } void LSH256_Base::TruncatedFinal(byte *hash, size_t size) { CRYPTOPP_ASSERT(hash != NULLPTR); ThrowIfInvalidTruncatedSize(size); // TODO: determine if LSH256 supports truncated hashes. See the code // in get_hash(), where a bit-length is added to the last output // byte of the hash function. byte fullHash[LSH256_HASH_VAL_MAX_BYTE_LEN]; bool copyOut = (size < DigestSize()); #if defined(CRYPTOPP_AVX2_AVAILABLE) && defined(CRYPTOPP_ENABLE_64BIT_SSE) if (HasAVX2()) LSH256_Base_TruncatedFinal_AVX2(m_state, copyOut ? fullHash : hash, size); else #endif #if defined(CRYPTOPP_SSSE3_AVAILABLE) && defined(CRYPTOPP_ENABLE_64BIT_SSE) if (HasSSSE3()) LSH256_Base_TruncatedFinal_SSSE3(m_state, copyOut ? fullHash : hash, size); else #endif LSH256_Base_TruncatedFinal_CXX(m_state, copyOut ? fullHash : hash, size); if (copyOut) std::memcpy(hash, fullHash, size); Restart(); } NAMESPACE_END