// gcm.cpp - originally written and placed in the public domain by Wei Dai. // ARM and Aarch64 added by Jeffrey Walton. The ARM carryless // multiply routines are less efficient because they shadow x86. // The precomputed key table integration makes it tricky to use the // more efficient ARMv8 implementation of the multiply and reduce. // use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM gcm.cpp" to generate MASM code #include "pch.h" #include "config.h" #ifndef CRYPTOPP_IMPORTS #ifndef CRYPTOPP_GENERATE_X64_MASM // Visual Studio .Net 2003 compiler crash #if defined(_MSC_VER) && (_MSC_VER < 1400) # pragma optimize("", off) #endif #include "gcm.h" #include "cpu.h" #if defined(CRYPTOPP_DISABLE_GCM_ASM) # undef CRYPTOPP_X86_ASM_AVAILABLE # undef CRYPTOPP_X32_ASM_AVAILABLE # undef CRYPTOPP_X64_ASM_AVAILABLE # undef CRYPTOPP_SSE2_ASM_AVAILABLE #endif NAMESPACE_BEGIN(CryptoPP) #if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) // Different assemblers accept different mnemonics: 'movd eax, xmm0' vs // 'movd rax, xmm0' vs 'mov eax, xmm0' vs 'mov rax, xmm0' #if defined(CRYPTOPP_DISABLE_MIXED_ASM) // 'movd eax, xmm0' only. REG_WORD() macro not used. Clang path. # define USE_MOVD_REG32 1 #elif defined(__GNUC__) || defined(_MSC_VER) // 'movd eax, xmm0' or 'movd rax, xmm0'. REG_WORD() macro supplies REG32 or REG64. # define USE_MOVD_REG32_OR_REG64 1 #else // 'mov eax, xmm0' or 'mov rax, xmm0'. REG_WORD() macro supplies REG32 or REG64. # define USE_MOV_REG32_OR_REG64 1 #endif #endif // CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 word16 GCM_Base::s_reductionTable[256]; volatile bool GCM_Base::s_reductionTableInitialized = false; void GCM_Base::GCTR::IncrementCounterBy256() { IncrementCounterByOne(m_counterArray+BlockSize()-4, 3); } static inline void Xor16(byte *a, const byte *b, const byte *c) { CRYPTOPP_ASSERT(IsAlignedOn(a,GetAlignmentOf())); CRYPTOPP_ASSERT(IsAlignedOn(b,GetAlignmentOf())); CRYPTOPP_ASSERT(IsAlignedOn(c,GetAlignmentOf())); ((word64 *)(void *)a)[0] = ((word64 *)(void *)b)[0] ^ ((word64 *)(void *)c)[0]; ((word64 *)(void *)a)[1] = ((word64 *)(void *)b)[1] ^ ((word64 *)(void *)c)[1]; } #if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE // SunCC 5.10-5.11 compiler crash. Move GCM_Xor16_SSE2 out-of-line, and place in // a source file with a SSE architecture switch. Also see GH #226 and GH #284. extern void GCM_Xor16_SSE2(byte *a, const byte *b, const byte *c); #endif // SSE2 #if CRYPTOPP_ARM_NEON_AVAILABLE extern void GCM_Xor16_NEON(byte *a, const byte *b, const byte *c); #endif #if CRYPTOPP_POWER8_AVAILABLE extern void GCM_Xor16_POWER8(byte *a, const byte *b, const byte *c); #endif #if CRYPTOPP_CLMUL_AVAILABLE extern void GCM_SetKeyWithoutResync_CLMUL(const byte *hashKey, byte *mulTable, unsigned int tableSize); extern size_t GCM_AuthenticateBlocks_CLMUL(const