// gcm-simd.cpp - written and placed in the public domain by // Jeffrey Walton, Uri Blumenthal and Marcel Raad. // Original x86 CLMUL by Wei Dai. ARM and POWER8 // PMULL and VMULL by JW, UB and MR. // // This source file uses intrinsics to gain access to SSE4.2 and // ARMv8a CRC-32 and CRC-32C instructions. A separate source file // is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. #include "pch.h" #include "config.h" #include "misc.h" #if defined(CRYPTOPP_DISABLE_GCM_ASM) # undef CRYPTOPP_X86_ASM_AVAILABLE # undef CRYPTOPP_X32_ASM_AVAILABLE # undef CRYPTOPP_X64_ASM_AVAILABLE # undef CRYPTOPP_SSE2_ASM_AVAILABLE #endif #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) # include # include #endif #if (CRYPTOPP_CLMUL_AVAILABLE) # include # include #endif #if (CRYPTOPP_ARM_NEON_AVAILABLE) # include #endif #if defined(CRYPTOPP_ARM_ACLE_AVAILABLE) # include # include #endif #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) # include "ppc-simd.h" #endif #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY # include # include #endif #ifndef EXCEPTION_EXECUTE_HANDLER # define EXCEPTION_EXECUTE_HANDLER 1 #endif // Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670 #define M128_CAST(x) ((__m128i *)(void *)(x)) #define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x)) // GCC cast warning #define UINT64X2_CAST(x) ((uint64x2_t *)(void *)(x)) #define CONST_UINT64X2_CAST(x) ((const uint64x2_t *)(const void *)(x)) // Squash MS LNK4221 and libtool warnings extern const char GCM_SIMD_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN // ************************* Miscellaneous ************************* // #if CRYPTOPP_ARM_PMULL_AVAILABLE #if defined(__GNUC__) // Schneiders, Hovsmith and O'Rourke used this trick. // It results in much better code generation in production code // by avoiding D-register spills when using vgetq_lane_u64. The // problem does not surface under minimal test cases. inline uint64x2_t PMULL_00(const uint64x2_t a, const uint64x2_t b) { uint64x2_t r; __asm __volatile("pmull %0.1q, %1.1d, %2.1d \n\t" :"=w" (r) : "w" (a), "w" (b) ); return r; } inline uint64x2_t PMULL_01(const uint64x2_t a, const uint64x2_t b) { uint64x2_t r; __asm __volatile("pmull %0.1q, %1.1d, %2.1d \n\t" :"=w" (r) : "w" (a), "w" (vget_high_u64(b)) ); return r; } inline uint64x2_t PMULL_10(const uint64x2_t a, const uint64x2_t b) { uint64x2_t r; __asm __volatile("pmull %0.1q, %1.1d, %2.1d \n\t" :"=w" (r) : "w" (vget_high_u64(a)), "w" (b) ); return r; } inline uint64x2_t PMULL_11(const uint64x2_t a, const uint64x2_t b) { uint64x2_t r; __asm __volatile("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (r) : "w" (a), "w" (b) ); return r; } inline uint64x2_t VEXT_U8(uint64x2_t a, uint64x2_t b, unsigned int c) { uint64x2_t r; __asm __volatile("ext %0.16b, %1.16b, %2.16b, %3 \n\t" :"=w" (r) : "w" (a), "w" (b), "I" (c) ); return r; } // https://github.com/weidai11/cryptopp/issues/366 template inline uint64x2_t VEXT_U8(uint64x2_t a, uint64x2_t b) { uint64x2_t r; __asm __volatile("ext %0.16b, %1.16b, %2.16b, %3 \n\t" :"=w" (r) : "w" (a), "w" (b), "I" (C) ); return r; } #endif // GCC and compatibles #if defined(_MSC_VER) inline uint64x2_t PMULL_00(const uint64x2_t a, const uint64x2_t b) { return (uint64x2_t)(vmull_p64( vgetq_lane_u64(vreinterpretq_u64_u8(a),0), vgetq_lane_u64(vreinterpretq_u64_u8(b),0))); } inline uint64x2_t PMULL_01(const uint64x2_t a, const uint64x2_t b) { return (uint64x2_t)(vmull_p64( vgetq_lane_u64(vreinterpretq_u64_u8(a),0), vgetq_lane_u64(vreinterpretq_u64_u8(b),1))); } inline uint64x2_t PMULL_10(const uint64x2_t a, const uint64x2_t b) { return (uint64x2_t)(vmull_p64( vgetq_lane_u64(vreinterpretq_u64_u8(a),1), vgetq_lane_u64(vreinterpretq_u64_u8(b),0))); } inline uint64x2_t PMULL_11(const uint64x2_t a, const uint64x2_t b) { return (uint64x2_t)(vmull_p64( vgetq_lane_u64(vreinterpretq_u64_u8(a),1), vgetq_lane_u64(vreinterpretq_u64_u8(b),1))); } inline uint64x2_t VEXT_U8(uint64x2_t a, uint64x2_t b, unsigned int c) { return (uint64x2_t)vextq_u8( vreinterpretq_u8_u64(a), vreinterpretq_u8_u64(b), c); } // https://github.com/weidai11/cryptopp/issues/366 template inline uint64x2_t VEXT_U8(uint64x2_t a, uint64x2_t b) { return (uint64x2_t)vextq_u8( vreinterpretq_u8_u64(a), vreinterpretq_u8_u64(b), C); } #endif // Microsoft and compatibles #endif // CRYPTOPP_ARM_PMULL_AVAILABLE #if CRYPTOPP_POWER8_VMULL_AVAILABLE using CryptoPP::uint32x4_p; using CryptoPP::uint64x2_p; using CryptoPP::VectorGetLow; using CryptoPP::VectorGetHigh; using CryptoPP::VectorRotateLeft; // POWER8 GCM mode is confusing. The algorithm is reflected so // nearly everything we do is reversed for a little-endian system, // including on big-endian machines. VMULL2LE swaps dwords for a // little endian machine; VMULL_00LE, VMULL_01LE, VMULL_10LE and // VMULL_11LE are backwards and (1) read low words with // VectorGetHigh, (2) read high words with VectorGetLow, and // (3) yields a product that is endian swapped. The steps ensures // GCM parameters are presented in the correct order for the // algorithm on both big and little-endian systems, but it is // awful to try to follow the logic because it is so backwards. // Because functions like VMULL_NN are so backwards we can't put // them in ppc-simd.h. They simply don't work the way a typical // user expects them to work. inline uint64x2_p VMULL2LE(const uint64x2_p& val) { #if CRYPTOPP_BIG_ENDIAN return VectorRotateLeft<8>(val); #else return val; #endif } // _mm_clmulepi64_si128(a, b, 0x00) inline uint64x2_p VMULL_00LE(const uint64x2_p& a, const uint64x2_p& b) { #if defined(__xlc__) || defined(__xlC__) return VMULL2LE(__vpmsumd (VectorGetHigh(a), VectorGetHigh(b))); #else return VMULL2LE(__builtin_crypto_vpmsumd (VectorGetHigh(a), VectorGetHigh(b))); #endif } // _mm_clmulepi64_si128(a, b, 0x01) inline uint64x2_p VMULL_01LE(const uint64x2_p& a, const uint64x2_p& b) { // Small speedup. VectorGetHigh(b) ensures the high dword of 'b' is 0. // The 0 used in the vmull yields 0 for the high product, so the high // dword of 'a' is "don't care". #if defined(__xlc__) || defined(__xlC__) return VMULL2LE(__vpmsumd (a, VectorGetHigh(b))); #else return VMULL2LE(__builtin_crypto_vpmsumd (a, VectorGetHigh(b))); #endif } // _mm_clmulepi64_si128(a, b, 0x10) inline uint64x2_p VMULL_10LE(const uint64x2_p& a, const uint64x2_p& b) { // Small speedup. VectorGetHigh(a) ensures the high dword of 'a' is 0. // The 0 used in the vmull yields 0 for the high product, so the high // dword of 'b' is "don't care". #if defined(__xlc__) || defined(__xlC__) return VMULL2LE(__vpmsumd (VectorGetHigh(a), b)); #else return VMULL2LE(__builtin_crypto_vpmsumd (VectorGetHigh(a), b)); #endif } // _mm_clmulepi64_si128(a, b, 0x11) inline uint64x2_p VMULL_11LE(const uint64x2_p& a, const uint64x2_p& b) { // Small speedup. VectorGetLow(a) ensures the high dword of 'a' is 0. // The 0 used in the vmull yields 0 for the high product, so the high // dword of 'b' is "don't care". #if defined(__xlc__) || defined(__xlC__) return VMULL2LE(__vpmsumd (VectorGetLow(a), b)); #else return VMULL2LE(__builtin_crypto_vpmsumd (VectorGetLow(a), b)); #endif } #endif // CRYPTOPP_POWER8_VMULL_AVAILABLE ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) // ************************* Feature Probes ************************* // #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY extern "C" { typedef void (*SigHandler)(int); static jmp_buf s_jmpSIGILL; static void SigIllHandler(int) { longjmp(s_jmpSIGILL, 1); } } #endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY #if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64) bool CPU_ProbePMULL() { #if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES) return false; #elif (CRYPTOPP_ARM_PMULL_AVAILABLE) # if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY) volatile bool result = true; __try { const poly64_t a1={0x9090909090909090}, b1={0xb0b0b0b0b0b0b0b0}; const poly8x16_t a2={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0}, b2={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0, 0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0}; const poly128_t r1 = pmull_p64(a1, b1); const poly128_t r2 = pmull_high_p64((poly64x2_t)(a2), (poly64x2_t)(b2)); // Linaro is missing a lot of pmull gear. Also see http://github.com/weidai11/cryptopp/issues/233. const uint64x2_t t1 = (uint64x2_t)(r1); // {bignum,bignum} const uint64x2_t t2 = (uint64x2_t)(r2); // {bignum,bignum} result = !!(vgetq_lane_u64(t1,0) == 0x5300530053005300 && vgetq_lane_u64(t1,1) == 0x5300530053005300 && vgetq_lane_u64(t2,0) == 0x6c006c006c006c00 && vgetq_lane_u64(t2,1) == 0x6c006c006c006c00); } __except (EXCEPTION_EXECUTE_HANDLER) { return false; } return result; # else // longjmp and clobber warnings. Volatile is required. volatile bool result = true; volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler); if (oldHandler == SIG_ERR) return false; volatile sigset_t oldMask; if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask)) return false; if (setjmp(s_jmpSIGILL)) result = false; else { // Linaro is missing a lot of pmull gear. Also see http://github.com/weidai11/cryptopp/issues/233. const uint64x2_t a1={0,0x9090909090909090}, b1={0,0xb0b0b0b0b0b0b0b0}; const uint8x16_t a2={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80, 0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0}, b2={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0, 0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0}; const uint64x2_t r1 = PMULL_00(a1, b1); const uint64x2_t r2 = PMULL_11((uint64x2_t)a2, (uint64x2_t)b2); result = !!