// donna_32.cpp - written and placed in public domain by Jeffrey Walton // Crypto++ specific implementation wrapped around Andrew // Moon's public domain curve25519-donna and ed25519-donna, // https://github.com/floodyberry/curve25519-donna and // https://github.com/floodyberry/ed25519-donna. // The curve25519 and ed25519 source files multiplex different repos and // architectures using namespaces. The repos are Andrew Moon's // curve25519-donna and ed25519-donna. The architectures are 32-bit, 64-bit // and SSE. For example, 32-bit x25519 uses symbols from Donna::X25519 and // Donna::Arch32. // A fair amount of duplication happens below, but we could not directly // use curve25519 for both x25519 and ed25519. A close examination reveals // slight differences in the implementation. For example, look at the // two curve25519_sub functions. // If needed, see Moon's commit "Go back to ignoring 256th bit [sic]", // https://github.com/floodyberry/curve25519-donna/commit/57a683d18721a658 #include "pch.h" #include "config.h" #include "donna.h" #include "secblock.h" #include "sha.h" #include "misc.h" #include "cpu.h" #include #include #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE # pragma GCC diagnostic ignored "-Wunused-function" #endif #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4244) #endif // Squash MS LNK4221 and libtool warnings extern const char DONNA32_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN // Can't use GetAlignmentOf() because of C++11 and constexpr // Can use 'const unsigned int' because of MSVC 2013 #if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) # define ALIGN_SPEC 16 #else # define ALIGN_SPEC 4 #endif ANONYMOUS_NAMESPACE_END #if defined(CRYPTOPP_CURVE25519_32BIT) #include "donna_32.h" ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::GetWord; using CryptoPP::PutWord; using CryptoPP::LITTLE_ENDIAN_ORDER; inline word32 U8TO32_LE(const byte* p) { return GetWord(false, LITTLE_ENDIAN_ORDER, p); } inline void U32TO8_LE(byte* p, word32 w) { PutWord(false, LITTLE_ENDIAN_ORDER, p, w); } ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) NAMESPACE_BEGIN(X25519) ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::sword32; using CryptoPP::word64; using CryptoPP::sword64; using CryptoPP::GetBlock; using CryptoPP::LittleEndian; // Bring in all the symbols from the 32-bit header using namespace CryptoPP::Donna::Arch32; /* out = in */ inline void curve25519_copy(bignum25519 out, const bignum25519 in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[4] = in[4]; out[5] = in[5]; out[6] = in[6]; out[7] = in[7]; out[8] = in[8]; out[9] = in[9]; } /* out = a + b */ inline void curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; out[8] = a[8] + b[8]; out[9] = a[9] + b[9]; } /* out = a - b */ inline void curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 c; out[0] = 0x7ffffda + a[0] - b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26; out[1] = 0x3fffffe + a[1] - b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25; out[2] = 0x7fffffe + a[2] - b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26; out[3] = 0x3fffffe + a[3] - b[3] + c; c = (out[3] >> 25); out[3] &= reduce_mask_25; out[4] = 0x7fffffe + a[4] - b[4] + c; c = (out[4] >> 26); out[4] &= reduce_mask_26; out[5] = 0x3fffffe + a[5] - b[5] + c; c = (out[5] >> 25); out[5] &= reduce_mask_25; out[6] = 0x7fffffe + a[6] - b[6] + c; c = (out[6] >> 26); out[6] &= reduce_mask_26; out[7] = 0x3fffffe + a[7] - b[7] + c; c = (out[7] >> 25); out[7] &= reduce_mask_25; out[8] = 0x7fffffe + a[8] - b[8] + c; c = (out[8] >> 26); out[8] &= reduce_mask_26; out[9] = 0x3fffffe + a[9] - b[9] + c; c = (out[9] >> 25); out[9] &= reduce_mask_25; out[0] += 19 * c; } /* out = in * scalar */ inline void curve25519_scalar_product(bignum25519 out, const bignum25519 in, const word32 scalar) { word64 a; word32 c; a = mul32x32_64(in[0], scalar); out[0] = (word32)a & reduce_mask_26; c = (word32)(a >> 26); a = mul32x32_64(in[1], scalar) + c; out[1] = (word32)a & reduce_mask_25; c = (word32)(a >> 25); a = mul32x32_64(in[2], scalar) + c; out[2] = (word32)a & reduce_mask_26; c = (word32)(a >> 26); a = mul32x32_64(in[3], scalar) + c; out[3] = (word32)a & reduce_mask_25; c = (word32)(a >> 25); a = mul32x32_64(in[4], scalar) + c; out[4] = (word32)a & reduce_mask_26; c = (word32)(a >> 26); a = mul32x32_64(in[5], scalar) + c; out[5] = (word32)a & reduce_mask_25; c = (word32)(a >> 25); a = mul32x32_64(in[6], scalar) + c; out[6] = (word32)a & reduce_mask_26; c = (word32)(a >> 26); a = mul32x32_64(in[7], scalar) + c; out[7] = (word32)a & reduce_mask_25; c = (word32)(a >> 25); a = mul32x32_64(in[8], scalar) + c; out[8] = (word32)a & reduce_mask_26; c = (word32)(a >> 26); a = mul32x32_64(in[9], scalar) + c; out[9] = (word32)a & reduce_mask_25; c = (word32)(a >> 25); out[0] += c * 19; } /* out = a * b */ inline void curve25519_mul(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 r0,r1,r2,r3,r4,r5,r6,r7,r8,r9; word32 s0,s1,s2,s3,s4,s5,s6,s7,s8,s9; word64 m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c; word32 p; r0 = b[0]; r1 = b[1]; r2 = b[2]; r3 = b[3]; r4 = b[4]; r5 = b[5]; r6 = b[6]; r7 = b[7]; r8 = b[8]; r9 = b[9]; s0 = a[0]; s1 = a[1]; s2 = a[2]; s3 = a[3]; s4 = a[4]; s5 = a[5]; s6 = a[6]; s7 = a[7]; s8 = a[8]; s9 = a[9]; m1 = mul32x32_64(r0, s1) + mul32x32_64(r1, s0); m3 = mul32x32_64(r0, s3) + mul32x32_64(r1, s2) + mul32x32_64(r2, s1) + mul32x32_64(r3, s0); m5 = mul32x32_64(r0, s5) + mul32x32_64(r1, s4) + mul32x32_64(r2, s3) + mul32x32_64(r3, s2) + mul32x32_64(r4, s1) + mul32x32_64(r5, s0); m7 = mul32x32_64(r0, s7) + mul32x32_64(r1, s6) + mul32x32_64(r2, s5) + mul32x32_64(r3, s4) + mul32x32_64(r4, s3) + mul32x32_64(r5, s2) + mul32x32_64(r6, s1) + mul32x32_64(r7, s0); m9 = mul32x32_64(r0, s9) + mul32x32_64(r1, s8) + mul32x32_64(r2, s7) + mul32x32_64(r3, s6) + mul32x32_64(r4, s5) + mul32x32_64(r5, s4) + mul32x32_64(r6, s3) + mul32x32_64(r7, s2) + mul32x32_64(r8, s1) + mul32x32_64(r9, s0); r1 *= 2; r3 *= 2; r5 *= 2; r7 *= 2; m0 = mul32x32_64(r0, s0); m2 = mul32x32_64(r0, s2) + mul32x32_64(r1, s1) + mul32x32_64(r2, s0); m4 = mul32x32_64(r0, s4) + mul32x32_64(r1, s3) + mul32x32_64(r2, s2) + mul32x32_64(r3, s1) + mul32x32_64(r4, s0); m6 = mul32x32_64(r0, s6) + mul32x32_64(r1, s5) + mul32x32_64(r2, s4) + mul32x32_64(r3, s3) + mul32x32_64(r4, s2) + mul32x32_64(r5, s1) + mul32x32_64(r6, s0); m8 = mul32x32_64(r0, s8) + mul32x32_64(r1, s7) + mul32x32_64(r2, s6) + mul32x32_64(r3, s5) + mul32x32_64(r4, s4) + mul32x32_64(r5, s3) + mul32x32_64(r6, s2) + mul32x32_64(r7, s1) + mul32x32_64(r8, s0); r1 *= 19; r2 *= 19; r3 = (r3 / 2) * 19; r4 *= 19; r5 = (r5 / 2) * 19; r6 *= 19; r7 = (r7 / 2) * 19; r8 *= 19; r9 *= 19; m1 += (mul32x32_64(r9, s2) + mul32x32_64(r8, s3) + mul32x32_64(r7, s4) + mul32x32_64(r6, s5) + mul32x32_64(r5, s6) + mul32x32_64(r4, s7) + mul32x32_64(r3, s8) + mul32x32_64(r2, s9)); m3 += (mul32x32_64(r9, s4) + mul32x32_64(r8, s5) + mul32x32_64(r7, s6) + mul32x32_64(r6, s7) + mul32x32_64(r5, s8) + mul32x32_64(r4, s9)); m5 += (mul32x32_64(r9, s6) + mul32x32_64(r8, s7) + mul32x32_64(r7, s8) + mul32x32_64(r6, s9)); m7 += (mul32x32_64(r9, s8) + mul32x32_64(r8, s9)); r3 *= 2; r5 *= 2; r7 *= 2; r9 *= 2; m0 += (mul32x32_64(r9, s1) + mul32x32_64(r8, s2) + mul32x32_64(r7, s3) + mul32x32_64(r6, s4) + mul32x32_64(r5, s5) + mul32x32_64(r4, s6) + mul32x32_64(r3, s7) + mul32x32_64(r2, s8) + mul32x32_64(r1, s9)); m2 += (mul32x32_64(r9, s3) + mul32x32_64(r8, s4) + mul32x32_64(r7, s5) + mul32x32_64(r6, s6) + mul32x32_64(r5, s7) + mul32x32_64(r4, s8) + mul32x32_64(r3, s9)); m4 += (mul32x32_64(r9, s5) + mul32x32_64(r8, s6) + mul32x32_64(r7, s7) + mul32x32_64(r6, s8) + mul32x32_64(r5, s9)); m6 += (mul32x32_64(r9, s7) + mul32x32_64(r8, s8) + mul32x32_64(r7, s9)); m8 += (mul32x32_64(r9, s9)); r0 = (word32)m0 & reduce_mask_26; c = (m0 >> 26); m1 += c; r1 = (word32)m1 & reduce_mask_25; c = (m1 >> 25); m2 += c; r2 = (word32)m2 & reduce_mask_26; c = (m2 >> 26); m3 += c; r3 = (word32)m3 & reduce_mask_25; c = (m3 >> 25); m4 += c; r4 = (word32)m4 & reduce_mask_26; c = (m4 >> 26); m5 += c; r5 = (word32)m5 & reduce_mask_25; c = (m5 >> 25); m6 += c; r6 = (word32)m6 & reduce_mask_26; c = (m6 >> 26); m7 += c; r7 = (word32)m7 & reduce_mask_25; c = (m7 >> 25); m8 += c; r8 = (word32)m8 & reduce_mask_26; c = (m8 >> 26); m9 += c; r9 = (word32)m9 & reduce_mask_25; p = (word32)(m9 >> 25); m0 = r0 + mul32x32_64(p,19); r0 = (word32)m0 & reduce_mask_26; p = (word32)(m0 >> 26); r1 += p; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; out[5] = r5; out[6] = r6; out[7] = r7; out[8] = r8; out[9] = r9; } /* out = in * in */ inline void curve25519_square(bignum25519 out, const bignum25519 in) { word32 r0,r1,r2,r3,r4,r5,r6,r7,r8,r9; word32 d6,d7,d8,d9; word64 m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c; word32 p; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; r5 = in[5]; r6 = in[6]; r7 = in[7]; r8 = in[8]; r9 = in[9]; m0 = mul32x32_64(r0, r0); r0 *= 2; m1 = mul32x32_64(r0, r1); m2 = mul32x32_64(r0, r2) + mul32x32_64(r1, r1 * 2); r1 *= 2; m3 = mul32x32_64(r0, r3) + mul32x32_64(r1, r2 ); m4 = mul32x32_64(r0, r4) + mul32x32_64(r1, r3 * 2) + mul32x32_64(r2, r2); r2 *= 2; m5 = mul32x32_64(r0, r5) + mul32x32_64(r1, r4 ) + mul32x32_64(r2, r3); m6 = mul32x32_64(r0, r6) + mul32x32_64(r1, r5 * 2) + mul32x32_64(r2, r4) + mul32x32_64(r3, r3 * 2); r3 *= 2; m7 = mul32x32_64(r0, r7) + mul32x32_64(r1, r6 ) + mul32x32_64(r2, r5) + mul32x32_64(r3, r4 ); m8 = mul32x32_64(r0, r8) + mul32x32_64(r1, r7 * 2) + mul32x32_64(r2, r6) + mul32x32_64(r3, r5 * 2) + mul32x32_64(r4, r4 ); m9 = mul32x32_64(r0, r9) + mul32x32_64(r1, r8 ) + mul32x32_64(r2, r7) + mul32x32_64(r3, r6 ) + mul32x32_64(r4, r5 * 2); d6 = r6 * 19; d7 = r7 * 2 * 19; d8 = r8 * 19; d9 = r9 * 2 * 19; m0 += (mul32x32_64(d9, r1 ) + mul32x32_64(d8, r2 ) + mul32x32_64(d7, r3 ) + mul32x32_64(d6, r4 * 2) + mul32x32_64(r5, r5 * 2 * 19)); m1 += (mul32x32_64(d9, r2 / 2) + mul32x32_64(d8, r3 ) + mul32x32_64(d7, r4 ) + mul32x32_64(d6, r5 * 2)); m2 += (mul32x32_64(d9, r3 ) + mul32x32_64(d8, r4 * 2) + mul32x32_64(d7, r5 * 2) + mul32x32_64(d6, r6 )); m3 += (mul32x32_64(d9, r4 ) + mul32x32_64(d8, r5 * 2) + mul32x32_64(d7, r6 )); m4 += (mul32x32_64(d9, r5 * 2) + mul32x32_64(d8, r6 * 2) + mul32x32_64(d7, r7 )); m5 += (mul32x32_64(d9, r6 ) + mul32x32_64(d8, r7 * 2)); m6 += (mul32x32_64(d9, r7 * 2) + mul32x32_64(d8, r8 )); m7 += (mul32x32_64(d9, r8 )); m8 += (mul32x32_64(d9, r9 )); r0 = (word32)m0 & reduce_mask_26; c = (m0 >> 26); m1 += c; r1 = (word32)m1 & reduce_mask_25; c = (m1 >> 25); m2 += c; r2 = (word32)m2 & reduce_mask_26; c = (m2 >> 26); m3 += c; r3 = (word32)m3 & reduce_mask_25; c = (m3 >> 25); m4 += c; r4 = (word32)m4 & reduce_mask_26; c = (m4 >> 26); m5 += c; r5 = (word32)m5 & reduce_mask_25; c = (m5 >> 25); m6 += c; r6 = (word32)m6 & reduce_mask_26; c = (m6 >> 26); m7 += c; r7 = (word32)m7 & reduce_mask_25; c = (m7 >> 25); m8 += c; r8 = (word32)m8 & reduce_mask_26; c = (m8 >> 26); m9 += c; r9 = (word32)m9 & reduce_mask_25; p = (word32)(m9 >> 25); m0 = r0 + mul32x32_64(p,19); r0 = (word32)m0 & reduce_mask_26; p = (word32)(m0 >> 26); r1 += p; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; out[5] = r5; out[6] = r6; out[7] = r7; out[8] = r8; out[9] = r9; } /* out = in^(2 * count) */ void curve25519_square_times(bignum25519 out, const bignum25519 in, int count) { word32 r0,r1,r2,r3,r4,r5,r6,r7,r8,r9; word32 d6,d7,d8,d9; word64 m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c; word32 p; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; r5 = in[5]; r6 = in[6]; r7 = in[7]; r8 = in[8]; r9 = in[9]; do { m0 = mul32x32_64(r0, r0); r0 *= 2; m1 = mul32x32_64(r0, r1); m2 = mul32x32_64(r0, r2) + mul32x32_64(r1, r1 * 2); r1 *= 2; m3 = mul32x32_64(r0, r3) + mul32x32_64(r1, r2 ); m4 = mul32x32_64(r0, r4) + mul32x32_64(r1, r3 * 2) + mul32x32_64(r2, r2); r2 *= 2; m5 = mul32x32_64(r0, r5) + mul32x32_64(r1, r4 ) + mul32x32_64(r2, r3); m6 = mul32x32_64(r0, r6) + mul32x32_64(r1, r5 * 2) + mul32x32_64(r2, r4) + mul32x32_64(r3, r3 * 2); r3 *= 2; m7 = mul32x32_64(r0, r7) + mul32x32_64(r1, r6 ) + mul32x32_64(r2, r5) + mul32x32_64(r3, r4 ); m8 = mul32x32_64(r0, r8) + mul32x32_64(r1, r7 * 2) + mul32x32_64(r2, r6) + mul32x32_64(r3, r5 * 2) + mul32x32_64(r4, r4 ); m9 = mul32x32_64(r0, r9) + mul32x32_64(r1, r8 ) + mul32x32_64(r2, r7) + mul32x32_64(r3, r6 ) + mul32x32_64(r4, r5 * 2); d6 = r6 * 19; d7 = r7 * 2 * 19; d8 = r8 * 19; d9 = r9 * 2 * 19; m0 += (mul32x32_64(d9, r1 ) + mul32x32_64(d8, r2 ) + mul32x32_64(d7, r3 ) + mul32x32_64(d6, r4 * 2) + mul32x32_64(r5, r5 * 2 * 19)); m1 += (mul32x32_64(d9, r2 / 2) + mul32x32_64(d8, r3 ) + mul32x32_64(d7, r4 ) + mul32x32_64(d6, r5 * 2)); m2 += (mul32x32_64(d9, r3 ) + mul32x32_64(d8, r4 * 2) + mul32x32_64(d7, r5 * 2) + mul32x32_64(d6, r6 )); m3 += (mul32x32_64(d9, r4 ) + mul32x32_64(d8, r5 * 2) + mul32x32_64(d7, r6 )); m4 += (mul32x32_64(d9, r5 * 2) + mul32x32_64(d8, r6 * 2) + mul32x32_64(d7, r7 )); m5 += (mul32x32_64(d9, r6 ) + mul32x32_64(d8, r7 * 2)); m6 += (mul32x32_64(d9, r7 * 2) + mul32x32_64(d8, r8 )); m7 += (mul32x32_64(d9, r8 )); m8 += (mul32x32_64(d9, r9 )); r0 = (word32)m0 & reduce_mask_26; c = (m0 >> 26); m1 += c; r1 = (word32)m1 & reduce_mask_25; c = (m1 >> 25); m2 += c; r2 = (word32)m2 & reduce_mask_26; c = (m2 >> 26); m3 += c; r3 = (word32)m3 & reduce_mask_25; c = (m3 >> 25); m4 += c; r4 = (word32)m4 & reduce_mask_26; c = (m4 >> 26); m5 += c; r5 = (word32)m5 & reduce_mask_25; c = (m5 >> 25); m6 += c; r6 = (word32)m6 & reduce_mask_26; c = (m6 >> 26); m7 += c; r7 = (word32)m7 & reduce_mask_25; c = (m7 >> 25); m8 += c; r8 = (word32)m8 & reduce_mask_26; c = (m8 >> 26); m9 += c; r9 = (word32)m9 & reduce_mask_25; p = (word32)(m9 >> 25); m0 = r0 + mul32x32_64(p,19); r0 = (word32)m0 & reduce_mask_26; p = (word32)(m0 >> 26); r1 += p; } while (--count); out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; out[5] = r5; out[6] = r6; out[7] = r7; out[8] = r8; out[9] = r9; } /* Take a little-endian, 32-byte number and expand it into polynomial form */ void curve25519_expand(bignum25519 out, const byte in[32]) { word32 x0,x1,x2,x3,x4,x5,x6,x7; GetBlock block(in); block(x0)(x1)(x2)(x3)(x4)(x5)(x6)(x7); out[0] = ( x0 ) & reduce_mask_26; out[1] = ((((word64)x1 << 32) | x0) >> 26) & reduce_mask_25; out[2] = ((((word64)x2 << 32) | x1) >> 19) & reduce_mask_26; out[3] = ((((word64)x3 << 32) | x2) >> 13) & reduce_mask_25; out[4] = (( x3) >> 6) & reduce_mask_26; out[5] = ( x4 ) & reduce_mask_25; out[6] = ((((word64)x5 << 32) | x4) >> 25) & reduce_mask_26; out[7] = ((((word64)x6 << 32) | x5) >> 19) & reduce_mask_25; out[8] = ((((word64)x7 << 32) | x6) >> 12) & reduce_mask_26; out[9] = (( x7) >> 6) & reduce_mask_25; /* ignore the top bit */ } /* Take a fully reduced polynomial form number and contract it into a little-endian, 32-byte array */ void curve25519_contract(byte out[32], const bignum25519 in) { bignum25519 f; curve25519_copy(f, in); #define carry_pass() \ f[1] += f[0] >> 26; f[0] &= reduce_mask_26; \ f[2] += f[1] >> 25; f[1] &= reduce_mask_25; \ f[3] += f[2] >> 26; f[2] &= reduce_mask_26; \ f[4] += f[3] >> 25; f[3] &= reduce_mask_25; \ f[5] += f[4] >> 26; f[4] &= reduce_mask_26; \ f[6] += f[5] >> 25; f[5] &= reduce_mask_25; \ f[7] += f[6] >> 26; f[6] &= reduce_mask_26; \ f[8] += f[7] >> 25; f[7] &= reduce_mask_25; \ f[9] += f[8] >> 26; f[8] &= reduce_mask_26; #define carry_pass_full() \ carry_pass() \ f[0] += 19 * (f[9] >> 25); f[9] &= reduce_mask_25; #define carry_pass_final() \ carry_pass() \ f[9] &= reduce_mask_25; carry_pass_full() carry_pass_full() /* now t is between 0 and 2^255-1, properly carried. */ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ f[0] += 19; carry_pass_full() /* now between 19 and 2^255-1 in both cases, and offset by 19. */ f[0] += (1 << 26) - 19; f[1] += (1 << 25) - 1; f[2] += (1 << 26) - 1; f[3] += (1 << 25) - 1; f[4] += (1 << 26) - 1; f[5] += (1 << 25) - 1; f[6] += (1 << 26) - 1; f[7] += (1 << 25) - 1; f[8] += (1 << 26) - 1; f[9] += (1 << 25) - 1; /* now between 2^255 and 2^256-20, and offset by 2^255. */ carry_pass_final() #undef carry_pass #undef carry_full #undef carry_final f[1] <<= 2; f[2] <<= 3; f[3] <<= 5; f[4] <<= 6; f[6] <<= 1; f[7] <<= 3; f[8] <<= 4; f[9] <<= 6; #define F(i, s) \ out[s+0] |= (byte)( f[i] & 0xff); \ out[s+1] = (byte)((f[i] >> 8) & 0xff); \ out[s+2] = (byte)((f[i] >> 16) & 0xff); \ out[s+3] = (byte)((f[i] >> 24) & 0xff); out[0] = out[16] = 0; F(0,0); F(1,3); F(2,6); F(3,9); F(4,12); F(5,16); F(6,19); F(7,22); F(8,25); F(9,28); #undef F } inline void curve25519_swap_conditional(bignum25519 x, bignum25519 qpx, word32 iswap) { const word32 swap = (word32)(-(sword32)iswap); word32 x0,x1,x2,x3,x4,x5,x6,x7,x8,x9; x0 = swap & (x[0] ^ qpx[0]); x[0] ^= x0; qpx[0] ^= x0; x1 = swap & (x[1] ^ qpx[1]); x[1] ^= x1; qpx[1] ^= x1; x2 = swap & (x[2] ^ qpx[2]); x[2] ^= x2; qpx[2] ^= x2; x3 = swap & (x[3] ^ qpx[3]); x[3] ^= x3; qpx[3] ^= x3; x4 = swap & (x[4] ^ qpx[4]); x[4] ^= x4; qpx[4] ^= x4; x5 = swap & (x[5] ^ qpx[5]); x[5] ^= x5; qpx[5] ^= x5; x6 = swap & (x[6] ^ qpx[6]); x[6] ^= x6; qpx[6] ^= x6; x7 = swap & (x[7] ^ qpx[7]); x[7] ^= x7; qpx[7] ^= x7; x8 = swap & (x[8] ^ qpx[8]); x[8] ^= x8; qpx[8] ^= x8; x9 = swap & (x[9] ^ qpx[9]); x[9] ^= x9; qpx[9] ^= x9; } /* * In: b = 2^5 - 2^0 * Out: b = 2^250 - 2^0 */ void curve25519_pow_two5mtwo0_two250mtwo0(bignum25519 b) { ALIGN(ALIGN_SPEC) bignum25519 t0,c; /* 2^5 - 2^0 */ /* b */ /* 2^10 - 2^5 */ curve25519_square_times(t0, b, 5); /* 2^10 - 2^0 */ curve25519_mul(b, t0, b); /* 2^20 - 2^10 */ curve25519_square_times(t0, b, 10); /* 2^20 - 2^0 */ curve25519_mul(c, t0, b); /* 2^40 - 2^20 */ curve25519_square_times(t0, c, 20); /* 2^40 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^50 - 2^10 */ curve25519_square_times(t0, t0, 10); /* 2^50 - 2^0 */ curve25519_mul(b, t0, b); /* 2^100 - 2^50 */ curve25519_square_times(t0, b, 50); /* 2^100 - 2^0 */ curve25519_mul(c, t0, b); /* 2^200 - 2^100 */ curve25519_square_times(t0, c, 100); /* 2^200 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^250 - 2^50 */ curve25519_square_times(t0, t0, 50); /* 2^250 - 2^0 */ curve25519_mul(b, t0, b); } /* * z^(p - 2) = z(2^255 - 21) */ void curve25519_recip(bignum25519 out, const bignum25519 z) { ALIGN(ALIGN_SPEC) bignum25519 a, t0, b; /* 2 */ curve25519_square(a, z); /* a = 2 */ /* 8 */ curve25519_square_times(t0, a, 2); /* 9 */ curve25519_mul(b, t0, z); /* b = 9 */ /* 11 */ curve25519_mul(a, b, a); /* a = 11 */ /* 22 */ curve25519_square(t0, a); /* 2^5 - 2^0 = 31 */ curve25519_mul(b, t0, b); /* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b); /* 2^255 - 2^5 */ curve25519_square_times(b, b, 5); /* 2^255 - 21 */ curve25519_mul(out, b, a); } ANONYMOUS_NAMESPACE_END NAMESPACE_END // X25519 NAMESPACE_END // Donna NAMESPACE_END // CryptoPP //******************************* ed25519 *******************************// NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) NAMESPACE_BEGIN(Ed25519) ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::sword32; using CryptoPP::word64; using CryptoPP::sword64; using CryptoPP::GetBlock; using CryptoPP::LittleEndian; using CryptoPP::SHA512; // Bring in all the symbols from the 32-bit header using namespace CryptoPP::Donna::Arch32; /* out = in */ inline void curve25519_copy(bignum25519 out, const bignum25519 in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[4] = in[4]; out[5] = in[5]; out[6] = in[6]; out[7] = in[7]; out[8] = in[8]; out[9] = in[9]; } /* out = a + b */ inline void curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; out[5] = a[5] + b[5]; out[6] = a[6] + b[6]; out[7] = a[7] + b[7]; out[8] = a[8] + b[8]; out[9] = a[9] + b[9]; } inline void curve25519_add_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 c; out[0] = a[0] + b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26; out[1] = a[1] + b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25; out[2] = a[2] + b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26; out[3] = a[3] + b[3] + c; c = (out[3] >> 25); out[3] &= reduce_mask_25; out[4] = a[4] + b[4] + c; c = (out[4] >> 26); out[4] &= reduce_mask_26; out[5] = a[5] + b[5] + c; c = (out[5] >> 25); out[5] &= reduce_mask_25; out[6] = a[6] + b[6] + c; c = (out[6] >> 26); out[6] &= reduce_mask_26; out[7] = a[7] + b[7] + c; c = (out[7] >> 25); out[7] &= reduce_mask_25; out[8] = a[8] + b[8] + c; c = (out[8] >> 26); out[8] &= reduce_mask_26; out[9] = a[9] + b[9] + c; c = (out[9] >> 25); out[9] &= reduce_mask_25; out[0] += 19 * c; } inline void curve25519_add_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 c; out[0] = a[0] + b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26; out[1] = a[1] + b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25; out[2] = a[2] + b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26; out[3] = a[3] + b[3] + c; c = (out[3] >> 25); out[3] &= reduce_mask_25; out[4] = a[4] + b[4] + c; c = (out[4] >> 26); out[4] &= reduce_mask_26; out[5] = a[5] + b[5] + c; c = (out[5] >> 25); out[5] &= reduce_mask_25; out[6] = a[6] + b[6] + c; c = (out[6] >> 26); out[6] &= reduce_mask_26; out[7] = a[7] + b[7] + c; c = (out[7] >> 25); out[7] &= reduce_mask_25; out[8] = a[8] + b[8] + c; c = (out[8] >> 26); out[8] &= reduce_mask_26; out[9] = a[9] + b[9] + c; c = (out[9] >> 25); out[9] &= reduce_mask_25; out[0] += 19 * c; } /* out = a - b */ inline void curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 c; out[0] = twoP0 + a[0] - b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26; out[1] = twoP13579 + a[1] - b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25; out[2] = twoP2468 + a[2] - b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26; out[3] = twoP13579 + a[3] - b[3] + c; c = (out[3] >> 25); out[3] &= reduce_mask_25; out[4] = twoP2468 + a[4] - b[4] + c; out[5] = twoP13579 + a[5] - b[5] ; out[6] = twoP2468 + a[6] - b[6] ; out[7] = twoP13579 + a[7] - b[7] ; out[8] = twoP2468 + a[8] - b[8] ; out[9] = twoP13579 + a[9] - b[9] ; } /* out = a - b, where a is the result of a basic op (add,sub) */ inline void curve25519_sub_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 c; out[0] = fourP0 + a[0] - b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26; out[1] = fourP13579 + a[1] - b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25; out[2] = fourP2468 + a[2] - b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26; out[3] = fourP13579 + a[3] - b[3] + c; c = (out[3] >> 25); out[3] &= reduce_mask_25; out[4] = fourP2468 + a[4] - b[4] + c; c = (out[4] >> 26); out[4] &= reduce_mask_26; out[5] = fourP13579 + a[5] - b[5] + c; c = (out[5] >> 25); out[5] &= reduce_mask_25; out[6] = fourP2468 + a[6] - b[6] + c; c = (out[6] >> 26); out[6] &= reduce_mask_26; out[7] = fourP13579 + a[7] - b[7] + c; c = (out[7] >> 25); out[7] &= reduce_mask_25; out[8] = fourP2468 + a[8] - b[8] + c; c = (out[8] >> 26); out[8] &= reduce_mask_26; out[9] = fourP13579 + a[9] - b[9] + c; c = (out[9] >> 25); out[9] &= reduce_mask_25; out[0] += 19 * c; } inline void curve25519_sub_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 c; out[0] = fourP0 + a[0] - b[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26; out[1] = fourP13579 + a[1] - b[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25; out[2] = fourP2468 + a[2] - b[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26; out[3] = fourP13579 + a[3] - b[3] + c; c = (out[3] >> 25); out[3] &= reduce_mask_25; out[4] = fourP2468 + a[4] - b[4] + c; c = (out[4] >> 26); out[4] &= reduce_mask_26; out[5] = fourP13579 + a[5] - b[5] + c; c = (out[5] >> 25); out[5] &= reduce_mask_25; out[6] = fourP2468 + a[6] - b[6] + c; c = (out[6] >> 26); out[6] &= reduce_mask_26; out[7] = fourP13579 + a[7] - b[7] + c; c = (out[7] >> 25); out[7] &= reduce_mask_25; out[8] = fourP2468 + a[8] - b[8] + c; c = (out[8] >> 26); out[8] &= reduce_mask_26; out[9] = fourP13579 + a[9] - b[9] + c; c = (out[9] >> 25); out[9] &= reduce_mask_25; out[0] += 19 * c; } /* out = -a */ inline void curve25519_neg(bignum25519 out, const bignum25519 a) { word32 c; out[0] = twoP0 - a[0] ; c = (out[0] >> 26); out[0] &= reduce_mask_26; out[1] = twoP13579 - a[1] + c; c = (out[1] >> 25); out[1] &= reduce_mask_25; out[2] = twoP2468 - a[2] + c; c = (out[2] >> 26); out[2] &= reduce_mask_26; out[3] = twoP13579 - a[3] + c; c = (out[3] >> 25); out[3] &= reduce_mask_25; out[4] = twoP2468 - a[4] + c; c = (out[4] >> 26); out[4] &= reduce_mask_26; out[5] = twoP13579 - a[5] + c; c = (out[5] >> 25); out[5] &= reduce_mask_25; out[6] = twoP2468 - a[6] + c; c = (out[6] >> 26); out[6] &= reduce_mask_26; out[7] = twoP13579 - a[7] + c; c = (out[7] >> 25); out[7] &= reduce_mask_25; out[8] = twoP2468 - a[8] + c; c = (out[8] >> 26); out[8] &= reduce_mask_26; out[9] = twoP13579 - a[9] + c; c = (out[9] >> 25); out[9] &= reduce_mask_25; out[0] += 19 * c; } /* out = a * b */ void curve25519_mul(bignum25519 out, const bignum25519 a, const bignum25519 b) { word32 r0,r1,r2,r3,r4,r5,r6,r7,r8,r9; word32 s0,s1,s2,s3,s4,s5,s6,s7,s8,s9; word64 m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c; word32 p; r0 = b[0]; r1 = b[1]; r2 = b[2]; r3 = b[3]; r4 = b[4]; r5 = b[5]; r6 = b[6]; r7 = b[7]; r8 = b[8]; r9 = b[9]; s0 = a[0]; s1 = a[1]; s2 = a[2]; s3 = a[3]; s4 = a[4]; s5 = a[5]; s6 = a[6]; s7 = a[7]; s8 = a[8]; s9 = a[9]; m1 = mul32x32_64(r0, s1) + mul32x32_64(r1, s0); m3 = mul32x32_64(r0, s3) + mul32x32_64(r1, s2) + mul32x32_64(r2, s1) + mul32x32_64(r3, s0); m5 = mul32x32_64(r0, s5) + mul32x32_64(r1, s4) + mul32x32_64(r2, s3) + mul32x32_64(r3, s2) + mul32x32_64(r4, s1) + mul32x32_64(r5, s0); m7 = mul32x32_64(r0, s7) + mul32x32_64(r1, s6) + mul32x32_64(r2, s5) + mul32x32_64(r3, s4) + mul32x32_64(r4, s3) + mul32x32_64(r5, s2) + mul32x32_64(r6, s1) + mul32x32_64(r7, s0); m9 = mul32x32_64(r0, s9) + mul32x32_64(r1, s8) + mul32x32_64(r2, s7) + mul32x32_64(r3, s6) + mul32x32_64(r4, s5) + mul32x32_64(r5, s4) + mul32x32_64(r6, s3) + mul32x32_64(r7, s2) + mul32x32_64(r8, s1) + mul32x32_64(r9, s0); r1 *= 2; r3 *= 2; r5 *= 2; r7 *= 2; m0 = mul32x32_64(r0, s0); m2 = mul32x32_64(r0, s2) + mul32x32_64(r1, s1) + mul32x32_64(r2, s0); m4 = mul32x32_64(r0, s4) + mul32x32_64(r1, s3) + mul32x32_64(r2, s2) + mul32x32_64(r3, s1) + mul32x32_64(r4, s0); m6 = mul32x32_64(r0, s6) + mul32x32_64(r1, s5) + mul32x32_64(r2, s4) + mul32x32_64(r3, s3) + mul32x32_64(r4, s2) + mul32x32_64(r5, s1) + mul32x32_64(r6, s0); m8 = mul32x32_64(r0, s8) + mul32x32_64(r1, s7) + mul32x32_64(r2, s6) + mul32x32_64(r3, s5) + mul32x32_64(r4, s4) + mul32x32_64(r5, s3) + mul32x32_64(r6, s2) + mul32x32_64(r7, s1) + mul32x32_64(r8, s0); r1 *= 19; r2 *= 19; r3 = (r3 / 2) * 19; r4 *= 19; r5 = (r5 / 2) * 19; r6 *= 19; r7 = (r7 / 2) * 19; r8 *= 19; r9 *= 19; m1 += (mul32x32_64(r9, s2) + mul32x32_64(r8, s3) + mul32x32_64(r7, s4) + mul32x32_64(r6, s5) + mul32x32_64(r5, s6) + mul32x32_64(r4, s7) + mul32x32_64(r3, s8) + mul32x32_64(r2, s9)); m3 += (mul32x32_64(r9, s4) + mul32x32_64(r8, s5) + mul32x32_64(r7, s6) + mul32x32_64(r6, s7) + mul32x32_64(r5, s8) + mul32x32_64(r4, s9)); m5 += (mul32x32_64(r9, s6) + mul32x32_64(r8, s7) + mul32x32_64(r7, s8) + mul32x32_64(r6, s9)); m7 += (mul32x32_64(r9, s8) + mul32x32_64(r8, s9)); r3 *= 2; r5 *= 2; r7 *= 2; r9 *= 2; m0 += (mul32x32_64(r9, s1) + mul32x32_64(r8, s2) + mul32x32_64(r7, s3) + mul32x32_64(r6, s4) + mul32x32_64(r5, s5) + mul32x32_64(r4, s6) + mul32x32_64(r3, s7) + mul32x32_64(r2, s8) + mul32x32_64(r1, s9)); m2 += (mul32x32_64(r9, s3) + mul32x32_64(r8, s4) + mul32x32_64(r7, s5) + mul32x32_64(r6, s6) + mul32x32_64(r5, s7) + mul32x32_64(r4, s8) + mul32x32_64(r3, s9)); m4 += (mul32x32_64(r9, s5) + mul32x32_64(r8, s6) + mul32x32_64(r7, s7) + mul32x32_64(r6, s8) + mul32x32_64(r5, s9)); m6 += (mul32x32_64(r9, s7) + mul32x32_64(r8, s8) + mul32x32_64(r7, s9)); m8 += (mul32x32_64(r9, s9)); r0 = (word32)m0 & reduce_mask_26; c = (m0 >> 26); m1 += c; r1 = (word32)m1 & reduce_mask_25; c = (m1 >> 25); m2 += c; r2 = (word32)m2 & reduce_mask_26; c = (m2 >> 26); m3 += c; r3 = (word32)m3 & reduce_mask_25; c = (m3 >> 25); m4 += c; r4 = (word32)m4 & reduce_mask_26; c = (m4 >> 26); m5 += c; r5 = (word32)m5 & reduce_mask_25; c = (m5 >> 25); m6 += c; r6 = (word32)m6 & reduce_mask_26; c = (m6 >> 26); m7 += c; r7 = (word32)m7 & reduce_mask_25; c = (m7 >> 25); m8 += c; r8 = (word32)m8 & reduce_mask_26; c = (m8 >> 26); m9 += c; r9 = (word32)m9 & reduce_mask_25; p = (word32)(m9 >> 25); m0 = r0 + mul32x32_64(p,19); r0 = (word32)m0 & reduce_mask_26; p = (word32)(m0 >> 26); r1 += p; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; out[5] = r5; out[6] = r6; out[7] = r7; out[8] = r8; out[9] = r9; } /* out = in*in */ void curve25519_square(bignum25519 out, const bignum25519 in) { word32 r0,r1,r2,r3,r4,r5,r6,r7,r8,r9; word32 d6,d7,d8,d9; word64 m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c; word32 p; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; r5 = in[5]; r6 = in[6]; r7 = in[7]; r8 = in[8]; r9 = in[9]; m0 = mul32x32_64(r0, r0); r0 *= 2; m1 = mul32x32_64(r0, r1); m2 = mul32x32_64(r0, r2) + mul32x32_64(r1, r1 * 2); r1 *= 2; m3 = mul32x32_64(r0, r3) + mul32x32_64(r1, r2 ); m4 = mul32x32_64(r0, r4) + mul32x32_64(r1, r3 * 2) + mul32x32_64(r2, r2); r2 *= 2; m5 = mul32x32_64(r0, r5) + mul32x32_64(r1, r4 ) + mul32x32_64(r2, r3); m6 = mul32x32_64(r0, r6) + mul32x32_64(r1, r5 * 2) + mul32x32_64(r2, r4) + mul32x32_64(r3, r3 * 2); r3 *= 2; m7 = mul32x32_64(r0, r7) + mul32x32_64(r1, r6 ) + mul32x32_64(r2, r5) + mul32x32_64(r3, r4 ); m8 = mul32x32_64(r0, r8) + mul32x32_64(r1, r7 * 2) + mul32x32_64(r2, r6) + mul32x32_64(r3, r5 * 2) + mul32x32_64(r4, r4 ); m9 = mul32x32_64(r0, r9) + mul32x32_64(r1, r8 ) + mul32x32_64(r2, r7) + mul32x32_64(r3, r6 ) + mul32x32_64(r4, r5 * 2); d6 = r6 * 19; d7 = r7 * 2 * 19; d8 = r8 * 19; d9 = r9 * 2 * 19; m0 += (mul32x32_64(d9, r1 ) + mul32x32_64(d8, r2 ) + mul32x32_64(d7, r3 ) + mul32x32_64(d6, r4 * 2) + mul32x32_64(r5, r5 * 2 * 19)); m1 += (mul32x32_64(d9, r2 / 2) + mul32x32_64(d8, r3 ) + mul32x32_64(d7, r4 ) + mul32x32_64(d6, r5 * 2)); m2 += (mul32x32_64(d9, r3 ) + mul32x32_64(d8, r4 * 2) + mul32x32_64(d7, r5 * 2) + mul32x32_64(d6, r6 )); m3 += (mul32x32_64(d9, r4 ) + mul32x32_64(d8, r5 * 2) + mul32x32_64(d7, r6 )); m4 += (mul32x32_64(d9, r5 * 2) + mul32x32_64(d8, r6 * 2) + mul32x32_64(d7, r7 )); m5 += (mul32x32_64(d9, r6 ) + mul32x32_64(d8, r7 * 2)); m6 += (mul32x32_64(d9, r7 * 2) + mul32x32_64(d8, r8 )); m7 += (mul32x32_64(d9, r8 )); m8 += (mul32x32_64(d9, r9 )); r0 = (word32)m0 & reduce_mask_26; c = (m0 >> 26); m1 += c; r1 = (word32)m1 & reduce_mask_25; c = (m1 >> 25); m2 += c; r2 = (word32)m2 & reduce_mask_26; c = (m2 >> 26); m3 += c; r3 = (word32)m3 & reduce_mask_25; c = (m3 >> 25); m4 += c; r4 = (word32)m4 & reduce_mask_26; c = (m4 >> 26); m5 += c; r5 = (word32)m5 & reduce_mask_25; c = (m5 >> 25); m6 += c; r6 = (word32)m6 & reduce_mask_26; c = (m6 >> 26); m7 += c; r7 = (word32)m7 & reduce_mask_25; c = (m7 >> 25); m8 += c; r8 = (word32)m8 & reduce_mask_26; c = (m8 >> 26); m9 += c; r9 = (word32)m9 & reduce_mask_25; p = (word32)(m9 >> 25); m0 = r0 + mul32x32_64(p,19); r0 = (word32)m0 & reduce_mask_26; p = (word32)(m0 >> 26); r1 += p; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; out[5] = r5; out[6] = r6; out[7] = r7; out[8] = r8; out[9] = r9; } /* out = in ^ (2 * count) */ void curve25519_square_times(bignum25519 out, const bignum25519 in, int count) { word32 r0,r1,r2,r3,r4,r5,r6,r7,r8,r9; word32 d6,d7,d8,d9,p; word64 m0,m1,m2,m3,m4,m5,m6,m7,m8,m9,c; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; r5 = in[5]; r6 = in[6]; r7 = in[7]; r8 = in[8]; r9 = in[9]; do { m0 = mul32x32_64(r0, r0); r0 *= 2; m1 = mul32x32_64(r0, r1); m2 = mul32x32_64(r0, r2) + mul32x32_64(r1, r1 * 2); r1 *= 2; m3 = mul32x32_64(r0, r3) + mul32x32_64(r1, r2 ); m4 = mul32x32_64(r0, r4) + mul32x32_64(r1, r3 * 2) + mul32x32_64(r2, r2); r2 *= 2; m5 = mul32x32_64(r0, r5) + mul32x32_64(r1, r4 ) + mul32x32_64(r2, r3); m6 = mul32x32_64(r0, r6) + mul32x32_64(r1, r5 * 2) + mul32x32_64(r2, r4) + mul32x32_64(r3, r3 * 2); r3 *= 2; m7 = mul32x32_64(r0, r7) + mul32x32_64(r1, r6 ) + mul32x32_64(r2, r5) + mul32x32_64(r3, r4 ); m8 = mul32x32_64(r0, r8) + mul32x32_64(r1, r7 * 2) + mul32x32_64(r2, r6) + mul32x32_64(r3, r5 * 2) + mul32x32_64(r4, r4 ); m9 = mul32x32_64(r0, r9) + mul32x32_64(r1, r8 ) + mul32x32_64(r2, r7) + mul32x32_64(r3, r6 ) + mul32x32_64(r4, r5 * 2); d6 = r6 * 19; d7 = r7 * 2 * 19; d8 = r8 * 19; d9 = r9 * 2 * 19; m0 += (mul32x32_64(d9, r1 ) + mul32x32_64(d8, r2 ) + mul32x32_64(d7, r3 ) + mul32x32_64(d6, r4 * 2) + mul32x32_64(r5, r5 * 2 * 19)); m1 += (mul32x32_64(d9, r2 / 2) + mul32x32_64(d8, r3 ) + mul32x32_64(d7, r4 ) + mul32x32_64(d6, r5 * 2)); m2 += (mul32x32_64(d9, r3 ) + mul32x32_64(d8, r4 * 2) + mul32x32_64(d7, r5 * 2) + mul32x32_64(d6, r6 )); m3 += (mul32x32_64(d9, r4 ) + mul32x32_64(d8, r5 * 2) + mul32x32_64(d7, r6 )); m4 += (mul32x32_64(d9, r5 * 2) + mul32x32_64(d8, r6 * 2) + mul32x32_64(d7, r7 )); m5 += (mul32x32_64(d9, r6 ) + mul32x32_64(d8, r7 * 2)); m6 += (mul32x32_64(d9, r7 * 2) + mul32x32_64(d8, r8 )); m7 += (mul32x32_64(d9, r8 )); m8 += (mul32x32_64(d9, r9 )); r0 = (word32)m0 & reduce_mask_26; c = (m0 >> 26); m1 += c; r1 = (word32)m1 & reduce_mask_25; c = (m1 >> 25); m2 += c; r2 = (word32)m2 & reduce_mask_26; c = (m2 >> 26); m3 += c; r3 = (word32)m3 & reduce_mask_25; c = (m3 >> 25); m4 += c; r4 = (word32)m4 & reduce_mask_26; c = (m4 >> 26); m5 += c; r5 = (word32)m5 & reduce_mask_25; c = (m5 >> 25); m6 += c; r6 = (word32)m6 & reduce_mask_26; c = (m6 >> 26); m7 += c; r7 = (word32)m7 & reduce_mask_25; c = (m7 >> 25); m8 += c; r8 = (word32)m8 & reduce_mask_26; c = (m8 >> 26); m9 += c; r9 = (word32)m9 & reduce_mask_25; p = (word32)(m9 >> 25); m0 = r0 + mul32x32_64(p,19); r0 = (word32)m0 & reduce_mask_26; p = (word32)(m0 >> 26); r1 += p; } while (--count); out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; out[5] = r5; out[6] = r6; out[7] = r7; out[8] = r8; out[9] = r9; } /* Take a little-endian, 32-byte number and expand it into polynomial form */ void curve25519_expand(bignum25519 out, const byte in[32]) { word32 x0,x1,x2,x3,x4,x5,x6,x7; GetBlock block(in); block(x0)(x1)(x2)(x3)(x4)(x5)(x6)(x7); out[0] = ( x0 ) & 0x3ffffff; out[1] = ((((word64)x1 << 32) | x0) >> 26) & 0x1ffffff; out[2] = ((((word64)x2 << 32) | x1) >> 19) & 0x3ffffff; out[3] = ((((word64)x3 << 32) | x2) >> 13) & 0x1ffffff; out[4] = (( x3) >> 6) & 0x3ffffff; out[5] = ( x4 ) & 0x1ffffff; out[6] = ((((word64)x5 << 32) | x4) >> 25) & 0x3ffffff; out[7] = ((((word64)x6 << 32) | x5) >> 19) & 0x1ffffff; out[8] = ((((word64)x7 << 32) | x6) >> 12) & 0x3ffffff; out[9] = (( x7) >> 6) & 0x1ffffff; } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array */ void curve25519_contract(byte out[32], const bignum25519 in) { bignum25519 f; curve25519_copy(f, in); #define carry_pass() \ f[1] += f[0] >> 26; f[0] &= reduce_mask_26; \ f[2] += f[1] >> 25; f[1] &= reduce_mask_25; \ f[3] += f[2] >> 26; f[2] &= reduce_mask_26; \ f[4] += f[3] >> 25; f[3] &= reduce_mask_25; \ f[5] += f[4] >> 26; f[4] &= reduce_mask_26; \ f[6] += f[5] >> 25; f[5] &= reduce_mask_25; \ f[7] += f[6] >> 26; f[6] &= reduce_mask_26; \ f[8] += f[7] >> 25; f[7] &= reduce_mask_25; \ f[9] += f[8] >> 26; f[8] &= reduce_mask_26; #define carry_pass_full() \ carry_pass() \ f[0] += 19 * (f[9] >> 25); f[9] &= reduce_mask_25; #define carry_pass_final() \ carry_pass() \ f[9] &= reduce_mask_25; carry_pass_full() carry_pass_full() /* now t is between 0 and 2^255-1, properly carried. */ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ f[0] += 19; carry_pass_full() /* now between 19 and 2^255-1 in both cases, and offset by 19. */ f[0] += (reduce_mask_26 + 1) - 19; f[1] += (reduce_mask_25 + 1) - 1; f[2] += (reduce_mask_26 + 1) - 1; f[3] += (reduce_mask_25 + 1) - 1; f[4] += (reduce_mask_26 + 1) - 1; f[5] += (reduce_mask_25 + 1) - 1; f[6] += (reduce_mask_26 + 1) - 1; f[7] += (reduce_mask_25 + 1) - 1; f[8] += (reduce_mask_26 + 1) - 1; f[9] += (reduce_mask_25 + 1) - 1; /* now between 2^255 and 2^256-20, and offset by 2^255. */ carry_pass_final() #undef carry_pass #undef carry_full #undef carry_final f[1] <<= 2; f[2] <<= 3; f[3] <<= 5; f[4] <<= 6; f[6] <<= 1; f[7] <<= 3; f[8] <<= 4; f[9] <<= 6; #define F(i, s) \ out[s+0] |= (byte)( f[i] & 0xff); \ out[s+1] = (byte)((f[i] >> 8) & 0xff); \ out[s+2] = (byte)((f[i] >> 16) & 0xff); \ out[s+3] = (byte)((f[i] >> 24) & 0xff); out[0] = out[16] = 0; F(0,0); F(1,3); F(2,6); F(3,9); F(4,12); F(5,16); F(6,19); F(7,22); F(8,25); F(9,28); #undef F } /* out = (flag) ? in : out */ inline void curve25519_move_conditional_bytes(byte out[96], const byte in[96], word32 flag) { // TODO: enable this code path once we can test and benchmark it. // It is about 48 insns shorter, it avoids punning which may be UB, // and it is guaranteed constant time. #if defined(__GNUC__) && defined(__i686__) && 0 const word32 iter = 96/sizeof(word32); word32* outl = reinterpret_cast(out); const word32* inl = reinterpret_cast(in); word32 idx=0, val; __asm__ __volatile__ ( ".att_syntax ;\n" "cmpl $0, %[flag] ;\n" // compare, set ZERO flag "movl %[iter], %%ecx ;\n" // load iteration count "1: ;\n" " movl (%[idx],%[out]), %[val] ;\n" // val = out[idx] " cmovnzl (%[idx],%[in]), %[val] ;\n" // copy in[idx] to val if NZ " movl %[val], (%[idx],%[out]) ;\n" // out[idx] = val " leal 4(%[idx]), %[idx] ;\n" // increment index " loopnz 1b ;\n" // does not affect flags : [out] "+S" (outl), [in] "+D" (inl), [idx] "+b" (idx), [val] "=r" (val) : [flag] "g" (flag), [iter] "I" (iter) : "ecx", "memory", "cc" ); #else const word32 nb = flag - 1, b = ~nb; const word32 *inl = (const word32 *)in; word32 *outl = (word32 *)out; outl[0] = (outl[0] & nb) | (inl[0] & b); outl[1] = (outl[1] & nb) | (inl[1] & b); outl[2] = (outl[2] & nb) | (inl[2] & b); outl[3] = (outl[3] & nb) | (inl[3] & b); outl[4] = (outl[4] & nb) | (inl[4] & b); outl[5] = (outl[5] & nb) | (inl[5] & b); outl[6] = (outl[6] & nb) | (inl[6] & b); outl[7] = (outl[7] & nb) | (inl[7] & b); outl[8] = (outl[8] & nb) | (inl[8] & b); outl[9] = (outl[9] & nb) | (inl[9] & b); outl[10] = (outl[10] & nb) | (inl[10] & b); outl[11] = (outl[11] & nb) | (inl[11] & b); outl[12] = (outl[12] & nb) | (inl[12] & b); outl[13] = (outl[13] & nb) | (inl[13] & b); outl[14] = (outl[14] & nb) | (inl[14] & b); outl[15] = (outl[15] & nb) | (inl[15] & b); outl[16] = (outl[16] & nb) | (inl[16] & b); outl[17] = (outl[17] & nb) | (inl[17] & b); outl[18] = (outl[18] & nb) | (inl[18] & b); outl[19] = (outl[19] & nb) | (inl[19] & b); outl[20] = (outl[20] & nb) | (inl[20] & b); outl[21] = (outl[21] & nb) | (inl[21] & b); outl[22] = (outl[22] & nb) | (inl[22] & b); outl[23] = (outl[23] & nb) | (inl[23] & b); #endif } /* if (iswap) swap(a, b) */ inline void curve25519_swap_conditional(bignum25519 a, bignum25519 b, word32 iswap) { const word32 swap = (word32)(-(sword32)iswap); word32 x0,x1,x2,x3,x4,x5,x6,x7,x8,x9; x0 = swap & (a[0] ^ b[0]); a[0] ^= x0; b[0] ^= x0; x1 = swap & (a[1] ^ b[1]); a[1] ^= x1; b[1] ^= x1; x2 = swap & (a[2] ^ b[2]); a[2] ^= x2; b[2] ^= x2; x3 = swap & (a[3] ^ b[3]); a[3] ^= x3; b[3] ^= x3; x4 = swap & (a[4] ^ b[4]); a[4] ^= x4; b[4] ^= x4; x5 = swap & (a[5] ^ b[5]); a[5] ^= x5; b[5] ^= x5; x6 = swap & (a[6] ^ b[6]); a[6] ^= x6; b[6] ^= x6; x7 = swap & (a[7] ^ b[7]); a[7] ^= x7; b[7] ^= x7; x8 = swap & (a[8] ^ b[8]); a[8] ^= x8; b[8] ^= x8; x9 = swap & (a[9] ^ b[9]); a[9] ^= x9; b[9] ^= x9; } /* * In: b = 2^5 - 2^0 * Out: b = 2^250 - 2^0 */ void curve25519_pow_two5mtwo0_two250mtwo0(bignum25519 b) { ALIGN(ALIGN_SPEC) bignum25519 t0,c; /* 2^5 - 2^0 */ /* b */ /* 2^10 - 2^5 */ curve25519_square_times(t0, b, 5); /* 2^10 - 2^0 */ curve25519_mul(b, t0, b); /* 2^20 - 2^10 */ curve25519_square_times(t0, b, 10); /* 2^20 - 2^0 */ curve25519_mul(c, t0, b); /* 2^40 - 2^20 */ curve25519_square_times(t0, c, 20); /* 2^40 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^50 - 2^10 */ curve25519_square_times(t0, t0, 10); /* 2^50 - 2^0 */ curve25519_mul(b, t0, b); /* 2^100 - 2^50 */ curve25519_square_times(t0, b, 50); /* 2^100 - 2^0 */ curve25519_mul(c, t0, b); /* 2^200 - 2^100 */ curve25519_square_times(t0, c, 100); /* 2^200 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^250 - 2^50 */ curve25519_square_times(t0, t0, 50); /* 2^250 - 2^0 */ curve25519_mul(b, t0, b); } /* * z^(p - 2) = z(2^255 - 21) */ void curve25519_recip(bignum25519 out, const bignum25519 z) { ALIGN(ALIGN_SPEC) bignum25519 a,t0,b; /* 2 */ curve25519_square_times(a, z, 1); /* a = 2 */ /* 8 */ curve25519_square_times(t0, a, 2); /* 9 */ curve25519_mul(b, t0, z); /* b = 9 */ /* 11 */ curve25519_mul(a, b, a); /* a = 11 */ /* 22 */ curve25519_square_times(t0, a, 1); /* 2^5 - 2^0 = 31 */ curve25519_mul(b, t0, b); /* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b); /* 2^255 - 2^5 */ curve25519_square_times(b, b, 5); /* 2^255 - 21 */ curve25519_mul(out, b, a); } /* * z^((p-5)/8) = z^(2^252 - 3) */ void curve25519_pow_two252m3(bignum25519 two252m3, const bignum25519 z) { ALIGN(ALIGN_SPEC) bignum25519 b,c,t0; /* 2 */ curve25519_square_times(c, z, 1); /* c = 2 */ /* 8 */ curve25519_square_times(t0, c, 2); /* t0 = 8 */ /* 9 */ curve25519_mul(b, t0, z); /* b = 9 */ /* 11 */ curve25519_mul(c, b, c); /* c = 11 */ /* 22 */ curve25519_square_times(t0, c, 1); /* 2^5 - 2^0 = 31 */ curve25519_mul(b, t0, b); /* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b); /* 2^252 - 2^2 */ curve25519_square_times(b, b, 2); /* 2^252 - 3 */ curve25519_mul(two252m3, b, z); } inline void ed25519_hash(byte *hash, const byte *in, size_t inlen) { SHA512().CalculateDigest(hash, in, inlen); } inline void ed25519_extsk(hash_512bits extsk, const byte sk[32]) { ed25519_hash(extsk, sk, 32); extsk[0] &= 248; extsk[31] &= 127; extsk[31] |= 64; } void UpdateFromStream(HashTransformation& hash, std::istream& stream) { SecByteBlock block(4096); while (stream.read((char*)block.begin(), block.size())) hash.Update(block, block.size()); std::streamsize rem = stream.gcount(); if (rem) hash.Update(block, (size_t)rem); block.SetMark(0); } void ed25519_hram(hash_512bits hram, const byte RS[64], const byte pk[32], const byte *m, size_t mlen) { SHA512 hash; hash.Update(RS, 32); hash.Update(pk, 32); hash.Update(m, mlen); hash.Final(hram); } void ed25519_hram(hash_512bits hram, const byte RS[64], const byte pk[32], std::istream& stream) { SHA512 hash; hash.Update(RS, 32); hash.Update(pk, 32); UpdateFromStream(hash, stream); hash.Final(hram); } inline bignum256modm_element_t lt_modm(bignum256modm_element_t a, bignum256modm_element_t b) { return (a - b) >> 31; } /* see HAC, Alg. 14.42 Step 4 */ void reduce256_modm(bignum256modm r) { bignum256modm t; bignum256modm_element_t b = 0, pb, mask; /* t = r - m */ pb = 0; pb += modm_m[0]; b = lt_modm(r[0], pb); t[0] = (r[0] - pb + (b << 30)); pb = b; pb += modm_m[1]; b = lt_modm(r[1], pb); t[1] = (r[1] - pb + (b << 30)); pb = b; pb += modm_m[2]; b = lt_modm(r[2], pb); t[2] = (r[2] - pb + (b << 30)); pb = b; pb += modm_m[3]; b = lt_modm(r[3], pb); t[3] = (r[3] - pb + (b << 30)); pb = b; pb += modm_m[4]; b = lt_modm(r[4], pb); t[4] = (r[4] - pb + (b << 30)); pb = b; pb += modm_m[5]; b = lt_modm(r[5], pb); t[5] = (r[5] - pb + (b << 30)); pb = b; pb += modm_m[6]; b = lt_modm(r[6], pb); t[6] = (r[6] - pb + (b << 30)); pb = b; pb += modm_m[7]; b = lt_modm(r[7], pb); t[7] = (r[7] - pb + (b << 30)); pb = b; pb += modm_m[8]; b = lt_modm(r[8], pb); t[8] = (r[8] - pb + (b << 16)); /* keep r if r was smaller than m */ mask = b - 1; r[0] ^= mask & (r[0] ^ t[0]); r[1] ^= mask & (r[1] ^ t[1]); r[2] ^= mask & (r[2] ^ t[2]); r[3] ^= mask & (r[3] ^ t[3]); r[4] ^= mask & (r[4] ^ t[4]); r[5] ^= mask & (r[5] ^ t[5]); r[6] ^= mask & (r[6] ^ t[6]); r[7] ^= mask & (r[7] ^ t[7]); r[8] ^= mask & (r[8] ^ t[8]); } /* Barrett reduction, see HAC, Alg. 14.42 */ void barrett_reduce256_modm(bignum256modm r, const bignum256modm q1, const bignum256modm r1) { bignum256modm q3, r2; word64 c; bignum256modm_element_t f, b, pb; /* q1 = x >> 248 = 264 bits = 9 30 bit elements q2 = mu * q1 q3 = (q2 / 256(32+1)) = q2 / (2^8)^(32+1) = q2 >> 264 */ c = mul32x32_64(modm_mu[0], q1[7]) + mul32x32_64(modm_mu[1], q1[6]) + mul32x32_64(modm_mu[2], q1[5]) + mul32x32_64(modm_mu[3], q1[4]) + mul32x32_64(modm_mu[4], q1[3]) + mul32x32_64(modm_mu[5], q1[2]) + mul32x32_64(modm_mu[6], q1[1]) + mul32x32_64(modm_mu[7], q1[0]); c >>= 30; c += mul32x32_64(modm_mu[0], q1[8]) + mul32x32_64(modm_mu[1], q1[7]) + mul32x32_64(modm_mu[2], q1[6]) + mul32x32_64(modm_mu[3], q1[5]) + mul32x32_64(modm_mu[4], q1[4]) + mul32x32_64(modm_mu[5], q1[3]) + mul32x32_64(modm_mu[6], q1[2]) + mul32x32_64(modm_mu[7], q1[1]) + mul32x32_64(modm_mu[8], q1[0]); f = (bignum256modm_element_t)c; q3[0] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[1], q1[8]) + mul32x32_64(modm_mu[2], q1[7]) + mul32x32_64(modm_mu[3], q1[6]) + mul32x32_64(modm_mu[4], q1[5]) + mul32x32_64(modm_mu[5], q1[4]) + mul32x32_64(modm_mu[6], q1[3]) + mul32x32_64(modm_mu[7], q1[2]) + mul32x32_64(modm_mu[8], q1[1]); f = (bignum256modm_element_t)c; q3[0] |= (f << 6) & 0x3fffffff; q3[1] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[2], q1[8]) + mul32x32_64(modm_mu[3], q1[7]) + mul32x32_64(modm_mu[4], q1[6]) + mul32x32_64(modm_mu[5], q1[5]) + mul32x32_64(modm_mu[6], q1[4]) + mul32x32_64(modm_mu[7], q1[3]) + mul32x32_64(modm_mu[8], q1[2]); f = (bignum256modm_element_t)c; q3[1] |= (f << 6) & 0x3fffffff; q3[2] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[3], q1[8]) + mul32x32_64(modm_mu[4], q1[7]) + mul32x32_64(modm_mu[5], q1[6]) + mul32x32_64(modm_mu[6], q1[5]) + mul32x32_64(modm_mu[7], q1[4]) + mul32x32_64(modm_mu[8], q1[3]); f = (bignum256modm_element_t)c; q3[2] |= (f << 6) & 0x3fffffff; q3[3] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[4], q1[8]) + mul32x32_64(modm_mu[5], q1[7]) + mul32x32_64(modm_mu[6], q1[6]) + mul32x32_64(modm_mu[7], q1[5]) + mul32x32_64(modm_mu[8], q1[4]); f = (bignum256modm_element_t)c; q3[3] |= (f << 6) & 0x3fffffff; q3[4] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[5], q1[8]) + mul32x32_64(modm_mu[6], q1[7]) + mul32x32_64(modm_mu[7], q1[6]) + mul32x32_64(modm_mu[8], q1[5]); f = (bignum256modm_element_t)c; q3[4] |= (f << 6) & 0x3fffffff; q3[5] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[6], q1[8]) + mul32x32_64(modm_mu[7], q1[7]) + mul32x32_64(modm_mu[8], q1[6]); f = (bignum256modm_element_t)c; q3[5] |= (f << 6) & 0x3fffffff; q3[6] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[7], q1[8]) + mul32x32_64(modm_mu[8], q1[7]); f = (bignum256modm_element_t)c; q3[6] |= (f << 6) & 0x3fffffff; q3[7] = (f >> 24) & 0x3f; c >>= 30; c += mul32x32_64(modm_mu[8], q1[8]); f = (bignum256modm_element_t)c; q3[7] |= (f << 6) & 0x3fffffff; q3[8] = (bignum256modm_element_t)(c >> 24); /* r1 = (x mod 256^(32+1)) = x mod (2^8)(31+1) = x & ((1 << 264) - 1) r2 = (q3 * m) mod (256^(32+1)) = (q3 * m) & ((1 << 264) - 1) */ c = mul32x32_64(modm_m[0], q3[0]); r2[0] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[1]) + mul32x32_64(modm_m[1], q3[0]); r2[1] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[2]) + mul32x32_64(modm_m[1], q3[1]) + mul32x32_64(modm_m[2], q3[0]); r2[2] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[3]) + mul32x32_64(modm_m[1], q3[2]) + mul32x32_64(modm_m[2], q3[1]) + mul32x32_64(modm_m[3], q3[0]); r2[3] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[4]) + mul32x32_64(modm_m[1], q3[3]) + mul32x32_64(modm_m[2], q3[2]) + mul32x32_64(modm_m[3], q3[1]) + mul32x32_64(modm_m[4], q3[0]); r2[4] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[5]) + mul32x32_64(modm_m[1], q3[4]) + mul32x32_64(modm_m[2], q3[3]) + mul32x32_64(modm_m[3], q3[2]) + mul32x32_64(modm_m[4], q3[1]) + mul32x32_64(modm_m[5], q3[0]); r2[5] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[6]) + mul32x32_64(modm_m[1], q3[5]) + mul32x32_64(modm_m[2], q3[4]) + mul32x32_64(modm_m[3], q3[3]) + mul32x32_64(modm_m[4], q3[2]) + mul32x32_64(modm_m[5], q3[1]) + mul32x32_64(modm_m[6], q3[0]); r2[6] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[7]) + mul32x32_64(modm_m[1], q3[6]) + mul32x32_64(modm_m[2], q3[5]) + mul32x32_64(modm_m[3], q3[4]) + mul32x32_64(modm_m[4], q3[3]) + mul32x32_64(modm_m[5], q3[2]) + mul32x32_64(modm_m[6], q3[1]) + mul32x32_64(modm_m[7], q3[0]); r2[7] = (bignum256modm_element_t)(c & 0x3fffffff); c >>= 30; c += mul32x32_64(modm_m[0], q3[8]) + mul32x32_64(modm_m[1], q3[7]) + mul32x32_64(modm_m[2], q3[6]) + mul32x32_64(modm_m[3], q3[5]) + mul32x32_64(modm_m[4], q3[4]) + mul32x32_64(modm_m[5], q3[3]) + mul32x32_64(modm_m[6], q3[2]) + mul32x32_64(modm_m[7], q3[1]) + mul32x32_64(modm_m[8], q3[0]); r2[8] = (bignum256modm_element_t)(c & 0xffffff); /* r = r1 - r2 if (r < 0) r += (1 << 264) */ pb = 0; pb += r2[0]; b = lt_modm(r1[0], pb); r[0] = (r1[0] - pb + (b << 30)); pb = b; pb += r2[1]; b = lt_modm(r1[1], pb); r[1] = (r1[1] - pb + (b << 30)); pb = b; pb += r2[2]; b = lt_modm(r1[2], pb); r[2] = (r1[2] - pb + (b << 30)); pb = b; pb += r2[3]; b = lt_modm(r1[3], pb); r[3] = (r1[3] - pb + (b << 30)); pb = b; pb += r2[4]; b = lt_modm(r1[4], pb); r[4] = (r1[4] - pb + (b << 30)); pb = b; pb += r2[5]; b = lt_modm(r1[5], pb); r[5] = (r1[5] - pb + (b << 30)); pb = b; pb += r2[6]; b = lt_modm(r1[6], pb); r[6] = (r1[6] - pb + (b << 30)); pb = b; pb += r2[7]; b = lt_modm(r1[7], pb); r[7] = (r1[7] - pb + (b << 30)); pb = b; pb += r2[8]; b = lt_modm(r1[8], pb); r[8] = (r1[8] - pb + (b << 24)); reduce256_modm(r); reduce256_modm(r); } /* addition modulo m */ void add256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) { bignum256modm_element_t c; c = x[0] + y[0]; r[0] = c & 0x3fffffff; c >>= 30; c += x[1] + y[1]; r[1] = c & 0x3fffffff; c >>= 30; c += x[2] + y[2]; r[2] = c & 0x3fffffff; c >>= 30; c += x[3] + y[3]; r[3] = c & 0x3fffffff; c >>= 30; c += x[4] + y[4]; r[4] = c & 0x3fffffff; c >>= 30; c += x[5] + y[5]; r[5] = c & 0x3fffffff; c >>= 30; c += x[6] + y[6]; r[6] = c & 0x3fffffff; c >>= 30; c += x[7] + y[7]; r[7] = c & 0x3fffffff; c >>= 30; c += x[8] + y[8]; r[8] = c; reduce256_modm(r); } /* multiplication modulo m */ void mul256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) { bignum256modm r1, q1; word64 c; bignum256modm_element_t f; c = mul32x32_64(x[0], y[0]); f = (bignum256modm_element_t)c; r1[0] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[1]) + mul32x32_64(x[1], y[0]); f = (bignum256modm_element_t)c; r1[1] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[2]) + mul32x32_64(x[1], y[1]) + mul32x32_64(x[2], y[0]); f = (bignum256modm_element_t)c; r1[2] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[3]) + mul32x32_64(x[1], y[2]) + mul32x32_64(x[2], y[1]) + mul32x32_64(x[3], y[0]); f = (bignum256modm_element_t)c; r1[3] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[4]) + mul32x32_64(x[1], y[3]) + mul32x32_64(x[2], y[2]) + mul32x32_64(x[3], y[1]) + mul32x32_64(x[4], y[0]); f = (bignum256modm_element_t)c; r1[4] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[5]) + mul32x32_64(x[1], y[4]) + mul32x32_64(x[2], y[3]) + mul32x32_64(x[3], y[2]) + mul32x32_64(x[4], y[1]) + mul32x32_64(x[5], y[0]); f = (bignum256modm_element_t)c; r1[5] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[6]) + mul32x32_64(x[1], y[5]) + mul32x32_64(x[2], y[4]) + mul32x32_64(x[3], y[3]) + mul32x32_64(x[4], y[2]) + mul32x32_64(x[5], y[1]) + mul32x32_64(x[6], y[0]); f = (bignum256modm_element_t)c; r1[6] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[7]) + mul32x32_64(x[1], y[6]) + mul32x32_64(x[2], y[5]) + mul32x32_64(x[3], y[4]) + mul32x32_64(x[4], y[3]) + mul32x32_64(x[5], y[2]) + mul32x32_64(x[6], y[1]) + mul32x32_64(x[7], y[0]); f = (bignum256modm_element_t)c; r1[7] = (f & 0x3fffffff); c >>= 30; c += mul32x32_64(x[0], y[8]) + mul32x32_64(x[1], y[7]) + mul32x32_64(x[2], y[6]) + mul32x32_64(x[3], y[5]) + mul32x32_64(x[4], y[4]) + mul32x32_64(x[5], y[3]) + mul32x32_64(x[6], y[2]) + mul32x32_64(x[7], y[1]) + mul32x32_64(x[8], y[0]); f = (bignum256modm_element_t)c; r1[8] = (f & 0x00ffffff); q1[0] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[1], y[8]) + mul32x32_64(x[2], y[7]) + mul32x32_64(x[3], y[6]) + mul32x32_64(x[4], y[5]) + mul32x32_64(x[5], y[4]) + mul32x32_64(x[6], y[3]) + mul32x32_64(x[7], y[2]) + mul32x32_64(x[8], y[1]); f = (bignum256modm_element_t)c; q1[0] = (q1[0] | (f << 22)) & 0x3fffffff; q1[1] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[2], y[8]) + mul32x32_64(x[3], y[7]) + mul32x32_64(x[4], y[6]) + mul32x32_64(x[5], y[5]) + mul32x32_64(x[6], y[4]) + mul32x32_64(x[7], y[3]) + mul32x32_64(x[8], y[2]); f = (bignum256modm_element_t)c; q1[1] = (q1[1] | (f << 22)) & 0x3fffffff; q1[2] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[3], y[8]) + mul32x32_64(x[4], y[7]) + mul32x32_64(x[5], y[6]) + mul32x32_64(x[6], y[5]) + mul32x32_64(x[7], y[4]) + mul32x32_64(x[8], y[3]); f = (bignum256modm_element_t)c; q1[2] = (q1[2] | (f << 22)) & 0x3fffffff; q1[3] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[4], y[8]) + mul32x32_64(x[5], y[7]) + mul32x32_64(x[6], y[6]) + mul32x32_64(x[7], y[5]) + mul32x32_64(x[8], y[4]); f = (bignum256modm_element_t)c; q1[3] = (q1[3] | (f << 22)) & 0x3fffffff; q1[4] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[5], y[8]) + mul32x32_64(x[6], y[7]) + mul32x32_64(x[7], y[6]) + mul32x32_64(x[8], y[5]); f = (bignum256modm_element_t)c; q1[4] = (q1[4] | (f << 22)) & 0x3fffffff; q1[5] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[6], y[8]) + mul32x32_64(x[7], y[7]) + mul32x32_64(x[8], y[6]); f = (bignum256modm_element_t)c; q1[5] = (q1[5] | (f << 22)) & 0x3fffffff; q1[6] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[7], y[8]) + mul32x32_64(x[8], y[7]); f = (bignum256modm_element_t)c; q1[6] = (q1[6] | (f << 22)) & 0x3fffffff; q1[7] = (f >> 8) & 0x3fffff; c >>= 30; c += mul32x32_64(x[8], y[8]); f = (bignum256modm_element_t)c; q1[7] = (q1[7] | (f << 22)) & 0x3fffffff; q1[8] = (f >> 8) & 0x3fffff; barrett_reduce256_modm(r, q1, r1); } void expand256_modm(bignum256modm out, const byte *in, size_t len) { byte work[64] = {0}; bignum256modm_element_t x[16]; bignum256modm q1; std::memcpy(work, in, len); x[0] = U8TO32_LE(work + 0); x[1] = U8TO32_LE(work + 4); x[2] = U8TO32_LE(work + 8); x[3] = U8TO32_LE(work + 12); x[4] = U8TO32_LE(work + 16); x[5] = U8TO32_LE(work + 20); x[6] = U8TO32_LE(work + 24); x[7] = U8TO32_LE(work + 28); x[8] = U8TO32_LE(work + 32); x[9] = U8TO32_LE(work + 36); x[10] = U8TO32_LE(work + 40); x[11] = U8TO32_LE(work + 44); x[12] = U8TO32_LE(work + 48); x[13] = U8TO32_LE(work + 52); x[14] = U8TO32_LE(work + 56); x[15] = U8TO32_LE(work + 60); /* r1 = (x mod 256^(32+1)) = x mod (2^8)(31+1) = x & ((1 << 264) - 1) */ out[0] = ( x[0]) & 0x3fffffff; out[1] = ((x[ 0] >> 30) | (x[ 1] << 2)) & 0x3fffffff; out[2] = ((x[ 1] >> 28) | (x[ 2] << 4)) & 0x3fffffff; out[3] = ((x[ 2] >> 26) | (x[ 3] << 6)) & 0x3fffffff; out[4] = ((x[ 3] >> 24) | (x[ 4] << 8)) & 0x3fffffff; out[5] = ((x[ 4] >> 22) | (x[ 5] << 10)) & 0x3fffffff; out[6] = ((x[ 5] >> 20) | (x[ 6] << 12)) & 0x3fffffff; out[7] = ((x[ 6] >> 18) | (x[ 7] << 14)) & 0x3fffffff; out[8] = ((x[ 7] >> 16) | (x[ 8] << 16)) & 0x00ffffff; /* 8*31 = 248 bits, no need to reduce */ if (len < 32) return; /* q1 = x >> 248 = 264 bits = 9 30 bit elements */ q1[0] = ((x[ 7] >> 24) | (x[ 8] << 8)) & 0x3fffffff; q1[1] = ((x[ 8] >> 22) | (x[ 9] << 10)) & 0x3fffffff; q1[2] = ((x[ 9] >> 20) | (x[10] << 12)) & 0x3fffffff; q1[3] = ((x[10] >> 18) | (x[11] << 14)) & 0x3fffffff; q1[4] = ((x[11] >> 16) | (x[12] << 16)) & 0x3fffffff; q1[5] = ((x[12] >> 14) | (x[13] << 18)) & 0x3fffffff; q1[6] = ((x[13] >> 12) | (x[14] << 20)) & 0x3fffffff; q1[7] = ((x[14] >> 10) | (x[15] << 22)) & 0x3fffffff; q1[8] = ((x[15] >> 8) ); barrett_reduce256_modm(out, q1, out); } void expand_raw256_modm(bignum256modm out, const byte in[32]) { bignum256modm_element_t x[8]; x[0] = U8TO32_LE(in + 0); x[1] = U8TO32_LE(in + 4); x[2] = U8TO32_LE(in + 8); x[3] = U8TO32_LE(in + 12); x[4] = U8TO32_LE(in + 16); x[5] = U8TO32_LE(in + 20); x[6] = U8TO32_LE(in + 24); x[7] = U8TO32_LE(in + 28); out[0] = ( x[0]) & 0x3fffffff; out[1] = ((x[ 0] >> 30) | (x[ 1] << 2)) & 0x3fffffff; out[2] = ((x[ 1] >> 28) | (x[ 2] << 4)) & 0x3fffffff; out[3] = ((x[ 2] >> 26) | (x[ 3] << 6)) & 0x3fffffff; out[4] = ((x[ 3] >> 24) | (x[ 4] << 8)) & 0x3fffffff; out[5] = ((x[ 4] >> 22) | (x[ 5] << 10)) & 0x3fffffff; out[6] = ((x[ 5] >> 20) | (x[ 6] << 12)) & 0x3fffffff; out[7] = ((x[ 6] >> 18) | (x[ 7] << 14)) & 0x3fffffff; out[8] = ((x[ 