byte *data, size_t len, const byte *mtable, byte *hbuffer); const unsigned int s_cltableSizeInBlocks = 8; extern void GCM_ReverseHashBufferIfNeeded_CLMUL(byte *hashBuffer); #endif // CRYPTOPP_CLMUL_AVAILABLE #if CRYPTOPP_ARM_PMULL_AVAILABLE extern void GCM_SetKeyWithoutResync_PMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize); extern size_t GCM_AuthenticateBlocks_PMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer); const unsigned int s_cltableSizeInBlocks = 8; extern void GCM_ReverseHashBufferIfNeeded_PMULL(byte *hashBuffer); #endif // CRYPTOPP_ARM_PMULL_AVAILABLE #if CRYPTOPP_POWER8_VMULL_AVAILABLE extern void GCM_SetKeyWithoutResync_VMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize); extern size_t GCM_AuthenticateBlocks_VMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer); const unsigned int s_cltableSizeInBlocks = 8; extern void GCM_ReverseHashBufferIfNeeded_VMULL(byte *hashBuffer); #endif // CRYPTOPP_POWER8_VMULL_AVAILABLE void GCM_Base::SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs ¶ms) { BlockCipher &blockCipher = AccessBlockCipher(); blockCipher.SetKey(userKey, keylength, params); // GCM is only defined for 16-byte block ciphers at the moment. // However, variable blocksize support means we have to defer // blocksize checks to runtime after the key is set. Also see // https://github.com/weidai11/cryptopp/issues/408. const unsigned int blockSize = blockCipher.BlockSize(); CRYPTOPP_ASSERT(blockSize == REQUIRED_BLOCKSIZE); if (blockCipher.BlockSize() != REQUIRED_BLOCKSIZE) throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16"); int tableSize, i, j, k; #if CRYPTOPP_CLMUL_AVAILABLE if (HasCLMUL()) { // Avoid "parameter not used" error and suppress Coverity finding (void)params.GetIntValue(Name::TableSize(), tableSize); tableSize = s_cltableSizeInBlocks * blockSize; CRYPTOPP_ASSERT(tableSize > static_cast(blockSize)); } else #elif CRYPTOPP_ARM_PMULL_AVAILABLE if (HasPMULL()) { // Avoid "parameter not used" error and suppress Coverity finding (void)params.GetIntValue(Name::TableSize(), tableSize); tableSize = s_cltableSizeInBlocks * blockSize; CRYPTOPP_ASSERT(tableSize > static_cast(blockSize)); } else #elif CRYPTOPP_POWER8_VMULL_AVAILABLE if (HasPMULL()) { // Avoid "parameter not used" error and suppress Coverity finding (void)params.GetIntValue(Name::TableSize(), tableSize); tableSize = s_cltableSizeInBlocks * blockSize; CRYPTOPP_ASSERT(tableSize > static_cast(blockSize)); } else #endif { if (params.GetIntValue(Name::TableSize(), tableSize)) tableSize = (tableSize >= 64*1024) ? 64*1024 : 2*1024; else tableSize = (GetTablesOption() == GCM_64K_Tables) ? 