(vgetq_lane_u64(r1,0) == 0x5300530053005300 && vgetq_lane_u64(r1,1) == 0x5300530053005300 && vgetq_lane_u64(r2,0) == 0x6c006c006c006c00 && vgetq_lane_u64(r2,1) == 0x6c006c006c006c00); } sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR); signal(SIGILL, oldHandler); return result; # endif #else return false; #endif // CRYPTOPP_ARM_PMULL_AVAILABLE } #endif // ARM32 or ARM64 #if (CRYPTOPP_BOOL_PPC32 || CRYPTOPP_BOOL_PPC64) bool CPU_ProbePMULL() { #if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES) return false; #elif (CRYPTOPP_POWER8_VMULL_AVAILABLE) // longjmp and clobber warnings. Volatile is required. volatile bool result = true; volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler); if (oldHandler == SIG_ERR) return false; volatile sigset_t oldMask; if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask)) return false; if (setjmp(s_jmpSIGILL)) result = false; else { const uint8x16_p a={0x0f,0x08,0x08,0x08, 0x80,0x80,0x80,0x80, 0x00,0x0a,0x0a,0x0a, 0xa0,0xa0,0xa0,0xa0}, b={0x0f,0xc0,0xc0,0xc0, 0x0c,0x0c,0x0c,0x0c, 0x00,0xe0,0xe0,0xe0, 0x0e,0x0e,0x0e,0x0e}; const uint64x2_p r1 = VMULL_00LE((uint64x2_p)(a), (uint64x2_p)(b)); const uint64x2_p r2 = VMULL_01LE((uint64x2_p)(a), (uint64x2_p)(b)); const uint64x2_p r3 = VMULL_10LE((uint64x2_p)(a), (uint64x2_p)(b)); const uint64x2_p r4 = VMULL_11LE((uint64x2_p)(a), (uint64x2_p)(b)); result = VectorNotEqual(r1, r2) && VectorNotEqual(r3, r4); } sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR); signal(SIGILL, oldHandler); return result; #else return false; #endif // CRYPTOPP_POWER8_VMULL_AVAILABLE } #endif // PPC32 or PPC64 // *************************** ARM NEON *************************** // #if CRYPTOPP_ARM_NEON_AVAILABLE void GCM_Xor16_NEON(byte *a, const byte *b, const byte *c) { CRYPTOPP_ASSERT(IsAlignedOn(a,GetAlignmentOf())); CRYPTOPP_ASSERT(IsAlignedOn(b,GetAlignmentOf())); CRYPTOPP_ASSERT(IsAlignedOn(c,GetAlignmentOf())); *UINT64X2_CAST(a) = veorq_u64(*CONST_UINT64X2_CAST(b), *CONST_UINT64X2_CAST(c)); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE #if CRYPTOPP_ARM_PMULL_AVAILABLE // Swaps high and low 64-bit words inline uint64x2_t SwapWords(const uint64x2_t& data) { return (uint64x2_t)vcombine_u64( vget_high_u64(data), vget_low_u64(data)); } uint64x2_t GCM_Reduce_PMULL(uint64x2_t c0, uint64x2_t c1, uint64x2_t c2, const uint64x2_t &r) { c1 = veorq_u64(c1, VEXT_U8<8>(vdupq_n_u64(0), c0)); c1 = veorq_u64(c1, PMULL_01(c0, r)); c0 = VEXT_U8<8>(c0, vdupq_n_u64(0)); c0 = vshlq_n_u64(veorq_u64(c0, c1), 1); c0 = PMULL_00(c0, r); c2 = veorq_u64(c2, c0); c2 = veorq_u64(c2, VEXT_U8<8>(c1, vdupq_n_u64(0))); c1 = vshrq_n_u64(vcombine_u64(vget_low_u64(c1), vget_low_u64(c2)), 