7] >> 16) ) & 0x0000ffff; } void contract256_modm(byte out[32], const bignum256modm in) { U32TO8_LE(out + 0, (in[0] ) | (in[1] << 30)); U32TO8_LE(out + 4, (in[1] >> 2) | (in[2] << 28)); U32TO8_LE(out + 8, (in[2] >> 4) | (in[3] << 26)); U32TO8_LE(out + 12, (in[3] >> 6) | (in[4] << 24)); U32TO8_LE(out + 16, (in[4] >> 8) | (in[5] << 22)); U32TO8_LE(out + 20, (in[5] >> 10) | (in[6] << 20)); U32TO8_LE(out + 24, (in[6] >> 12) | (in[7] << 18)); U32TO8_LE(out + 28, (in[7] >> 14) | (in[8] << 16)); } void contract256_window4_modm(signed char r[64], const bignum256modm in) { char carry; signed char *quads = r; bignum256modm_element_t i, j, v; for (i = 0; i < 8; i += 2) { v = in[i]; for (j = 0; j < 7; j++) { *quads++ = (v & 15); v >>= 4; } v |= (in[i+1] << 2); for (j = 0; j < 8; j++) { *quads++ = (v & 15); v >>= 4; } } v = in[8]; *quads++ = (v & 15); v >>= 4; *quads++ = (v & 15); v >>= 4; *quads++ = (v & 15); v >>= 4; *quads++ = (v & 15); v >>= 4; /* making it signed */ carry = 0; for(i = 0; i < 63; i++) { r[i] += carry; r[i+1] += (r[i] >> 4); r[i] &= 15; carry = (r[i] >> 3); r[i] -= (carry << 4); } r[63] += carry; } void contract256_slidingwindow_modm(signed char r[256], const bignum256modm s, int windowsize) { int i,j,k,b; int m = (1 << (windowsize - 1)) - 1, soplen = 256; signed char *bits = r; bignum256modm_element_t v; /* first put the binary expansion into r */ for (i = 0; i < 8; i++) { v = s[i]; for (j = 0; j < 30; j++, v >>= 1) *bits++ = (v & 1); } v = s[8]; for (j = 0; j < 16; j++, v >>= 1) *bits++ = (v & 1); /* Making it sliding window */ for (j = 0; j < soplen; j++) { if (!r[j]) continue; for (b = 1; (b < (soplen - j)) && (b <= 6); b++) { if ((r[j] + (r[j + b] << b)) <= m) { r[j] += r[j + b] << b; r[j + b] = 0; } else if ((r[j] - (r[j + b] << b)) >= -m) { r[j] -= r[j + b] << b; for (k = j + b; k < soplen; k++) { if (!r[k]) { r[k] = 1; break; } r[k] = 0; } } else if (r[j + b]) { break; } } } } inline void ge25519_p1p1_to_partial(ge25519 *r, const ge25519_p1p1 *p) { curve25519_mul(r->x, p->x, p->t); curve25519_mul(r->y, p->y, p->z); curve25519_mul(r->z, p->z, p->t); } inline void ge25519_p1p1_to_full(ge25519 *r, const ge25519_p1p1 *p) { curve25519_mul(r->x, p->x, p->t); curve25519_mul(r->y, p->y, p->z); curve25519_mul(r->z, p->z, p->t); curve25519_mul(r->t, p->x, p->y); } void ge25519_full_to_pniels(ge25519_pniels *p, const ge25519 *r) { curve25519_sub(p->ysubx, r->y, r->x); curve25519_add(p->xaddy, r->y, r->x); curve25519_copy(p->z, r->z); curve25519_mul(p->t2d, r->t, ge25519_ec2d); } void ge25519_add_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519 *q) { bignum25519 a,b,c,d,t,u; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_sub(t, q->y, q->x); curve25519_add(u, q->y, q->x); curve25519_mul(a, a, t); curve25519_mul(b, b, u); curve25519_mul(c, p->t, q->t); curve25519_mul(c, c, ge25519_ec2d); curve25519_mul(d, p->z, q->z); curve25519_add(d, d, d); curve25519_sub(r->x, b, a); curve25519_add(r->y, b, a); curve25519_add_after_basic(r->z, d, c); curve25519_sub_after_basic(r->t, d, c); } void ge25519_double_p1p1(ge25519_p1p1 *r, const ge25519 *p) { bignum25519 a,b,c; curve25519_square(a, p->x); curve25519_square(b, p->y); curve25519_square(c, p->z); curve25519_add_reduce(c, c, c); curve25519_add(r->x, p->x, p->y); curve25519_square(r->x, r->x); curve25519_add(r->y, b, a); curve25519_sub(r->z, b, a); curve25519_sub_after_basic(r->x, r->x, r->y); curve25519_sub_after_basic(r->t, c, r->z); } void ge25519_nielsadd2_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_niels *q, byte signbit) { const bignum25519 *qb = (const bignum25519 *)q; bignum25519 *rb = (bignum25519 *)r; bignum25519 a,b,c; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_mul(a, a, qb[signbit]); /* x for +, y for - */ curve25519_mul(r->x, b, qb[signbit^1]); /* y for +, x for - */ curve25519_add(r->y, r->x, a); curve25519_sub(r->x, r->x, a); curve25519_mul(c, p->t, q->t2d); curve25519_add_reduce(r->t, p->z, p->z); curve25519_copy(r->z, r->t); curve25519_add(rb[2+signbit], rb[2+signbit], c); /* z for +, t for - */ curve25519_sub(rb[2+(signbit^1)], rb[2+(signbit^1)], c); /* t for +, z for - */ } void ge25519_pnielsadd_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_pniels *q, byte signbit) { const bignum25519 *qb = (const bignum25519 *)q; bignum25519 *rb = (bignum25519 *)r; bignum25519 a,b,c; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_mul(a, a, qb[signbit]); /* ysubx for +, xaddy for - */ curve25519_mul(r->x, b, qb[signbit^1]); /* xaddy for +, ysubx for - */ curve25519_add(r->y, r->x, a); curve25519_sub(r->x, r->x, a); curve25519_mul(c, p->t, q->t2d); curve25519_mul(r->t, p->z, q->z); curve25519_add_reduce(r->t, r->t, r->t); curve25519_copy(r->z, r->t); curve25519_add(rb[2+signbit], rb[2+signbit], c); /* z for +, t for - */ curve25519_sub(rb[2+(signbit^1)], rb[2+(signbit^1)], c); /* t for +, z for - */ } void ge25519_double_partial(ge25519 *r, const ge25519 *p) { ge25519_p1p1 t; ge25519_double_p1p1(&t, p); ge25519_p1p1_to_partial(r, &t); } void ge25519_double(ge25519 *r, const ge25519 *p) { ge25519_p1p1 t; ge25519_double_p1p1(&t, p); ge25519_p1p1_to_full(r, &t); } void ge25519_add(ge25519 *r, const ge25519 *p, const ge25519 *q) { ge25519_p1p1 t; ge25519_add_p1p1(&t, p, q); ge25519_p1p1_to_full(r, &t); } void ge25519_nielsadd2(ge25519 *r, const ge25519_niels *q) { bignum25519 a,b,c,e,f,g,h; curve25519_sub(a, r->y, r->x); curve25519_add(b, r->y, r->x); curve25519_mul(a, a, q->ysubx); curve25519_mul(e, b, q->xaddy); curve25519_add(h, e, a); curve25519_sub(e, e, a); curve25519_mul(c, r->t, q->t2d); curve25519_add(f, r->z, r->z); curve25519_add_after_basic(g, f, c); curve25519_sub_after_basic(f, f, c); curve25519_mul(r->x, e, f); curve25519_mul(r->y, h, g); curve25519_mul(r->z, g, f); curve25519_mul(r->t, e, h); } void ge25519_pnielsadd(ge25519_pniels *r, const ge25519 *p, const ge25519_pniels *q) { bignum25519 a,b,c,x,y,z,t; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_mul(a, a, q->ysubx); curve25519_mul(x, b, q->xaddy); curve25519_add(y, x, a); curve25519_sub(x, x, a); curve25519_mul(c, p->t, q->t2d); curve25519_mul(t, p->z, q->z); curve25519_add(t, t, t); curve25519_add_after_basic(z, t, c); curve25519_sub_after_basic(t, t, c); curve25519_mul(r->xaddy, x, t); curve25519_mul(r->ysubx, y, z); curve25519_mul(r->z, z, t); curve25519_mul(r->t2d, x, y); curve25519_copy(y, r->ysubx); curve25519_sub(r->ysubx, r->ysubx, r->xaddy); curve25519_add(r->xaddy, r->xaddy, y); curve25519_mul(r->t2d, r->t2d, ge25519_ec2d); } void ge25519_pack(byte r[32], const ge25519 *p) { bignum25519 tx, ty, zi; byte parity[32]; curve25519_recip(zi, p->z); curve25519_mul(tx, p->x, zi); curve25519_mul(ty, p->y, zi); curve25519_contract(r, ty); curve25519_contract(parity, tx); r[31] ^= ((parity[0] & 1) << 7); } int ed25519_verify(const byte *x, const byte *y, size_t len) { size_t differentbits = 0; while (len--) differentbits |= (*x++ ^ *y++); return (int) (1 & ((differentbits - 1) >> 8)); } int ge25519_unpack_negative_vartime(ge25519 *r, const byte p[32]) { const byte zero[32] = {0}; const bignum25519 one = {1}; byte parity = p[31] >> 7; byte check[32]; bignum25519 t, root, num, den, d3; curve25519_expand(r->y, p); curve25519_copy(r->z, one); curve25519_square(num, r->y); /* x = y^2 */ curve25519_mul(den, num, ge25519_ecd); /* den = dy^2 */ curve25519_sub_reduce(num, num, r->z); /* x = y^1 - 1 */ curve25519_add(den, den, r->z); /* den = dy^2 + 1 */ /* Computation of sqrt(num/den) */ /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */ curve25519_square(t, den); curve25519_mul(d3, t, den); curve25519_square(r->x, d3); curve25519_mul(r->x, r->x, den); curve25519_mul(r->x, r->x, num); curve25519_pow_two252m3(r->x, r->x); /* 2. computation of r->x = num * den^3 * (num*den^7)^((p-5)/8) */ curve25519_mul(r->x, r->x, d3); curve25519_mul(r->x, r->x, num); /* 3. Check if either of the roots works: */ curve25519_square(t, r->x); curve25519_mul(t, t, den); curve25519_sub_reduce(root, t, num); curve25519_contract(check, root); if (!ed25519_verify(check, zero, 32)) { curve25519_add_reduce(t, t, num); curve25519_contract(check, t); if (!ed25519_verify(check, zero, 32)) return 0; curve25519_mul(r->x, r->x, ge25519_sqrtneg1); } curve25519_contract(check, r->x); if ((check[0] & 1) == parity) { curve25519_copy(t, r->x); curve25519_neg(r->x, t); } curve25519_mul(r->t, r->x, r->y); return 1; } /* computes [s1]p1 + [s2]basepoint */ void ge25519_double_scalarmult_vartime(ge25519 *r, const ge25519 *p1, const bignum256modm s1, const bignum256modm s2) { signed char slide1[256], slide2[256]; ge25519_pniels pre1[S1_TABLE_SIZE]; ge25519 d1; ge25519_p1p1 t; sword32 i; contract256_slidingwindow_modm(slide1, s1, S1_SWINDOWSIZE); contract256_slidingwindow_modm(slide2, s2, S2_SWINDOWSIZE); ge25519_double(&d1, p1); ge25519_full_to_pniels(pre1, p1); for (i = 0; i < S1_TABLE_SIZE - 1; i++) ge25519_pnielsadd(&pre1[i+1], &d1, &pre1[i]); /* set neutral */ std::memset(r, 0, sizeof(ge25519)); r->y[0] = 1; r->z[0] = 1; i = 255; while ((i >= 0) && !