// gf2n_simd.cpp - written and placed in the public domain by Jeffrey Walton // Also based on PCLMULQDQ code by Jankowski, Laurent and // O'Mahony from Intel (see reference below). // // This source file uses intrinsics and built-ins to gain access to // CLMUL, ARMv8a, and Power8 instructions. A separate source file is // needed because additional CXXFLAGS are required to enable the // appropriate instructions sets in some build configurations. // // Several speedups were taken from Intel Polynomial Multiplication // Instruction and its Usage for Elliptic Curve Cryptography, by // Krzysztof Jankowski, Pierre Laurent and Aidan O'Mahony, // https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/polynomial-multiplication-instructions-paper.pdf // There may be more speedups available, see https://eprint.iacr.org/2011/589.pdf. // The IACR paper performs some optimizations that the compiler is // expected to perform, like Common Subexpression Elimination to save // on variables (among others). Note that the compiler may miss the // optimization so the IACR paper is useful. However, the code is GPL3 // and toxic for some users of the library, so it is not used here... #include "pch.h" #include "config.h" #ifndef CRYPTOPP_IMPORTS #include "gf2n.h" #if (CRYPTOPP_CLMUL_AVAILABLE) # include # include #endif #if (CRYPTOPP_ARM_PMULL_AVAILABLE) # include "arm_simd.h" #endif #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) # include "ppc_simd.h" #endif // Squash MS LNK4221 and libtool warnings extern const char GF2N_SIMD_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN // ************************** ARMv8 ************************** // using CryptoPP::word; #if (CRYPTOPP_ARM_PMULL_AVAILABLE) // c1c0 = a * b inline void F2N_Multiply_128x128_ARMv8(uint64x2_t& c1, uint64x2_t& c0, const uint64x2_t& a, const uint64x2_t& b) { uint64x2_t t1, t2, z0={0}; c0 = PMULL_00(a, b); c1 = PMULL_11(a, b); t1 = vmovq_n_u64(vgetq_lane_u64(a, 1)); t1 = veorq_u64(a, t1); t2 = vmovq_n_u64(vgetq_lane_u64(b, 1)); t2 = veorq_u64(b, t2); t1 = PMULL_00(t1, t2); t1 = veorq_u64(c0, t1); t1 = veorq_u64(c1, t1); t2 = t1; t1 = vextq_u64(z0, t1, 1); t2 = vextq_u64(t2, z0, 1); c0 = veorq_u64(c0, t1); c1 = veorq_u64(c1, t2); } // c3c2c1c0 = a1a0 * b1b0 inline void F2N_Multiply_256x256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0, const uint64x2_t& b1, const uint64x2_t& b0, const uint64x2_t& a1, const uint64x2_t& a0) { uint64x2_t c4, c5; uint64x2_t x0=a0, x1=a1, y0=b0, y1=b1; F2N_Multiply_128x128_ARMv8(c1, c0, x0, y0); F2N_Multiply_128x128_ARMv8(c3, c2, x1, y1); x0 = veorq_u64(x0, x1); y0 = veorq_u64(y0, y1); F2N_Multiply_128x128_ARMv8(c5, c4, x0, y0); c4 = veorq_u64(c4, c0); c4 = veorq_u64(c4, c2); c5 = veorq_u64(c5, c1); c5 = veorq_u64(c5, c3); c1 = veorq_u64(c1, c4); c2 = veorq_u64(c2, c5); } // c3c2c1c0 = a1a0 * a1a0 inline void F2N_Square_256_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0, const uint64x2_t& a1, const uint64x2_t& a0) { c0 = PMULL_00(a0, a0); c1 = PMULL_11(a0, a0); c2 = PMULL_00(a1, a1); c3 = PMULL_11(a1, a1); } // x = (x << n), z = 0 template inline uint64x2_t ShiftLeft128_ARMv8(uint64x2_t x) { uint64x2_t u=x, v, z={0}; x = vshlq_n_u64(x, N); u = vshrq_n_u64(u, (64-N)); v = vcombine_u64(vget_low_u64(z), vget_low_u64(u)); x = vorrq_u64(x, v); return x; } // c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at // Intel paper or https://github.com/antonblanchard/crc32-vpmsum. inline void GF2NT_233_Reduce_ARMv8(uint64x2_t& c3, uint64x2_t& c2, uint64x2_t& c1, uint64x2_t& c0) { const unsigned int mask[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff, }; uint64x2_t b3, b2, b1, /*b0,*/ a1, a0, m0, z0={0}; m0 = vreinterpretq_u64_u32(vld1q_u32(mask)); b1 = c1; a1 = c1; a0 = vcombine_u64(vget_low_u64(c1), vget_low_u64(z0)); a1 = vshlq_n_u64(a1, 23); a1 = vshrq_n_u64(a1, 23); c1 = vorrq_u64(a1, a0); b2 = vshrq_n_u64(c2, (64-23)); c3 = ShiftLeft128_ARMv8<23>(c3); a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0)); c3 = vorrq_u64(c3, a0); b1 = vshrq_n_u64(b1, (64-23)); c2 = ShiftLeft128_ARMv8<23>(c2); a0 = vcombine_u64(vget_high_u64(b1), vget_high_u64(z0)); c2 = vorrq_u64(c2, a0); b3 = c3; b2 = vshrq_n_u64(c2, (64-10)); b3 = ShiftLeft128_ARMv8<10>(b3); a0 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0)); b3 = vorrq_u64(b3, a0); a0 = vcombine_u64(vget_high_u64(c3), vget_high_u64(z0)); b3 = veorq_u64(b3, a0); b1 = vshrq_n_u64(b3, (64-23)); b3 = ShiftLeft128_ARMv8<23>(b3); b3 = vcombine_u64(vget_high_u64(b3), vget_high_u64(z0)); b3 = vorrq_u64(b3, b1); c2 = veorq_u64(c2, b3); b3 = c3; b2 = vshrq_n_u64(c2, (64-10)); b3 = ShiftLeft128_ARMv8<10>(b3); b2 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0)); b3 = vorrq_u64(b3, b2); b2 = c2; b2 = ShiftLeft128_ARMv8<10>(b2); a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b2)); c2 = veorq_u64(c2, a0); a0 = vcombine_u64(vget_low_u64(z0), vget_low_u64(b3)); a1 = vcombine_u64(vget_high_u64(b2), vget_high_u64(z0)); a0 = vorrq_u64(a0, a1); c3 = veorq_u64(c3, a0); c0 = veorq_u64(c0, c2); c1 = veorq_u64(c1, c3); c1 = vandq_u64(c1, m0); } #endif // ************************** SSE ************************** // #if (CRYPTOPP_CLMUL_AVAILABLE) using CryptoPP::word; // c1c0 = a * b inline void F2N_Multiply_128x128_CLMUL(__m128i& c1, __m128i& c0, const __m128i& a, const __m128i& b) { __m128i t1, t2; c0 = _mm_clmulepi64_si128(a, b, 0x00); c1 = _mm_clmulepi64_si128(a, b, 0x11); t1 = _mm_shuffle_epi32(a, 0xEE); t1 = _mm_xor_si128(a, t1); t2 = _mm_shuffle_epi32(b, 0xEE); t2 = _mm_xor_si128(b, t2); t1 = _mm_clmulepi64_si128(t1, t2, 0x00); t1 = _mm_xor_si128(c0, t1); t1 = _mm_xor_si128(c1, t1); t2 = t1; t1 = _mm_slli_si128(t1, 8); t2 = _mm_srli_si128(t2, 8); c0 = _mm_xor_si128(c0, t1); c1 = _mm_xor_si128(c1, t2); } // c3c2c1c0 = a1a0 * b1b0 inline void F2N_Multiply_256x256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0, const __m128i& b1, const __m128i& b0, const __m128i& a1, const __m128i& a0) { __m128i c4, c5; __m128i x0=a0, x1=a1, y0=b0, y1=b1; F2N_Multiply_128x128_CLMUL(c1, c0, x0, y0); F2N_Multiply_128x128_CLMUL(c3, c2, x1, y1); x0 = _mm_xor_si128(x0, x1); y0 = _mm_xor_si128(y0, y1); F2N_Multiply_128x128_CLMUL(c5, c4, x0, y0); c4 = _mm_xor_si128(c4, c0); c4 = _mm_xor_si128(c4, c2); c5 = _mm_xor_si128(c5, c1); c5 = _mm_xor_si128(c5, c3); c1 = _mm_xor_si128(c1, c4); c2 = _mm_xor_si128(c2, c5); } // c3c2c1c0 = a1a0 * a1a0 inline void F2N_Square_256_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0, const __m128i& a1, const __m128i& a0) { c0 = _mm_clmulepi64_si128(a0, a0, 0x00); c1 = _mm_clmulepi64_si128(a0, a0, 0x11); c2 = _mm_clmulepi64_si128(a1, a1, 0x00); c3 = _mm_clmulepi64_si128(a1, a1, 0x11); } // x = (x << n), z = 0 template inline __m128i ShiftLeft128_SSE(__m128i x, const __m128i& z) { __m128i u=x, v; x = _mm_slli_epi64(x, N); u = _mm_srli_epi64(u, (64-N)); v = _mm_unpacklo_epi64(z, u); x = _mm_or_si128(x, v); return x; } // c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at // Intel paper or https://github.com/antonblanchard/crc32-vpmsum. inline void GF2NT_233_Reduce_CLMUL(__m128i& c3, __m128i& c2, __m128i& c1, __m128i& c0) { const unsigned int m[4] = { 0xffffffff, 0xffffffff, 0xffffffff, 0x000001ff }; __m128i b3, b2, b1, /*b0,*/ a1, a0, m0, z0; m0 = _mm_set_epi32(m[3], m[2], m[1], m[0]); z0 = _mm_setzero_si128(); b1 = c1; a1 = c1; a0 = _mm_move_epi64(c1); a1 = _mm_slli_epi64(a1, 23); a1 = _mm_srli_epi64(a1, 23); c1 = _mm_or_si128(a1, a0); b2 = _mm_srli_epi64(c2, (64-23)); c3 = ShiftLeft128_SSE<23>(c3, z0); a0 = _mm_unpackhi_epi64(b2, z0); c3 = _mm_or_si128(c3, a0); b1 = _mm_srli_epi64(b1, (64-23)); c2 = ShiftLeft128_SSE<23>(c2, z0); a0 = _mm_unpackhi_epi64(b1, z0); c2 = _mm_or_si128(c2, a0); b3 = c3; b2 = _mm_srli_epi64(c2, (64-10)); b3 = ShiftLeft128_SSE<10>(b3, z0); a0 = _mm_unpackhi_epi64(b2, z0); b3 = _mm_or_si128(b3, a0); a0 = _mm_unpackhi_epi64(c3, z0); b3 = _mm_xor_si128(b3, a0); b1 = _mm_srli_epi64(b3, (64-23)); b3 = ShiftLeft128_SSE<23>(b3, z0); b3 = _mm_unpackhi_epi64(b3, z0); b3 = _mm_or_si128(b3, b1); c2 = _mm_xor_si128(c2, b3); b3 = c3; b2 = _mm_srli_epi64(c2, (64-10)); b3 = ShiftLeft128_SSE<10>(b3, z0); b2 = _mm_unpackhi_epi64(b2, z0); b3 = _mm_or_si128(b3, b2); b2 = c2; b2 = ShiftLeft128_SSE<10>(b2, z0); a0 = _mm_unpacklo_epi64(z0, b2); c2 = _mm_xor_si128(c2, a0); a0 = _mm_unpacklo_epi64(z0, b3); a1 = _mm_unpackhi_epi64(b2, z0); a0 = _mm_or_si128(a0, a1); c3 = _mm_xor_si128(c3, a0); c0 = _mm_xor_si128(c0, c2); c1 = _mm_xor_si128(c1, c3); c1 = _mm_and_si128(c1, m0); } #endif // ************************* Power8 ************************* // #if (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0 using CryptoPP::byte; using CryptoPP::word; using CryptoPP::uint8x16_p; using CryptoPP::uint64x2_p; using CryptoPP::VecLoad; using CryptoPP::VecStore; using CryptoPP::VecOr; using CryptoPP::VecXor; using CryptoPP::VecAnd; using CryptoPP::VecPermute; using CryptoPP::VecMergeLow; using CryptoPP::VecMergeHigh; using CryptoPP::VecShiftLeft; using CryptoPP::VecShiftRight; using CryptoPP::VecIntelMultiply00; using CryptoPP::VecIntelMultiply11; // c1c0 = a * b inline void F2N_Multiply_128x128_POWER8(uint64x2_p& c1, uint64x2_p& c0, const uint64x2_p& a, const uint64x2_p& b) { uint64x2_p t1, t2; const uint64x2_p z0={0}; c0 = VecIntelMultiply00(a, b); c1 = VecIntelMultiply11(a, b); t1 = VecMergeLow(a, a); t1 = VecXor(a, t1); t2 = VecMergeLow(b, b); t2 = VecXor(b, t2); t1 = VecIntelMultiply00(t1, t2); t1 = VecXor(c0, t1); t1 = VecXor(c1, t1); t2 = t1; t1 = VecMergeHigh(z0, t1); t2 = VecMergeLow(t2, z0); c0 = VecXor(c0, t1); c1 = VecXor(c1, t2); } // c3c2c1c0 = a1a0 * b1b0 inline void F2N_Multiply_256x256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0, const uint64x2_p& b1, const uint64x2_p& b0, const uint64x2_p& a1, const uint64x2_p& a0) { uint64x2_p c4, c5; uint64x2_p x0=a0, x1=a1, y0=b0, y1=b1; F2N_Multiply_128x128_POWER8(c1, c0, x0, y0); F2N_Multiply_128x128_POWER8(c3, c2, x1, y1); x0 = VecXor(x0, x1); y0 = VecXor(y0, y1); F2N_Multiply_128x128_POWER8(c5, c4, x0, y0); c4 = VecXor(c4, c0); c4 = VecXor(c4, c2); c5 = VecXor(c5, c1); c5 = VecXor(c5, c3); c1 = VecXor(c1, c4); c2 = VecXor(c2, c5); } // c3c2c1c0 = a1a0 * a1a0 inline void F2N_Square_256_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0, const uint64x2_p& a1, const uint64x2_p& a0) { c0 = VecIntelMultiply00(a0, a0); c1 = VecIntelMultiply11(a0, a0); c2 = VecIntelMultiply00(a1, a1); c3 = VecIntelMultiply11(a1, a1); } // x = (x << n), z = 0 template inline uint64x2_p ShiftLeft128_POWER8(uint64x2_p x) { uint64x2_p u=x, v; const uint64x2_p z={0}; x = VecShiftLeft(x); u = VecShiftRight<64-N>(u); v = VecMergeHigh(z, u); x = VecOr(x, v); return x; } // c1c0 = c3c2c1c0 MOD p. This is a Barrett reduction. Reading at // Intel paper or https://github.com/antonblanchard/crc32-vpmsum. inline void GF2NT_233_Reduce_POWER8(uint64x2_p& c3, uint64x2_p& c2, uint64x2_p& c1, uint64x2_p& c0) { const uint64_t mod[] = {W64LIT(0xffffffffffffffff), W64LIT(0x01ffffffffff)}; const uint64x2_p m0 = (uint64x2_p)VecLoad(mod); uint64x2_p b3, b2, b1, /*b0,*/ a1, a0; const uint64x2_p z0={0}; b1 = c1; a1 = c1; a0 = VecMergeHigh(c1, z0); a1 = VecShiftLeft<23>(a1); a1 = VecShiftRight<23>(a1); c1 = VecOr(a1, a0); b2 = VecShiftRight<64-23>(c2); c3 = ShiftLeft128_POWER8<23>(c3); a0 = VecMergeLow(b2, z0); c3 = VecOr(c3, a0); b1 = VecShiftRight<64-23>(b1); c2 = ShiftLeft128_POWER8<23>(c2); a0 = VecMergeLow(b1, z0); c2 = VecOr(c2, a0); b3 = c3; b2 = VecShiftRight<64-10>(c2); b3 = ShiftLeft128_POWER8<10>(b3); a0 = VecMergeLow(b2, z0); b3 = VecOr(b3, a0); a0 = VecMergeLow(c3, z0); b3 = VecXor(b3, a0); b1 = VecShiftRight<64-23>(b3); b3 = ShiftLeft128_POWER8<23>(b3); b3 = VecMergeLow(b3, z0); b3 = VecOr(b3, b1); c2 = VecXor(c2, b3); b3 = c3; b2 = VecShiftRight<64-10>(c2); b3 = ShiftLeft128_POWER8<10>(b3); b2 = VecMergeLow(b2, z0); b3 = VecOr(b3, b2); b2 = c2; b2 = ShiftLeft128_POWER8<10>(b2); a0 = VecMergeHigh(z0, b2); c2 = VecXor(c2, a0); a0 = VecMergeHigh(z0, b3); a1 = VecMergeLow(b2, z0); a0 = VecOr(a0, a1); c3 = VecXor(c3, a0); c0 = VecXor(c0, c2); c1 = VecXor(c1, c3); c1 = VecAnd(c1, m0); } #endif ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) #if (CRYPTOPP_CLMUL_AVAILABLE) void GF2NT_233_Multiply_Reduce_CLMUL(const word* pA, const word* pB, word* pC) { enum {S=sizeof(__m128i)/sizeof(word)}; __m128i a0 = _mm_loadu_si128(reinterpret_cast(pA+0*S)); __m128i a1 = _mm_loadu_si128(reinterpret_cast(pA+1*S)); __m128i b0 = _mm_loadu_si128(reinterpret_cast(pB+0*S)); __m128i b1 = _mm_loadu_si128(reinterpret_cast(pB+1*S)); __m128i c0, c1, c2, c3; F2N_Multiply_256x256_CLMUL(c3, c2, c1, c0, a1, a0, b1, b0); GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0); _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+0*S), c0); _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+1*S), c1); } void GF2NT_233_Square_Reduce_CLMUL(const word* pA, word* pC) { enum {S=sizeof(__m128i)/sizeof(word)}; __m128i a0 = _mm_loadu_si128(reinterpret_cast(pA+0*S)); __m128i a1 = _mm_loadu_si128(reinterpret_cast(pA+1*S)); __m128i c0, c1, c2, c3; F2N_Square_256_CLMUL(c3, c2, c1, c0, a1, a0); GF2NT_233_Reduce_CLMUL(c3, c2, c1, c0); _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+0*S), c0); _mm_storeu_si128(reinterpret_cast<__m128i*>(pC+1*S), c1); } #elif (CRYPTOPP_ARM_PMULL_AVAILABLE) void GF2NT_233_Multiply_Reduce_ARMv8(const word* pA, const word* pB, word* pC) { // word is either 32-bit or 64-bit, depending on the platform. // Load using a 32-bit pointer to avoid possible alignment issues. const uint32_t* pAA = reinterpret_cast(pA); const uint32_t* pBB = reinterpret_cast(pB); uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0)); uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4)); uint64x2_t b0 = vreinterpretq_u64_u32(vld1q_u32(pBB+0)); uint64x2_t b1 = vreinterpretq_u64_u32(vld1q_u32(pBB+4)); uint64x2_t