63); c2 = vshlq_n_u64(c2, 1); return veorq_u64(c2, c1); } uint64x2_t GCM_Multiply_PMULL(const uint64x2_t &x, const uint64x2_t &h, const uint64x2_t &r) { const uint64x2_t c0 = PMULL_00(x, h); const uint64x2_t c1 = veorq_u64(PMULL_10(x, h), PMULL_01(x, h)); const uint64x2_t c2 = PMULL_11(x, h); return GCM_Reduce_PMULL(c0, c1, c2, r); } void GCM_SetKeyWithoutResync_PMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize) { const uint64x2_t r = {0xe100000000000000ull, 0xc200000000000000ull}; const uint64x2_t t = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(hashKey))); const uint64x2_t h0 = vextq_u64(t, t, 1); uint64x2_t h = h0; unsigned int i; for (i=0; i= 16) { size_t i=0, s = UnsignedMin(len/16U, 8U); uint64x2_t d1, d2 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-1)*16U))); uint64x2_t c0 = vdupq_n_u64(0); uint64x2_t c1 = vdupq_n_u64(0); uint64x2_t c2 = vdupq_n_u64(0); while (true) { const uint64x2_t h0 = vld1q_u64((const uint64_t*)(mtable+(i+0)*16)); const uint64x2_t h1 = vld1q_u64((const uint64_t*)(mtable+(i+1)*16)); const uint64x2_t h2 = veorq_u64(h0, h1); if (++i == s) { const uint64x2_t t1 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data))); d1 = veorq_u64(vextq_u64(t1, t1, 1), x); c0 = veorq_u64(c0, PMULL_00(d1, h0)); c2 = veorq_u64(c2, PMULL_10(d1, h1)); d1 = veorq_u64(d1, SwapWords(d1)); c1 = veorq_u64(c1, PMULL_00(d1, h2)); break; } d1 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-i)*16-8))); c0 = veorq_u64(c0, PMULL_10(d2, h0)); c2 = veorq_u64(c2, PMULL_10(d1, h1)); d2 = veorq_u64(d2, d1); c1 = veorq_u64(c1, PMULL_10(d2, h2)); if (++i == s) { const uint64x2_t t2 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data))); d1 = veorq_u64(vextq_u64(t2, t2, 1), x); c0 = veorq_u64(c0, PMULL_01(d1, h0)); c2 = veorq_u64(c2, PMULL_11(d1, h1)); d1 = veorq_u64(d1, SwapWords(d1)); c1 = veorq_u64(c1, PMULL_01(d1, h2)); break; } const uint64x2_t t3 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-i)*16-8))); d2 = vextq_u64(t3, t3, 1); c0 = veorq_u64(c0, PMULL_01(d1, h0)); c2 = veorq_u64(c2, PMULL_01(d2, h1)); d1 = veorq_u64(d1, d2); c1 = veorq_u64(c1, PMULL_01(d1, h2)); } data += s*16; len -= s*16; c1 = veorq_u64(veorq_u64(c1, c0), c2); x = GCM_Reduce_PMULL(c0, c1, c2, r); } vst1q_u64(reinterpret_cast(hbuffer), x); return len; } void GCM_ReverseHashBufferIfNeeded_PMULL(byte *hashBuffer) { if (GetNativeByteOrder() != BIG_ENDIAN_ORDER) { const uint8x16_t x = vrev64q_u8(vld1q_u8(hashBuffer)); vst1q_u8(hashBuffer, vextq_u8(x, x, 8)); } } #endif // CRYPTOPP_ARM_PMULL_AVAILABLE // ***************************** SSE ***************************** // #if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE // SunCC 5.10-5.11 compiler crash. Move GCM_Xor16_SSE2 out-of-line, and place in // a source file with a SSE architecture switch. Also see GH #226 and GH #284. void GCM_Xor16_SSE2(byte *a, const byte *b, const byte *c) { # if CRYPTOPP_SSE2_ASM_AVAILABLE && defined(__GNUC__) asm ("movdqa %1, %%xmm0; pxor %2, %%xmm0; movdqa %%xmm0, %0;" : "=m" (a[0]) : "m"(b[0]), "m"(c[0])); # else // CRYPTOPP_SSE2_INTRIN_AVAILABLE _mm_store_si128(M128_CAST(a), _mm_xor_si128( _mm_load_si128(CONST_M128_CAST(b)), _mm_load_si128(CONST_M128_CAST(c)))); # endif } #endif // CRYPTOPP_SSE2_ASM_AVAILABLE #if CRYPTOPP_CLMUL_AVAILABLE #if 0 // preserved for testing void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c) { word64 Z0=0, Z1=0, V0, V1; typedef BlockGetAndPut Block; Block::Get(a)(V0)(V1); for (int i=0; i<16; i++) { for (int j=0x80; j!