(slide1[i] | slide2[i])) i--; for (; i >= 0; i--) { ge25519_double_p1p1(&t, r); if (slide1[i]) { ge25519_p1p1_to_full(r, &t); ge25519_pnielsadd_p1p1(&t, r, &pre1[abs(slide1[i]) / 2], (byte)slide1[i] >> 7); } if (slide2[i]) { ge25519_p1p1_to_full(r, &t); ge25519_nielsadd2_p1p1(&t, r, &ge25519_niels_sliding_multiples[abs(slide2[i]) / 2], (byte)slide2[i] >> 7); } ge25519_p1p1_to_partial(r, &t); } } #if !defined(HAVE_GE25519_SCALARMULT_BASE_CHOOSE_NIELS) word32 ge25519_windowb_equal(word32 b, word32 c) { return ((b ^ c) - 1) >> 31; } void ge25519_scalarmult_base_choose_niels(ge25519_niels *t, const byte table[256][96], word32 pos, signed char b) { bignum25519 neg; word32 sign = (word32)((byte)b >> 7); word32 mask = ~(sign - 1); word32 u = (b + mask) ^ mask; word32 i; /* ysubx, xaddy, t2d in packed form. initialize to ysubx = 1, xaddy = 1, t2d = 0 */ byte packed[96] = {0}; packed[0] = 1; packed[32] = 1; for (i = 0; i < 8; i++) curve25519_move_conditional_bytes(packed, table[(pos * 8) + i], ge25519_windowb_equal(u, i + 1)); /* expand in to t */ curve25519_expand(t->ysubx, packed + 0); curve25519_expand(t->xaddy, packed + 32); curve25519_expand(t->t2d , packed + 64); /* adjust for sign */ curve25519_swap_conditional(t->ysubx, t->xaddy, sign); curve25519_neg(neg, t->t2d); curve25519_swap_conditional(t->t2d, neg, sign); } #endif /* HAVE_GE25519_SCALARMULT_BASE_CHOOSE_NIELS */ /* computes [s]basepoint */ void ge25519_scalarmult_base_niels(ge25519 *r, const byte basepoint_table[256][96], const bignum256modm s) { signed char b[64]; word32 i; ge25519_niels t; contract256_window4_modm(b, s); ge25519_scalarmult_base_choose_niels(&t, basepoint_table, 0, b[1]); curve25519_sub_reduce(r->x, t.xaddy, t.ysubx); curve25519_add_reduce(r->y, t.xaddy, t.ysubx); std::memset(r->z, 0, sizeof(bignum25519)); curve25519_copy(r->t, t.t2d); r->z[0] = 2; for (i = 3; i < 64; i += 2) { ge25519_scalarmult_base_choose_niels(&t, basepoint_table, i / 2, b[i]); ge25519_nielsadd2(r, &t); } ge25519_double_partial(r, r); ge25519_double_partial(r, r); ge25519_double_partial(r, r); ge25519_double(r, r); ge25519_scalarmult_base_choose_niels(&t, basepoint_table, 0, b[0]); curve25519_mul(t.t2d, t.t2d, ge25519_ecd); ge25519_nielsadd2(r, &t); for(i = 2; i < 64; i += 2) { ge25519_scalarmult_base_choose_niels(&t, basepoint_table, i / 2, b[i]); ge25519_nielsadd2(r, &t); } } ANONYMOUS_NAMESPACE_END NAMESPACE_END // Ed25519 NAMESPACE_END // Donna NAMESPACE_END // CryptoPP //***************************** curve25519 *****************************// NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) int curve25519_mult_CXX(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]) { using namespace CryptoPP::Donna::X25519; FixedSizeSecBlock e; for (size_t i = 0; i < 32; ++i) e[i] = secretKey[i]; e[0] &= 0xf8; e[31] &= 0x7f; e[31] |= 0x40; bignum25519 nqpqx = {1}, nqpqz = {0}, nqz = {1}, nqx; bignum25519 q, qx, qpqx, qqx, zzz, zmone; size_t bit, lastbit; curve25519_expand(q, othersKey); curve25519_copy(nqx, q); /* bit 255 is always 0, and bit 254 is always 1, so skip bit 255 and start pre-swapped on bit 254 */ lastbit = 1; /* we are doing bits 254..3 in the loop, but are swapping in bits 253..2 */ for (int i = 253; i >= 2; i--) { curve25519_add(qx, nqx, nqz); curve25519_sub(nqz, nqx, nqz); curve25519_add(qpqx, nqpqx, nqpqz); curve25519_sub(nqpqz, nqpqx, nqpqz); curve25519_mul(nqpqx, qpqx, nqz); curve25519_mul(nqpqz, qx, nqpqz); curve25519_add(qqx, nqpqx, nqpqz); curve25519_sub(nqpqz, nqpqx, nqpqz); curve25519_square(nqpqz, nqpqz); curve25519_square(nqpqx, qqx); curve25519_mul(nqpqz, nqpqz, q); curve25519_square(qx, qx); curve25519_square(nqz, nqz); curve25519_mul(nqx, qx, nqz); curve25519_sub(nqz, qx, nqz); curve25519_scalar_product(zzz, nqz, 121665); curve25519_add(zzz, zzz, qx); curve25519_mul(nqz, nqz, zzz); bit = (e[i/8] >> (i & 7)) & 1; curve25519_swap_conditional(nqx, nqpqx, (word32)(bit ^ lastbit)); curve25519_swap_conditional(nqz, nqpqz, (word32)(bit ^ lastbit)); lastbit = bit; } /* the final 3 bits are always zero, so we only need to double */ for (int i = 0; i < 3; i++) { curve25519_add(qx, nqx, nqz); curve25519_sub(nqz, nqx, nqz); curve25519_square(qx, qx); curve25519_square(nqz, nqz); curve25519_mul(nqx, qx, nqz); curve25519_sub(nqz, qx, nqz); curve25519_scalar_product(zzz, nqz, 121665); curve25519_add(zzz, zzz, qx); curve25519_mul(nqz, nqz, zzz); } curve25519_recip(zmone, nqz); curve25519_mul(nqz, nqx, zmone); curve25519_contract(sharedKey, nqz); return 0; } int curve25519_mult(byte publicKey[32], const byte secretKey[32]) { using namespace CryptoPP::Donna::X25519; #if (CRYPTOPP_CURVE25519_SSE2) if (HasSSE2()) return curve25519_mult_SSE2(publicKey, secretKey, basePoint); else #endif return curve25519_mult_CXX(publicKey, secretKey, basePoint); } int curve25519_mult(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]) { #if (CRYPTOPP_CURVE25519_SSE2) if (HasSSE2()) return curve25519_mult_SSE2(sharedKey, secretKey, othersKey); else #endif return curve25519_mult_CXX(sharedKey, secretKey, othersKey); } NAMESPACE_END // Donna NAMESPACE_END // CryptoPP //******************************* ed25519 *******************************// NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) int ed25519_publickey_CXX(byte publicKey[32], const byte secretKey[32]) { using namespace CryptoPP::Donna::Ed25519; bignum256modm a; ALIGN(ALIGN_SPEC) ge25519 A; hash_512bits extsk; /* A = aB */ ed25519_extsk(extsk, secretKey); expand256_modm(a, extsk, 32); ge25519_scalarmult_base_niels(&A, ge25519_niels_base_multiples, a); ge25519_pack(publicKey, &A); return 0; } int ed25519_publickey(byte publicKey[32], const byte secretKey[32]) { return ed25519_publickey_CXX(publicKey, secretKey); } int ed25519_sign_CXX(std::istream& stream, const byte sk[32], const byte pk[32], byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; bignum256modm r, S, a; ALIGN(ALIGN_SPEC) ge25519 R; hash_512bits extsk, hashr, hram; // Unfortunately we need to read the stream twice. The first time calculates // 'r = H(aExt[32..64], m)'. The second time calculates 'S = H(R,A,m)'. There // is a data dependency due to hashing 'RS' with 'R = [r]B' that does not // allow us to read the stream once. std::streampos where = stream.tellg(); ed25519_extsk(extsk, sk); /* r = H(aExt[32..64], m) */ SHA512 hash; hash.Update(extsk + 32, 32); UpdateFromStream(hash, stream); hash.Final(hashr); expand256_modm(r, hashr, 64); /* R = rB */ ge25519_scalarmult_base_niels(&R, ge25519_niels_base_multiples, r); ge25519_pack(RS, &R); // Reset stream for the second digest stream.clear(); stream.seekg(where); /* S = H(R,A,m).. */ ed25519_hram(hram, RS, pk, stream); expand256_modm(S, hram, 64); /* S = H(R,A,m)a */ expand256_modm(a, extsk, 32); mul256_modm(S, S, a); /* S = (r + H(R,A,m)a) */ add256_modm(S, S, r); /* S = (r + H(R,A,m)a) mod L */ contract256_modm(RS + 32, S); return 0; } int ed25519_sign_CXX(const byte *m, size_t mlen, const byte sk[32], const byte pk[32], byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; bignum256modm r, S, a; ALIGN(ALIGN_SPEC) ge25519 R; hash_512bits extsk, hashr, hram; ed25519_extsk(extsk, sk); /* r = H(aExt[32..64], m) */ SHA512 hash; hash.Update(extsk + 32, 32); hash.Update(m, mlen); hash.Final(hashr); expand256_modm(r, hashr, 64); /* R = rB */ ge25519_scalarmult_base_niels(&R, ge25519_niels_base_multiples, r); ge25519_pack(RS, &R); /* S = H(R,A,m).. */ ed25519_hram(hram, RS, pk, m, mlen); expand256_modm(S, hram, 64); /* S = H(R,A,m)a */ expand256_modm(a, extsk, 32); mul256_modm(S, S, a); /* S = (r + H(R,A,m)a) */ add256_modm(S, S, r); /* S = (r + H(R,A,m)a) mod L */ contract256_modm(RS + 32, S); return 0; } int ed25519_sign(std::istream& stream, const byte secretKey[32], const byte publicKey[32], byte signature[64]) { return ed25519_sign_CXX(stream, secretKey, publicKey, signature); } int ed25519_sign(const byte* message, size_t messageLength, const byte secretKey[32], const byte publicKey[32], byte signature[64]) { return ed25519_sign_CXX(message, messageLength, secretKey, publicKey, signature); } int ed25519_sign_open_CXX(std::istream& stream, const byte pk[32], const byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; ALIGN(ALIGN_SPEC) ge25519 R, A; hash_512bits hash; bignum256modm hram, S; byte checkR[32]; if ((RS[63] & 224) || !ge25519_unpack_negative_vartime(&A, pk)) return -1; /* hram = H(R,A,m) */ ed25519_hram(hash, RS, pk, stream); expand256_modm(hram, hash, 64); /* S */ expand256_modm(S, RS + 32, 32); /* SB - H(R,A,m)A */ ge25519_double_scalarmult_vartime(&R, &A, hram, S); ge25519_pack(checkR, &R); /* check that R = SB - H(R,A,m)A */ return ed25519_verify(RS, checkR, 32) ? 0 : -1; } int ed25519_sign_open_CXX(const byte *m, size_t mlen, const byte pk[32], const byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; ALIGN(ALIGN_SPEC) ge25519 R, A; hash_512bits hash; bignum256modm hram, S; byte checkR[32]; if ((RS[63] & 224) || !ge25519_unpack_negative_vartime(&A, pk)) return -1; /* hram = H(R,A,m) */ ed25519_hram(hash, RS, pk, m, mlen); expand256_modm(hram, hash, 64); /* S */ expand256_modm(S, RS + 32, 32); /* SB - H(R,A,m)A */ ge25519_double_scalarmult_vartime(&R, &A, hram, S); ge25519_pack(checkR, &R); /* check that R = SB - H(R,A,m)A */ return ed25519_verify(RS, checkR, 32) ? 0 : -1; } int ed25519_sign_open(const byte *message, size_t messageLength, const byte publicKey[32], const byte signature[64]) { return ed25519_sign_open_CXX(message, messageLength, publicKey, signature); } int ed25519_sign_open(std::istream& stream, const byte publicKey[32], const byte signature[64]) { return ed25519_sign_open_CXX(stream, publicKey, signature); } NAMESPACE_END // Donna NAMESPACE_END // CryptoPP #endif // CRYPTOPP_CURVE25519_32BIT