64*1024 : 2*1024; //#if defined(_MSC_VER) && (_MSC_VER < 1400) // VC 2003 workaround: compiler generates bad code for 64K tables //tableSize = 2*1024; //#endif } m_buffer.resize(3*blockSize + tableSize); byte *mulTable = MulTable(); byte *hashKey = HashKey(); memset(hashKey, 0, REQUIRED_BLOCKSIZE); blockCipher.ProcessBlock(hashKey); #if CRYPTOPP_CLMUL_AVAILABLE if (HasCLMUL()) { GCM_SetKeyWithoutResync_CLMUL(hashKey, mulTable, tableSize); return; } #elif CRYPTOPP_ARM_PMULL_AVAILABLE if (HasPMULL()) { GCM_SetKeyWithoutResync_PMULL(hashKey, mulTable, tableSize); return; } #elif CRYPTOPP_POWER8_VMULL_AVAILABLE if (HasPMULL()) { GCM_SetKeyWithoutResync_VMULL(hashKey, mulTable, tableSize); return; } #endif word64 V0, V1; typedef BlockGetAndPut Block; Block::Get(hashKey)(V0)(V1); if (tableSize == 64*1024) { for (i=0; i<128; i++) { k = i%8; Block::Put(NULLPTR, mulTable+(i/8)*256*16+(size_t(1)<<(11-k)))(V0)(V1); int x = (int)V1 & 1; V1 = (V1>>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); } for (i=0; i<16; i++) { memset(mulTable+i*256*16, 0, 16); #if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE if (HasSSE2()) for (j=2; j<=0x80; j*=2) for (k=1; k>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); } for (i=0; i<4; i++) { memset(mulTable+i*256, 0, 16); memset(mulTable+1024+i*256, 0, 16); #if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE if (HasSSE2()) for (j=2; j<=8; j*=2) for (k=1; k= HASH_BLOCKSIZE) { len = GCM_Base::AuthenticateBlocks(iv, len); iv += (origLen - len); } if (len > 0) { memcpy(m_buffer, iv, len); memset(m_buffer+len, 0, HASH_BLOCKSIZE-len); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); } PutBlock(NULLPTR, m_buffer)(0)(origLen*8); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); ReverseHashBufferIfNeeded(); } if (m_state >= State_IVSet) m_ctr.Resynchronize(hashBuffer, REQUIRED_BLOCKSIZE); else m_ctr.SetCipherWithIV(cipher, hashBuffer); m_ctr.Seek(HASH_BLOCKSIZE); memset(hashBuffer, 0, HASH_BLOCKSIZE); } unsigned int GCM_Base::OptimalDataAlignment() const { return #if CRYPTOPP_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) HasSSE2() ? 16 : #elif CRYPTOPP_ARM_NEON_AVAILABLE HasNEON() ? 4 : #elif CRYPTOPP_POWER8_AVAILABLE HasPower8() ? 16 : #endif GetBlockCipher().OptimalDataAlignment(); } #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code #endif #endif // Not CRYPTOPP_GENERATE_X64_MASM #ifdef CRYPTOPP_X64_MASM_AVAILABLE extern "C" { void GCM_AuthenticateBlocks_2K_SSE2(const byte *data, size_t blocks, word64 *hashBuffer, const word16 *reductionTable); void GCM_AuthenticateBlocks_64K_SSE2(const byte *data, size_t blocks, word64 *hashBuffer); } #endif #ifndef CRYPTOPP_GENERATE_X64_MASM size_t GCM_Base::AuthenticateBlocks(const byte *data, size_t len) { #if CRYPTOPP_CLMUL_AVAILABLE if (HasCLMUL()) { return GCM_AuthenticateBlocks_CLMUL(data, len, MulTable(), HashBuffer()); } #elif CRYPTOPP_ARM_PMULL_AVAILABLE if (HasPMULL()) { return GCM_AuthenticateBlocks_PMULL(data, len, MulTable(), HashBuffer()); } #elif