=0; j>>=1) { int x = b[i] & j; Z0 ^= x ? V0 : 0; Z1 ^= x ? V1 : 0; x = (int)V1 & 1; V1 = (V1>>1) | (V0<<63); V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0); } } Block::Put(NULLPTR, c)(Z0)(Z1); } __m128i _mm_clmulepi64_si128(const __m128i &a, const __m128i &b, int i) { word64 A[1] = {ByteReverse(((word64*)&a)[i&1])}; word64 B[1] = {ByteReverse(((word64*)&b)[i>>4])}; PolynomialMod2 pa((byte *)A, 8); PolynomialMod2 pb((byte *)B, 8); PolynomialMod2 c = pa*pb; __m128i output; for (int i=0; i<16; i++) ((byte *)&output)[i] = c.GetByte(i); return output; } #endif // Testing // Swaps high and low 64-bit words inline __m128i SwapWords(const __m128i& val) { return _mm_shuffle_epi32(val, _MM_SHUFFLE(1, 0, 3, 2)); } // SunCC 5.11-5.15 compiler crash. Make the function inline // and parameters non-const. Also see GH #188 and GH #224. inline __m128i GCM_Reduce_CLMUL(__m128i c0, __m128i c1, __m128i c2, const __m128i& r) { /* The polynomial to be reduced is c0 * x^128 + c1 * x^64 + c2. c0t below refers to the most significant half of c0 as a polynomial, which, due to GCM's bit reflection, are in the rightmost bit positions, and the lowest byte addresses. c1 ^= c0t * 0xc200000000000000 c2t ^= c0t t = shift (c1t ^ c0b) left 1 bit c2 ^= t * 0xe100000000000000 c2t ^= c1b shift c2 left 1 bit and xor in lowest bit of c1t */ c1 = _mm_xor_si128(c1, _mm_slli_si128(c0, 8)); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(c0, r, 0x10)); c0 = _mm_xor_si128(c1, _mm_srli_si128(c0, 8)); c0 = _mm_slli_epi64(c0, 1); c0 = _mm_clmulepi64_si128(c0, r, 0); c2 = _mm_xor_si128(c2, c0); c2 = _mm_xor_si128(c2, _mm_srli_si128(c1, 8)); c1 = _mm_unpacklo_epi64(c1, c2); c1 = _mm_srli_epi64(c1, 63); c2 = _mm_slli_epi64(c2, 1); return _mm_xor_si128(c2, c1); } // SunCC 5.13-5.14 compiler crash. Don't make the function inline. // This is in contrast to GCM_Reduce_CLMUL, which must be inline. __m128i GCM_Multiply_CLMUL(const __m128i &x, const __m128i &h, const __m128i &r) { const __m128i c0 = _mm_clmulepi64_si128(x,h,0); const __m128i c1 = _mm_xor_si128(_mm_clmulepi64_si128(x,h,1), _mm_clmulepi64_si128(x,h,0x10)); const __m128i c2 = _mm_clmulepi64_si128(x,h,0x11); return GCM_Reduce_CLMUL(c0, c1, c2, r); } void GCM_SetKeyWithoutResync_CLMUL(const byte *hashKey, byte *mulTable, unsigned int tableSize) { const __m128i r = _mm_set_epi32(0xc2000000, 0x00000000, 0xe1000000, 0x00000000); const __m128i m = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f); __m128i h0 = _mm_shuffle_epi8(_mm_load_si128(CONST_M128_CAST(hashKey)), m), h = h0; unsigned int i; for (i=0; i= 16) { size_t i=0, s = UnsignedMin(len/16, 