// eccrypto.h - written and placed in the public domain by Wei Dai //! \file eccrypto.h //! \brief Classes and functions for Elliptic Curves over prime and binary fields #ifndef CRYPTOPP_ECCRYPTO_H #define CRYPTOPP_ECCRYPTO_H #include "config.h" #include "cryptlib.h" #include "pubkey.h" #include "integer.h" #include "asn.h" #include "hmac.h" #include "sha.h" #include "gfpcrypt.h" #include "dh.h" #include "mqv.h" #include "hmqv.h" #include "fhmqv.h" #include "ecp.h" #include "ec2n.h" NAMESPACE_BEGIN(CryptoPP) //! \brief Elliptic Curve Parameters //! \tparam EC elliptic curve field //! \details This class corresponds to the ASN.1 sequence of the same name //! in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N. template class DL_GroupParameters_EC : public DL_GroupParametersImpl > { typedef DL_GroupParameters_EC ThisClass; public: typedef EC EllipticCurve; typedef typename EllipticCurve::Point Point; typedef Point Element; typedef IncompatibleCofactorMultiplication DefaultCofactorOption; virtual ~DL_GroupParameters_EC() {} DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {} DL_GroupParameters_EC(const OID &oid) : m_compress(false), m_encodeAsOID(true) {Initialize(oid);} DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) : m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);} DL_GroupParameters_EC(BufferedTransformation &bt) : m_compress(false), m_encodeAsOID(true) {BERDecode(bt);} void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero()) { this->m_groupPrecomputation.SetCurve(ec); this->SetSubgroupGenerator(G); m_n = n; m_k = k; } void Initialize(const OID &oid); // NameValuePairs bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; void AssignFrom(const NameValuePairs &source); // GeneratibleCryptoMaterial interface //! this implementation doesn't actually generate a curve, it just initializes the parameters with existing values /*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */ void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg); // DL_GroupParameters const DL_FixedBasePrecomputation & GetBasePrecomputation() const {return this->m_gpc;} DL_FixedBasePrecomputation & AccessBasePrecomputation() {return this->m_gpc;} const Integer & GetSubgroupOrder() const {return m_n;} Integer GetCofactor() const; bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation *precomp) const; bool FastSubgroupCheckAvailable() const {return false;} void EncodeElement(bool reversible, const Element &element, byte *encoded) const { if (reversible) GetCurve().EncodePoint(encoded, element, m_compress); else element.x.Encode(encoded, GetEncodedElementSize(false)); } virtual unsigned int GetEncodedElementSize(bool reversible) const { if (reversible) return GetCurve().EncodedPointSize(m_compress); else return GetCurve().GetField().MaxElementByteLength(); } Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const { Point result; if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true))) throw DL_BadElement(); if (checkForGroupMembership && !ValidateElement(1, result, NULL)) throw DL_BadElement(); return result; } Integer ConvertElementToInteger(const Element &element) const; Integer GetMaxExponent() const {return GetSubgroupOrder()-1;} bool IsIdentity(const Element &element) const {return element.identity;} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";} // ASN1Key OID GetAlgorithmID() const; // used by MQV Element MultiplyElements(const Element &a, const Element &b) const; Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const; // non-inherited // enumerate OIDs for recommended parameters, use OID() to get first one static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid); void BERDecode(BufferedTransformation &bt); void DEREncode(BufferedTransformation &bt) const; void SetPointCompression(bool compress) {m_compress = compress;} bool GetPointCompression() const {return m_compress;} void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;} bool GetEncodeAsOID() const {return m_encodeAsOID;} const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();} bool operator==(const ThisClass &rhs) const {return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);} //#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY //const Point& GetBasePoint() const {return this->GetSubgroupGenerator();} //const Integer& GetBasePointOrder() const {return this->GetSubgroupOrder();} //void LoadRecommendedParameters(const OID &oid) {Initialize(oid);} //#endif protected: unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();} unsigned int ExponentLength() const {return m_n.ByteCount();} OID m_oid; // set if parameters loaded from a recommended curve Integer m_n; // order of base point mutable Integer m_k; // cofactor mutable bool m_compress, m_encodeAsOID; // presentation details }; //! \class DL_PublicKey_EC //! \brief Elliptic Curve Discrete Log (DL) public key //! \tparam EC elliptic curve field template class DL_PublicKey_EC : public DL_PublicKeyImpl > { public: typedef typename EC::Point Element; virtual ~DL_PublicKey_EC() {} void Initialize(const DL_GroupParameters_EC ¶ms, const Element &Q) {this->AccessGroupParameters() = params; this->SetPublicElement(Q);} void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q) {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);} // X509PublicKey void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size); void DEREncodePublicKey(BufferedTransformation &bt) const; }; //! \class DL_PrivateKey_EC //! \brief Elliptic Curve Discrete Log (DL) private key //! \tparam EC elliptic curve field template class DL_PrivateKey_EC : public DL_PrivateKeyImpl > { public: typedef typename EC::Point Element; virtual ~DL_PrivateKey_EC() {} void Initialize(const DL_GroupParameters_EC ¶ms, const Integer &x) {this->AccessGroupParameters() = params; this->SetPrivateExponent(x);} void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x) {this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);} //! \brief Create an EC private key //! \param rng a RandomNumberGenerator derived class //! \param params the EC group parameters //! \details This function overload of Initialize() creates a new keypair because it //! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, //! then use one of the other Initialize() overloads. void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC ¶ms) {this->GenerateRandom(rng, params);} //! \brief Create an EC private key //! \param rng a RandomNumberGenerator derived class //! \param ec the elliptic curve //! \param G the base point //! \param n the cofactor //! \details This function overload of Initialize() creates a new keypair because it //! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, //! then use one of the other Initialize() overloads. void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n) {this->GenerateRandom(rng, DL_GroupParameters_EC(ec, G, n));} // PKCS8PrivateKey void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size); void DEREncodePrivateKey(BufferedTransformation &bt) const; }; //! \class ECDH //! \brief Elliptic Curve Diffie-Hellman //! \tparam EC elliptic curve field //! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option" //! \sa Elliptic Curve Diffie-Hellman, AKA ECDH template ::DefaultCofactorOption> struct ECDH { typedef DH_Domain, COFACTOR_OPTION> Domain; }; //! \class ECMQV //! \brief Elliptic Curve Menezes-Qu-Vanstone //! \tparam EC elliptic curve field //! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option" /// \sa Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV template ::DefaultCofactorOption> struct ECMQV { typedef MQV_Domain, COFACTOR_OPTION> Domain; }; //! \class ECHMQV //! \brief Hashed Elliptic Curve Menezes-Qu-Vanstone //! \tparam EC elliptic curve field //! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option" //! \details This implementation follows Hugo Krawczyk's HMQV: A High-Performance //! Secure Diffie-Hellman Protocol. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided. template ::DefaultCofactorOption, class HASH = SHA256> struct ECHMQV { typedef HMQV_Domain, COFACTOR_OPTION, HASH> Domain; }; typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160; typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256; typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384; typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512; //! \class ECFHMQV //! \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone //! \tparam EC elliptic curve field //! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option" //! \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's //! A Secure and Efficient Authenticated Diffie-Hellman Protocol. //! Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C. template ::DefaultCofactorOption, class HASH = SHA256> struct ECFHMQV { typedef FHMQV_Domain, COFACTOR_OPTION, HASH> Domain; }; typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160; typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256; typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384; typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512; //! \class DL_Keys_EC //! \brief Elliptic Curve Discrete Log (DL) keys //! \tparam EC elliptic curve field template struct DL_Keys_EC { typedef DL_PublicKey_EC PublicKey; typedef DL_PrivateKey_EC PrivateKey; }; // Forward declaration; documented below template struct ECDSA; //! \class DL_Keys_ECDSA //! \brief Elliptic Curve DSA keys //! \tparam EC elliptic curve field template struct DL_Keys_ECDSA { typedef DL_PublicKey_EC PublicKey; typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest, ECDSA > PrivateKey; }; //! \class DL_Algorithm_ECDSA //! \brief Elliptic Curve DSA (ECDSA) signature algorithm //! \tparam EC elliptic curve field template class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA { public: CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";} }; //! \class DL_Algorithm_ECNR //! \brief Elliptic Curve NR (ECNR) signature algorithm //! \tparam EC elliptic curve field template class DL_Algorithm_ECNR : public DL_Algorithm_NR { public: CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";} }; //! \class ECDSA //! \brief Elliptic Curve DSA (ECDSA) signature scheme //! \tparam EC elliptic curve field //! \tparam H HashTransformation derived class //! \sa ECDSA template struct ECDSA : public DL_SS, DL_Algorithm_ECDSA, DL_SignatureMessageEncodingMethod_DSA, H> { }; //! \class ECNR //! \brief Elliptic Curve NR (ECNR) signature scheme //! \tparam EC elliptic curve field //! \tparam H HashTransformation derived class template struct ECNR : public DL_SS, DL_Algorithm_ECNR, DL_SignatureMessageEncodingMethod_NR, H> { }; //! \class ECIES //! \brief Elliptic Curve Integrated Encryption Scheme //! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option" //! \tparam HASH HashTransformation derived class used for key drivation and MAC computation //! \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as u·V, v·U and label //! \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits //! \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation //! Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is //! IND-CCA2, which is a strong notion of security. //! You should prefer an Integrated Encryption Scheme over homegrown schemes. //! \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom //! SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption //! Schemes with NoCofactorMultiplication, DHAES_MODE=false and LABEL_OCTETS=true. //! \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES template class with //! NoCofactorMultiplication, DHAES_MODE=false and LABEL_OCTETS=true. //! \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES //! template class with NoCofactorMultiplication, DHAES_MODE=true and LABEL_OCTETS=false. //! \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of //! IncompatibleCofactorMultiplication and DHAES_MODE=true is recommended for best efficiency and security. //! SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the //! security provided by the MAC. The hash is also used in the key derivation function as a PRF. //! \details Below is an example of constructing a Crypto++ 4.2 compatible ECIES encryptor and decryptor. //!
//!     AutoSeededRandomPool prng;
//!     DL_PrivateKey_EC key;
//!     key.Initialize(prng, ASN1::secp160r1());
//!
//!     ECIES::Decryptor decryptor(key);
//!     ECIES::Encryptor encryptor(decryptor);
//! 
//! \sa DLIES, Elliptic Curve Integrated Encryption Scheme (ECIES), //! Martínez, Encinas, and Ávila's A Survey of the Elliptic //! Curve Integrated Encryption Schemes //! \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility template struct ECIES : public DL_ES< DL_Keys_EC, DL_KeyAgreementAlgorithm_DH, DL_KeyDerivationAlgorithm_P1363 >, DL_EncryptionAlgorithm_Xor, DHAES_MODE, LABEL_OCTETS>, ECIES > { static std::string CRYPTOPP_API StaticAlgorithmName() {return "ECIES";} // TODO: fix this after name is standardized }; NAMESPACE_END #ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES #include "eccrypto.cpp" #endif NAMESPACE_BEGIN(CryptoPP) CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC; CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest, ECDSA >; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest, ECDSA >; NAMESPACE_END #endif