// kalyna.h - written and placed in the public domain by Jeffrey Walton // Based on public domain code by Keru Kuro. /// \file kalyna.h /// \brief Classes for the Kalyna block cipher /// \details The Crypto++ implementation relied upon three sources. First was Oliynykov, Gorbenko, Kazymyrov, /// Ruzhentsev, Kuznetsov, Gorbenko, Dyrda, Dolgov, Pushkaryov, Mordvinov and Kaidalov's "A New Encryption /// Standard of Ukraine: The Kalyna Block Cipher" (http://eprint.iacr.org/2015/650.pdf). Second was Roman /// Oliynykov and Oleksandr Kazymyrov's GitHub with the reference implementation /// (http://github.com/Roman-Oliynykov/Kalyna-reference). The third resource was Keru Kuro's implementation /// of Kalyna in CppCrypto (http://sourceforge.net/projects/cppcrypto/). Kuro has an outstanding /// implementation that performed better than the reference implementation and our initial attempts. #ifndef CRYPTOPP_KALYNA_H #define CRYPTOPP_KALYNA_H #include "config.h" #include "seckey.h" #include "secblock.h" NAMESPACE_BEGIN(CryptoPP) /// \brief Kalyna-128 block cipher information /// \since Crypto++ 6.0 struct CRYPTOPP_NO_VTABLE Kalyna128_Info : public FixedBlockSize<16>, VariableKeyLength<16, 16, 32> { static const char* StaticAlgorithmName() { // Format is Cipher-Blocksize(Keylength) return "Kalyna-128"; } }; /// \brief Kalyna-256 block cipher information /// \since Crypto++ 6.0 struct CRYPTOPP_NO_VTABLE Kalyna256_Info : public FixedBlockSize<32>, VariableKeyLength<32, 32, 64> { static const char* StaticAlgorithmName() { // Format is Cipher-Blocksize(Keylength) return "Kalyna-256"; } }; /// \brief Kalyna-512 block cipher information /// \since Crypto++ 6.0 struct CRYPTOPP_NO_VTABLE Kalyna512_Info : public FixedBlockSize<64>, FixedKeyLength<64> { static const char* StaticAlgorithmName() { // Format is Cipher-Blocksize(Keylength) return "Kalyna-512"; } }; /// \brief Kalyna block cipher base class /// \since Crypto++ 6.0 class CRYPTOPP_NO_VTABLE Kalyna_Base { public: virtual ~Kalyna_Base() {} protected: typedef SecBlock > AlignedSecBlock64; mutable AlignedSecBlock64 m_wspace; // work space AlignedSecBlock64 m_mkey; // master key AlignedSecBlock64 m_rkeys; // round keys unsigned int m_kl, m_nb, m_nk; // number 64-bit blocks and keys }; /// \brief Kalyna 128-bit block cipher /// \details Kalyna128 provides 128-bit block size. The valid key sizes are 128-bit and 256-bit. /// \since Crypto++ 6.0 class Kalyna128 : public Kalyna128_Info, public BlockCipherDocumentation { public: class CRYPTOPP_NO_VTABLE Base : public Kalyna_Base, public BlockCipherImpl { public: /// \brief Provides the name of this algorithm /// \return the standard algorithm name /// \details If the object is unkeyed, then the generic name "Kalyna" is returned /// to the caller. If the algorithm is keyed, then a two or three part name is /// returned to the caller. The name follows DSTU 7624:2014, where block size is /// provided first and then key length. The library uses a dash to identify block size /// and parenthesis to identify key length. For example, Kalyna-128(256) is Kalyna /// with a 128-bit block size and a 256-bit key length. If a mode is associated /// with the object, then it follows as expected. For example, Kalyna-128(256)/ECB. /// DSTU is a little more complex with more parameters, dashes, underscores, but the /// library does not use the delimiters or full convention. std::string AlgorithmName() const { return std::string("Kalyna-128") + "(" + IntToString(m_kl*8) + ")"; } /// \brief Provides input and output data alignment for optimal performance. /// \return the input data alignment that provides optimal performance /// \sa GetAlignment() and OptimalBlockSize() unsigned int OptimalDataAlignment() const { return GetAlignmentOf(); } protected: void UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs ¶ms); void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; protected: void SetKey_22(const word64 key[2]); void SetKey_24(const word64 key[4]); void ProcessBlock_22(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; void ProcessBlock_24(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; }; typedef BlockCipherFinal Encryption; typedef