8U); __m128i d1 = _mm_loadu_si128(CONST_M128_CAST(data+(s-1)*16)); __m128i d2 = _mm_shuffle_epi8(d1, m2); __m128i c0 = _mm_setzero_si128(); __m128i c1 = _mm_setzero_si128(); __m128i c2 = _mm_setzero_si128(); while (true) { const __m128i h0 = _mm_load_si128(CONST_M128_CAST(mtable+(i+0)*16)); const __m128i h1 = _mm_load_si128(CONST_M128_CAST(mtable+(i+1)*16)); const __m128i h2 = _mm_xor_si128(h0, h1); if (++i == s) { d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data)), m1); d1 = _mm_xor_si128(d1, x); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 1)); d1 = _mm_xor_si128(d1, SwapWords(d1)); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0)); break; } d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data+(s-i)*16-8)), m2); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d2, h0, 1)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 1)); d2 = _mm_xor_si128(d2, d1); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d2, h2, 1)); if (++i == s) { d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data)), m1); d1 = _mm_xor_si128(d1, x); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0x10)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 0x11)); d1 = _mm_xor_si128(d1, SwapWords(d1)); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0x10)); break; } d2 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data+(s-i)*16-8)), m1); c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0x10)); c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d2, h1, 0x10)); d1 = _mm_xor_si128(d1, d2); c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0x10)); } data += s*16; len -= s*16; c1 = _mm_xor_si128(_mm_xor_si128(c1, c0), c2); x = GCM_Reduce_CLMUL(c0, c1, c2, r); } _mm_store_si128(M128_CAST(hbuffer), x); return len; } void GCM_ReverseHashBufferIfNeeded_CLMUL(byte *hashBuffer) { // SSSE3 instruction, but only used with CLMUL const __m128i mask = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f); _mm_storeu_si128(M128_CAST(hashBuffer), _mm_shuffle_epi8( _mm_loadu_si128(CONST_M128_CAST(hashBuffer)), mask)); } #endif // CRYPTOPP_CLMUL_AVAILABLE // ***************************** POWER8 ***************************** // #if CRYPTOPP_ALTIVEC_AVAILABLE void GCM_Xor16_ALTIVEC(byte *a, const byte *b, const byte *c) { VectorStore(VectorXor(VectorLoad(b), VectorLoad(c)), a); } #endif // CRYPTOPP_ALTIVEC_AVAILABLE #if CRYPTOPP_POWER8_VMULL_AVAILABLE uint64x2_p GCM_Reduce_VMULL(uint64x2_p c0, uint64x2_p c1, uint64x2_p c2, uint64x2_p r) { const uint64x2_p m1 = {1,1}, m63 = {63,63}; c1 = VectorXor(c1, VectorShiftRight<8>(c0)); c1 = VectorXor(c1, VMULL_10LE(c0, r)); c0 = VectorXor(c1, VectorShiftLeft<8>(c0)); c0 = VMULL_00LE(vec_sl(c0, m1), r); c2 = VectorXor(c2, c0); c2 = VectorXor(c2, VectorShiftLeft<8>(c1)); c1 = vec_sr(vec_mergeh(c1, c2), m63); c2 = vec_sl(c2, m1); return VectorXor(c2, c1); } inline uint64x2_p GCM_Multiply_VMULL(uint64x2_p x, uint64x2_p h, uint64x2_p r) { const uint64x2_p c0 = VMULL_00LE(x, h); const uint64x2_p c1 = VectorXor(VMULL_01LE(x, h), VMULL_10LE(x, h)); const uint64x2_p