CRYPTOPP_POWER8_VMULL_AVAILABLE if (HasPMULL()) { return GCM_AuthenticateBlocks_VMULL(data, len, MulTable(), HashBuffer()); } #endif typedef BlockGetAndPut Block; word64 *hashBuffer = (word64 *)(void *)HashBuffer(); CRYPTOPP_ASSERT(IsAlignedOn(hashBuffer,GetAlignmentOf())); switch (2*(m_buffer.size()>=64*1024) #if CRYPTOPP_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE) + HasSSE2() //#elif CRYPTOPP_ARM_NEON_AVAILABLE // + HasNEON() #endif ) { case 0: // non-SSE2 and 2K tables { byte *mulTable = MulTable(); word64 x0 = hashBuffer[0], x1 = hashBuffer[1]; do { word64 y0, y1, a0, a1, b0, b1, c0, c1, d0, d1; Block::Get(data)(y0)(y1); x0 ^= y0; x1 ^= y1; data += HASH_BLOCKSIZE; len -= HASH_BLOCKSIZE; #define READ_TABLE_WORD64_COMMON(a, b, c, d) *(word64 *)(void *)(mulTable+(a*1024)+(b*256)+c+d*8) #if (CRYPTOPP_LITTLE_ENDIAN) #if CRYPTOPP_BOOL_SLOW_WORD64 word32 z0 = (word32)x0; word32 z1 = (word32)(x0>>32); word32 z2 = (word32)x1; word32 z3 = (word32)(x1>>32); #define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, (d?(z##c>>((d?d-1:0)*4))&0xf0:(z##c&0xf)<<4), e) #else #define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, ((d+8*b)?(x##a>>(((d+8*b)?(d+8*b)-1:1)*4))&0xf0:(x##a&0xf)<<4), e) #endif #define GF_MOST_SIG_8BITS(a) (a##1 >> 7*8) #define GF_SHIFT_8(a) a##1 = (a##1 << 8) ^ (a##0 >> 7*8); a##0 <<= 8; #else #define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((1-d%2), c, ((15-d-8*b)?(x##a>>(((15-d-8*b)?(15-d-8*b)-1:0)*4))&0xf0:(x##a&0xf)<<4), e) #define GF_MOST_SIG_8BITS(a) (a##1 & 0xff) #define GF_SHIFT_8(a) a##1 = (a##1 >> 8) ^ (a##0 << 7*8); a##0 >>= 8; #endif #define GF_MUL_32BY128(op, a, b, c) \ a0 op READ_TABLE_WORD64(a, b, c, 0, 0) ^ READ_TABLE_WORD64(a, b, c, 1, 0); \ a1 op READ_TABLE_WORD64(a, b, c, 0, 1) ^ READ_TABLE_WORD64(a, b, c, 1, 1); \ b0 op READ_TABLE_WORD64(a, b, c, 2, 0) ^ READ_TABLE_WORD64(a, b, c, 3, 0); \ b1 op READ_TABLE_WORD64(a, b, c, 2, 1) ^ READ_TABLE_WORD64(a, b, c, 3, 1); \ c0 op READ_TABLE_WORD64(a, b, c, 4, 0) ^ READ_TABLE_WORD64(a, b, c, 5, 0); \ c1 op READ_TABLE_WORD64(a, b, c, 4, 1) ^ READ_TABLE_WORD64(a, b, c, 5, 1); \ d0 op READ_TABLE_WORD64(a, b, c, 6, 0) ^ READ_TABLE_WORD64(a, b, c, 7, 0); \ d1 op READ_TABLE_WORD64(a, b, c, 6, 1) ^ READ_TABLE_WORD64(a, b, c, 7, 1); \ GF_MUL_32BY128(=, 0, 0, 0) GF_MUL_32BY128(^=, 0, 1, 1) GF_MUL_32BY128(^=, 1, 0, 2) GF_MUL_32BY128(^=, 1, 1, 3) word32 r = (word32)s_reductionTable[GF_MOST_SIG_8BITS(d)] << 16; GF_SHIFT_8(d) c0 ^= d0; c1 ^= d1; r ^= (word32)s_reductionTable[GF_MOST_SIG_8BITS(c)] << 8; GF_SHIFT_8(c) b0 ^= c0; b1 ^= c1; r ^= s_reductionTable[GF_MOST_SIG_8BITS(b)]; GF_SHIFT_8(b) a0 ^= b0; a1 ^= b1; a0 ^= ConditionalByteReverse(LITTLE_ENDIAN_ORDER, r); x0 = a0; x1 = a1; } while (len >= HASH_BLOCKSIZE); hashBuffer[0] = x0; hashBuffer[1] = x1; return len; } case 2: // non-SSE2 