c0, c1, c2, c3; F2N_Multiply_256x256_ARMv8(c3, c2, c1, c0, a1, a0, b1, b0); GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0); uint32_t* pCC = reinterpret_cast(pC); vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0)); vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1)); } void GF2NT_233_Square_Reduce_ARMv8(const word* pA, word* pC) { // word is either 32-bit or 64-bit, depending on the platform. // Load using a 32-bit pointer to avoid possible alignment issues. const uint32_t* pAA = reinterpret_cast(pA); uint64x2_t a0 = vreinterpretq_u64_u32(vld1q_u32(pAA+0)); uint64x2_t a1 = vreinterpretq_u64_u32(vld1q_u32(pAA+4)); uint64x2_t c0, c1, c2, c3; F2N_Square_256_ARMv8(c3, c2, c1, c0, a1, a0); GF2NT_233_Reduce_ARMv8(c3, c2, c1, c0); uint32_t* pCC = reinterpret_cast(pC); vst1q_u32(pCC+0, vreinterpretq_u32_u64(c0)); vst1q_u32(pCC+4, vreinterpretq_u32_u64(c1)); } #elif (CRYPTOPP_POWER8_VMULL_AVAILABLE) && 0 void GF2NT_233_Multiply_Reduce_POWER8(const word* pA, const word* pB, word* pC) { // word is either 32-bit or 64-bit, depending on the platform. // Load using a byte pointer to avoid possible alignment issues. const byte* pAA = reinterpret_cast(pA); const byte* pBB = reinterpret_cast(pB); uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0); uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16); uint64x2_p b0 = (uint64x2_p)VecLoad(pBB+0); uint64x2_p b1 = (uint64x2_p)VecLoad(pBB+16); #if (CRYPTOPP_BIG_ENDIAN) const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11}; const uint8x16_p m = (uint8x16_p)VecLoad(mb); a0 = VecPermute(a0, m); a1 = VecPermute(a1, m); b0 = VecPermute(b0, m); b1 = VecPermute(b1, m); #endif uint64x2_p c0, c1, c2, c3; F2N_Multiply_256x256_POWER8(c3, c2, c1, c0, a1, a0, b1, b0); GF2NT_233_Reduce_POWER8(c3, c2, c1, c0); #if (CRYPTOPP_BIG_ENDIAN) c0 = VecPermute(c0, m); c1 = VecPermute(c1, m); #endif byte* pCC = reinterpret_cast(pC); VecStore(c0, pCC+0); VecStore(c1, pCC+16); } void GF2NT_233_Square_Reduce_POWER8(const word* pA, word* pC) { // word is either 32-bit or 64-bit, depending on the platform. // Load using a byte pointer to avoid possible alignment issues. const byte* pAA = reinterpret_cast(pA); uint64x2_p a0 = (uint64x2_p)VecLoad(pAA+0); uint64x2_p a1 = (uint64x2_p)VecLoad(pAA+16); #if (CRYPTOPP_BIG_ENDIAN) const uint8_t mb[] = {4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11}; const uint8x16_p m = (uint8x16_p)VecLoad(mb); a0 = VecPermute(a0, m); a1 = VecPermute(a1, m); #endif uint64x2_p c0, c1, c2, c3; F2N_Square_256_POWER8(c3, c2, c1, c0, a1, a0); GF2NT_233_Reduce_POWER8(c3, c2, c1, c0); #if (CRYPTOPP_BIG_ENDIAN) c0 = VecPermute(c0, m); c1 = VecPermute(c1, m); #endif byte* pCC = reinterpret_cast(pC); VecStore(c0, pCC+0); VecStore(c1, pCC+16); } #endif NAMESPACE_END #endif // CRYPTOPP_IMPORTS