BlockCipherFinal Decryption; }; /// \brief Kalyna 256-bit block cipher /// \details Kalyna256 provides 256-bit block size. The valid key sizes are 256-bit and 512-bit. /// \since Crypto++ 6.0 class Kalyna256 : public Kalyna256_Info, public BlockCipherDocumentation { public: class CRYPTOPP_NO_VTABLE Base : public Kalyna_Base, public BlockCipherImpl { public: /// \brief Provides the name of this algorithm /// \return the standard algorithm name /// \details If the object is unkeyed, then the generic name "Kalyna" is returned /// to the caller. If the algorithm is keyed, then a two or three part name is /// returned to the caller. The name follows DSTU 7624:2014, where block size is /// provided first and then key length. The library uses a dash to identify block size /// and parenthesis to identify key length. For example, Kalyna-128(256) is Kalyna /// with a 128-bit block size and a 256-bit key length. If a mode is associated /// with the object, then it follows as expected. For example, Kalyna-128(256)/ECB. /// DSTU is a little more complex with more parameters, dashes, underscores, but the /// library does not use the delimiters or full convention. std::string AlgorithmName() const { return std::string("Kalyna-256") + "(" + IntToString(m_kl*8) + ")"; } /// \brief Provides input and output data alignment for optimal performance. /// \return the input data alignment that provides optimal performance /// \sa GetAlignment() and OptimalBlockSize() unsigned int OptimalDataAlignment() const { return GetAlignmentOf(); } protected: void UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs ¶ms); void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; protected: void SetKey_44(const word64 key[4]); void SetKey_48(const word64 key[8]); void ProcessBlock_44(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; void ProcessBlock_48(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; }; typedef BlockCipherFinal Encryption; typedef BlockCipherFinal Decryption; }; /// \brief Kalyna 512-bit block cipher /// \details Kalyna512 provides 512-bit block size. The valid key size is 512-bit. /// \since Crypto++ 6.0 class Kalyna512 : public Kalyna512_Info, public BlockCipherDocumentation { public: class CRYPTOPP_NO_VTABLE Base : public Kalyna_Base, public BlockCipherImpl { public: /// \brief Provides the name of this algorithm /// \return the standard algorithm name /// \details If the object is unkeyed, then the generic name "Kalyna" is returned /// to the caller. If the algorithm is keyed, then a two or three part name is /// returned to the caller. The name follows DSTU 7624:2014, where block size is /// provided first and then key length. The library uses a dash to identify block size /// and parenthesis to identify key length. For example, Kalyna-128(256) is Kalyna /// with a 128-bit block size and a 256-bit key length. If a mode is associated /// with the object, then it follows as expected. For example, Kalyna-128(256)/ECB. /// DSTU is a little more complex with more parameters, dashes, underscores, but the /// library does not use the delimiters or full convention. std::string AlgorithmName() const { return std::string("Kalyna-512") + "(" + IntToString(m_kl*8) + ")"; } /// \brief Provides input and output data alignment for optimal performance. /// \return the input data alignment that provides optimal performance /// \sa GetAlignment() and OptimalBlockSize() unsigned int OptimalDataAlignment() const { return GetAlignmentOf(); } protected: void UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs ¶ms); void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; protected: void SetKey_88(const word64 key[8]); void ProcessBlock_88(const byte *inBlock, const byte *xorBlock, byte *outBlock) const; }; typedef BlockCipherFinal Encryption; typedef BlockCipherFinal Decryption; }; typedef Kalyna128::Encryption Kalyna128Encryption; typedef Kalyna128::Decryption Kalyna128Decryption; typedef Kalyna256::Encryption Kalyna256Encryption; typedef Kalyna256::Decryption Kalyna256Decryption; typedef Kalyna512::Encryption Kalyna512Encryption; typedef Kalyna512::Decryption Kalyna512Decryption; NAMESPACE_END #endif // CRYPTOPP_KALYNA_H