and 64K tables { byte *mulTable = MulTable(); word64 x0 = hashBuffer[0], x1 = hashBuffer[1]; do { word64 y0, y1, a0, a1; Block::Get(data)(y0)(y1); x0 ^= y0; x1 ^= y1; data += HASH_BLOCKSIZE; len -= HASH_BLOCKSIZE; #undef READ_TABLE_WORD64_COMMON #undef READ_TABLE_WORD64 #define READ_TABLE_WORD64_COMMON(a, c, d) *(word64 *)(void *)(mulTable+(a)*256*16+(c)+(d)*8) #if (CRYPTOPP_LITTLE_ENDIAN) #if CRYPTOPP_BOOL_SLOW_WORD64 word32 z0 = (word32)x0; word32 z1 = (word32)(x0>>32); word32 z2 = (word32)x1; word32 z3 = (word32)(x1>>32); #define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, (d?(z##c>>((d?d:1)*8-4))&0xff0:(z##c&0xff)<<4), e) #else #define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((d+4*(c%2))?(x##b>>(((d+4*(c%2))?(d+4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e) #endif #else #define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((7-d-4*(c%2))?(x##b>>(((7-d-4*(c%2))?(7-d-4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e) #endif #define GF_MUL_8BY128(op, b, c, d) \ a0 op READ_TABLE_WORD64(b, c, d, 0);\ a1 op READ_TABLE_WORD64(b, c, d, 1);\ GF_MUL_8BY128(=, 0, 0, 0) GF_MUL_8BY128(^=, 0, 0, 1) GF_MUL_8BY128(^=, 0, 0, 2) GF_MUL_8BY128(^=, 0, 0, 3) GF_MUL_8BY128(^=, 0, 1, 0) GF_MUL_8BY128(^=, 0, 1, 1) GF_MUL_8BY128(^=, 0, 1, 2) GF_MUL_8BY128(^=, 0, 1, 3) GF_MUL_8BY128(^=, 1, 2, 0) GF_MUL_8BY128(^=, 1, 2, 1) GF_MUL_8BY128(^=, 1, 2, 2) GF_MUL_8BY128(^=, 1, 2, 3) GF_MUL_8BY128(^=, 1, 3, 0) GF_MUL_8BY128(^=, 1, 3, 1) GF_MUL_8BY128(^=, 1, 3, 2) GF_MUL_8BY128(^=, 1, 3, 3) x0 = a0; x1 = a1; } while (len >= HASH_BLOCKSIZE); hashBuffer[0] = x0; hashBuffer[1] = x1; return len; } #endif // #ifndef CRYPTOPP_GENERATE_X64_MASM #ifdef CRYPTOPP_X64_MASM_AVAILABLE case 1: // SSE2 and 2K tables GCM_AuthenticateBlocks_2K_SSE2(data, len/16, hashBuffer, s_reductionTable); return len % 16; case 3: // SSE2 and 64K tables GCM_AuthenticateBlocks_64K_SSE2(data, len/16, hashBuffer); return len % 16; #endif #if CRYPTOPP_SSE2_ASM_AVAILABLE case 1: // SSE2 and 2K tables { #ifdef __GNUC__ __asm__ __volatile__ ( INTEL_NOPREFIX #elif defined(CRYPTOPP_GENERATE_X64_MASM) ALIGN 8 GCM_AuthenticateBlocks_2K_SSE2 PROC FRAME rex_push_reg rsi push_reg rdi push_reg rbx .endprolog mov rsi, r8 mov r11, r9 #else AS2( mov WORD_REG(cx), data ) AS2( mov WORD_REG(dx), len ) AS2( mov WORD_REG(si), hashBuffer ) AS2( shr WORD_REG(dx), 4 ) #endif #if CRYPTOPP_BOOL_X32 AS1(push rbx) AS1(push rbp) #else AS_PUSH_IF86( bx) AS_PUSH_IF86( bp) #endif #ifdef __GNUC__ AS2( mov AS_REG_7, WORD_REG(di)) #elif CRYPTOPP_BOOL_X86 AS2( lea AS_REG_7, s_reductionTable) #endif AS2( movdqa xmm0, [WORD_REG(si)] ) #define MUL_TABLE_0 WORD_REG(si) + 32 #define MUL_TABLE_1 WORD_REG(si) + 32 + 1024 #define RED_TABLE AS_REG_7 ASL(0) AS2( movdqu xmm4, [WORD_REG(cx)] ) AS2( pxor xmm0, xmm4 ) AS2( movd ebx, xmm0 ) AS2( mov