c2 = VMULL_11LE(x, h); return GCM_Reduce_VMULL(c0, c1, c2, r); } inline uint64x2_p LoadHashKey(const byte *hashKey) { #if CRYPTOPP_BIG_ENDIAN const uint64x2_p key = (uint64x2_p)VectorLoad(hashKey); const uint8x16_p mask = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7}; return vec_perm(key, key, mask); #else const uint64x2_p key = (uint64x2_p)VectorLoad(hashKey); const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0}; return vec_perm(key, key, mask); #endif } void GCM_SetKeyWithoutResync_VMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize) { const uint64x2_p r = {0xe100000000000000ull, 0xc200000000000000ull}; uint64x2_p h = LoadHashKey(hashKey), h0 = h; unsigned int i; uint64_t temp[2]; for (i=0; i inline T SwapWords(const T& data) { return (T)VectorRotateLeft<8>(data); } inline uint64x2_p LoadBuffer1(const byte *dataBuffer) { #if CRYPTOPP_BIG_ENDIAN return (uint64x2_p)VectorLoad(dataBuffer); #else const uint64x2_p data = (uint64x2_p)VectorLoad(dataBuffer); const uint8x16_p mask = {7,6,5,4, 3,2,1,0, 15,14,13,12, 11,10,9,8}; return vec_perm(data, data, mask); #endif } inline uint64x2_p LoadBuffer2(const byte *dataBuffer) { #if CRYPTOPP_BIG_ENDIAN return (uint64x2_p)SwapWords(VectorLoadBE(dataBuffer)); #else return (uint64x2_p)VectorLoadBE(dataBuffer); #endif } size_t GCM_AuthenticateBlocks_VMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer) { const uint64x2_p r = {0xe100000000000000ull, 0xc200000000000000ull}; uint64x2_p x = (uint64x2_p)VectorLoad(hbuffer); while (len >= 16) { size_t i=0, s = UnsignedMin(len/16, 8U); uint64x2_p d1, d2 = LoadBuffer1(data+(s-1)*16); uint64x2_p c0 = {0}, c1 = {0}, c2 = {0}; while (true) { const uint64x2_p h0 = (uint64x2_p)VectorLoad(mtable+(i+0)*16); const uint64x2_p h1 = (uint64x2_p)VectorLoad(mtable+(i+1)*16); const uint64x2_p h2 = (uint64x2_p)VectorXor(h0, h1); if (++i == s) { d1 = LoadBuffer2(data); d1 = VectorXor(d1, x); c0 = VectorXor(c0, VMULL_00LE(d1, h0)); c2 = VectorXor(c2, VMULL_01LE(d1, h1)); d1 = VectorXor(d1, SwapWords(d1)); c1 = VectorXor(c1, VMULL_00LE(d1, h2)); break; } d1 = LoadBuffer1(data+(s-i)*16-8); c0 = VectorXor(c0, VMULL_01LE(d2, h0)); c2 = VectorXor(c2, VMULL_01LE(d1, h1)); d2 = VectorXor(d2, d1); c1 = VectorXor(c1, VMULL_01LE(d2, h2)); if (++i == s) { d1 = LoadBuffer2(data); d1 = VectorXor(d1, x); c0 = VectorXor(c0, VMULL_10LE(d1, h0)); c2 = VectorXor(c2, VMULL_11LE(d1, h1)); d1 = VectorXor(d1, SwapWords(d1)); c1 = VectorXor(c1, VMULL_10LE(d1, h2)); break; } d2 = LoadBuffer2(data+(s-i)*16-8); c0 = VectorXor(c0, VMULL_10LE(d1, h0)); c2 = VectorXor(c2, VMULL_10LE(d2, h1)); d1 = VectorXor(d1, d2); c1 = VectorXor(c1, VMULL_10LE(d1, h2)); } data += s*16; len -= s*16; c1 = VectorXor(VectorXor(c1, c0), c2); x = GCM_Reduce_VMULL(c0, c1, c2, r); } VectorStore(x, hbuffer); return len; } void GCM_ReverseHashBufferIfNeeded_VMULL(byte *hashBuffer) { const uint64x2_p mask = {0x08090a0b0c0d0e0full, 0x0001020304050607ull}; VectorStore(VectorPermute(VectorLoad(hashBuffer), mask), hashBuffer); } #endif // CRYPTOPP_POWER8_VMULL_AVAILABLE NAMESPACE_END