// ecp.h - originally written and placed in the public domain by Wei Dai /// \file ecp.h /// \brief Classes for Elliptic Curves over prime fields #ifndef CRYPTOPP_ECP_H #define CRYPTOPP_ECP_H #include "cryptlib.h" #include "integer.h" #include "algebra.h" #include "modarith.h" #include "ecpoint.h" #include "eprecomp.h" #include "smartptr.h" #include "pubkey.h" #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4231 4275) #endif NAMESPACE_BEGIN(CryptoPP) /// \class ECP /// \brief Elliptic Curve over GF(p), where p is prime class CRYPTOPP_DLL ECP : public AbstractGroup, public EncodedPoint { public: typedef ModularArithmetic Field; typedef Integer FieldElement; typedef ECPPoint Point; virtual ~ECP() {} /// \brief Construct an ECP ECP() {} /// \brief Copy construct an ECP /// \param ecp the other ECP object /// \param convertToMontgomeryRepresentation flag indicating if the curve should be converted to a MontgomeryRepresentation /// \sa ModularArithmetic, MontgomeryRepresentation ECP(const ECP &ecp, bool convertToMontgomeryRepresentation = false); /// \brief Construct an ECP /// \param modulus the prime modulus /// \param a Field::Element /// \param b Field::Element ECP(const Integer &modulus, const FieldElement &a, const FieldElement &b) : m_fieldPtr(new Field(modulus)), m_a(a.IsNegative() ? modulus+a : a), m_b(b) {} /// \brief Construct an ECP from BER encoded parameters /// \param bt BufferedTransformation derived object /// \details This constructor will decode and extract the the fields fieldID and curve of the sequence ECParameters ECP(BufferedTransformation &bt); /// \brief Encode the fields fieldID and curve of the sequence ECParameters /// \param bt BufferedTransformation derived object void DEREncode(BufferedTransformation &bt) const; bool Equal(const Point &P, const Point &Q) const; const Point& Identity() const; const Point& Inverse(const Point &P) const; bool InversionIsFast() const {return true;} const Point& Add(const Point &P, const Point &Q) const; const Point& Double(const Point &P) const; Point ScalarMultiply(const Point &P, const Integer &k) const; Point CascadeScalarMultiply(const Point &P, const Integer &k1, const Point &Q, const Integer &k2) const; void SimultaneousMultiply(Point *results, const Point &base, const Integer *exponents, unsigned int exponentsCount) const; Point Multiply(const Integer &k, const Point &P) const {return ScalarMultiply(P, k);} Point CascadeMultiply(const Integer &k1, const Point &P, const Integer &k2, const Point &Q) const {return CascadeScalarMultiply(P, k1, Q, k2);} bool ValidateParameters(RandomNumberGenerator &rng, unsigned int level=3) const; bool VerifyPoint(const Point &P) const; unsigned int EncodedPointSize(bool compressed = false) const {return 1 + (compressed?1:2)*GetField().MaxElementByteLength();} // returns false if point is compressed and not valid (doesn't check if uncompressed) bool DecodePoint(Point &P, BufferedTransformation &bt, size_t len) const; bool DecodePoint(Point &P, const byte *encodedPoint, size_t len) const; void EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const; void EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const; Point BERDecodePoint(BufferedTransformation &bt) const; void DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const; Integer FieldSize() const {return GetField().GetModulus();} const Field & GetField() const {return *m_fieldPtr;} const FieldElement & GetA() const {return m_a;} const FieldElement & GetB() const {return m_b;} bool operator==(const ECP &rhs) const {return GetField() == rhs.GetField() && m_a == rhs.m_a && m_b == rhs.m_b;} private: clonable_ptr m_fieldPtr; FieldElement m_a, m_b; mutable Point m_R; }; CRYPTOPP_DLL_TEMPLATE_CLASS DL_FixedBasePrecomputationImpl; CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupPrecomputation; /// \class EcPrecomputation /// \brief Elliptic Curve precomputation /// \tparam EC elliptic curve field template class EcPrecomputation; /// \class EcPrecomputation /// \brief ECP precomputation specialization /// \details Implementation of DL_GroupPrecomputation with input and output /// conversions for Montgomery modular multiplication. /// \sa DL_GroupPrecomputation, ModularArithmetic, MontgomeryRepresentation template<> class EcPrecomputation : public DL_GroupPrecomputation { public: typedef ECP EllipticCurve; virtual ~EcPrecomputation() {} // DL_GroupPrecomputation bool NeedConversions() const {return true;} Element ConvertIn(const Element &P) const {return P.identity ? P : ECP::Point(m_ec->GetField().ConvertIn(P.x), m_ec->GetField().ConvertIn(P.y));}; Element ConvertOut(const Element &P) const {return P.identity ? P : ECP::Point(m_ec->GetField().ConvertOut(P.x), m_ec->GetField().ConvertOut(P.y));} const AbstractGroup & GetGroup() const {return *m_ec;} Element BERDecodeElement(BufferedTransformation &bt) const {return m_ec->BERDecodePoint(bt);} void DEREncodeElement(BufferedTransformation &bt, const Element &v) const {m_ec->DEREncodePoint(bt, v, false);} // non-inherited void SetCurve(const ECP &ec) { m_ec.reset(new ECP(ec, true)); m_ecOriginal = ec; } const ECP & GetCurve() const {return *m_ecOriginal;} private: value_ptr m_ec, m_ecOriginal; }; NAMESPACE_END #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif #endif