eax, AS_HEX(f0f0f0f0) ) AS2( and eax, ebx ) AS2( shl ebx, 4 ) AS2( and ebx, AS_HEX(f0f0f0f0) ) AS2( movzx edi, ah ) AS2( movdqa xmm5, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( movzx edi, al ) AS2( movdqa xmm4, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( shr eax, 16 ) AS2( movzx edi, ah ) AS2( movdqa xmm3, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) AS2( movzx edi, al ) AS2( movdqa xmm2, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] ) #define SSE2_MUL_32BITS(i) \ AS2( psrldq xmm0, 4 )\ AS2( movd eax, xmm0 )\ AS2( and eax, AS_HEX(f0f0f0f0) )\ AS2( movzx edi, bh )\ AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movzx edi, bl )\ AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( shr ebx, 16 )\ AS2( movzx edi, bh )\ AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movzx edi, bl )\ AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\ AS2( movd ebx, xmm0 )\ AS2( shl ebx, 4 )\ AS2( and ebx, AS_HEX(f0f0f0f0) )\ AS2( movzx edi, ah )\ AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( movzx edi, al )\ AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( shr eax, 16 )\ AS2( movzx edi, ah )\ AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ AS2( movzx edi, al )\ AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\ SSE2_MUL_32BITS(1) SSE2_MUL_32BITS(2) SSE2_MUL_32BITS(3) AS2( movzx edi, bh ) AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movzx edi, bl ) AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( shr ebx, 16 ) AS2( movzx edi, bh ) AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movzx edi, bl ) AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] ) AS2( movdqa xmm0, xmm3 ) AS2( pslldq xmm3, 1 ) AS2( pxor xmm2, xmm3 ) AS2( movdqa xmm1, xmm2 ) AS2( pslldq xmm2, 1 ) AS2( pxor xmm5, xmm2 ) AS2( psrldq xmm0, 15 ) #if USE_MOVD_REG32 AS2( movd edi, xmm0 ) #elif USE_MOV_REG32_OR_REG64 AS2( mov WORD_REG(di), xmm0 ) #else // GNU Assembler AS2( movd WORD_REG(di), xmm0 ) #endif AS2( movzx eax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( shl eax, 8 ) AS2( movdqa xmm0, xmm5 ) AS2( pslldq xmm5, 1 ) AS2( pxor xmm4, xmm5 ) AS2( psrldq xmm1, 15 ) #if USE_MOVD_REG32 AS2( movd edi, xmm1 ) #elif USE_MOV_REG32_OR_REG64 AS2( mov WORD_REG(di), xmm1 ) #else AS2( movd WORD_REG(di), xmm1 ) #endif AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( shl eax, 8 ) AS2( psrldq xmm0, 15 ) #if USE_MOVD_REG32 AS2( movd edi, xmm0 ) #elif USE_MOV_REG32_OR_REG64 AS2( mov WORD_REG(di), xmm0 ) #else AS2( movd WORD_REG(di), xmm0 ) #endif AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] ) AS2( movd xmm0, eax ) AS2( pxor xmm0, xmm4 ) AS2( add WORD_REG(cx), 16 ) AS2( sub WORD_REG(dx), 1 ) // ATT_NOPREFIX ASJ( jnz, 0, b ) INTEL_NOPREFIX AS2( movdqa [WORD_REG(si)], xmm0 ) #if CRYPTOPP_BOOL_X32 AS1(pop rbp) AS1(pop rbx) #else AS_POP_IF86( bp) AS_POP_IF86( bx) #endif #ifdef __GNUC__ ATT_PREFIX : : "c" (data), "d" (len/16), "S" (hashBuffer), "D" (s_reductionTable) : "memory", "cc", "%eax", "%ebx" #if (CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) , PERCENT_REG(AS_REG_7), "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5" #endif ); #elif defined(CRYPTOPP_GENERATE_X64_MASM) pop rbx pop rdi pop rsi ret GCM_AuthenticateBlocks_2K_SSE2 ENDP #endif return len%16; } case 3: // SSE2 and 64K tables { #ifdef __GNUC__ __asm__ __volatile__ ( INTEL_NOPREFIX #elif defined(CRYPTOPP_GENERATE_X64_MASM) ALIGN 8 GCM_AuthenticateBlocks_64K_SSE2 PROC FRAME rex_push_reg rsi push_reg rdi .endprolog mov rsi, r8 #else AS2( mov WORD_REG(cx), data ) AS2( mov WORD_REG(dx), len ) AS2( mov WORD_REG(si), hashBuffer ) AS2( shr WORD_REG(dx), 4 ) #endif AS2( movdqa xmm0, [WORD_REG(si)] ) #undef MUL_TABLE #define MUL_TABLE(i,j) WORD_REG(si) + 32 + (i*4+j)*256*16 ASL(1) AS2( movdqu xmm1, [WORD_REG(cx)] ) AS2( pxor xmm1, xmm0 ) AS2( pxor xmm0, xmm0 ) #undef SSE2_MUL_32BITS #define SSE2_MUL_32BITS(i) \ AS2( movd eax, xmm1 )\ AS2( psrldq xmm1, 4 )\ AS2( movzx edi, al )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,0) + WORD_REG(di)*8] )\ AS2( movzx edi, ah )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,1) + WORD_REG(di)*8] )\ AS2( shr eax, 16 )\ AS2( movzx edi, al )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,2) + WORD_REG(di)*8] )\ AS2( movzx edi, ah )\ AS2( add WORD_REG(di), WORD_REG(di) )\ AS2( pxor xmm0, [MUL_TABLE(i,3) + WORD_REG(di)*8] )\ SSE2_MUL_32BITS(0) SSE2_MUL_32BITS(1) SSE2_MUL_32BITS(2) SSE2_MUL_32BITS(3) AS2( add WORD_REG(cx), 16 ) AS2( sub WORD_REG(dx), 1 ) // ATT_NOPREFIX ASJ( jnz, 1, b ) INTEL_NOPREFIX AS2( movdqa [WORD_REG(si)], xmm0 ) #ifdef __GNUC__ ATT_PREFIX : : "c" (data), "d" (len/16), "S" (hashBuffer) : "memory", "cc", "%edi", "%eax" #if (CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) , "%xmm0", "%xmm1" #endif ); #elif defined(CRYPTOPP_GENERATE_X64_MASM) pop rdi pop rsi ret GCM_AuthenticateBlocks_64K_SSE2 ENDP #endif return len%16; } #endif #ifndef CRYPTOPP_GENERATE_X64_MASM } return len%16; } void GCM_Base::AuthenticateLastHeaderBlock() { if (m_bufferedDataLength > 0) { memset(m_buffer+m_bufferedDataLength, 0, HASH_BLOCKSIZE-m_bufferedDataLength); m_bufferedDataLength = 0; GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); } } void GCM_Base::AuthenticateLastConfidentialBlock() { GCM_Base::AuthenticateLastHeaderBlock(); PutBlock(NULLPTR, m_buffer)(m_totalHeaderLength*8)(m_totalMessageLength*8); GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE); } void GCM_Base::AuthenticateLastFooterBlock(byte *mac, size_t macSize) { m_ctr.Seek(0); ReverseHashBufferIfNeeded(); m_ctr.ProcessData(mac, HashBuffer(), macSize); } NAMESPACE_END #endif // Not CRYPTOPP_GENERATE_X64_MASM #endif