#ifndef CRYPTOPP_DLL_ONLY # define CRYPTOPP_DEFAULT_NO_DLL #endif #include "dll.h" #include "cryptlib.h" #include "filters.h" #include "pkcspad.h" #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4505 4355) #endif USING_NAMESPACE(CryptoPP) void FIPS140_SampleApplication() { if (!FIPS_140_2_ComplianceEnabled()) { std::cerr << "FIPS 140-2 compliance was turned off at compile time.\n"; abort(); } // check self test status if (GetPowerUpSelfTestStatus() != POWER_UP_SELF_TEST_PASSED) { std::cerr << "Automatic power-up self test failed.\n"; abort(); } std::cout << "0. Automatic power-up self test passed.\n"; // simulate a power-up self test error SimulatePowerUpSelfTestFailure(); try { // trying to use a crypto algorithm after power-up self test error will result in an exception AES::Encryption aes; // should not be here std::cerr << "Use of AES failed to cause an exception after power-up self test error.\n"; abort(); } catch (SelfTestFailure &e) { std::cout << "1. Caught expected exception when simulating self test failure. Exception message follows: "; std::cout << e.what() << std::endl; } // clear the self test error state and redo power-up self test DoDllPowerUpSelfTest(); if (GetPowerUpSelfTestStatus() != POWER_UP_SELF_TEST_PASSED) { std::cerr << "Re-do power-up self test failed.\n"; abort(); } std::cout << "2. Re-do power-up self test passed.\n"; // encrypt and decrypt const byte key[] = {0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef}; const byte iv[] = {0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef}; const byte plaintext[] = { // "Now is the time for all " without tailing 0 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20}; byte ciphertext[24]; byte decrypted[24]; CFB_FIPS_Mode::Encryption encryption_DES_EDE3_CFB; encryption_DES_EDE3_CFB.SetKeyWithIV(key, sizeof(key), iv); encryption_DES_EDE3_CFB.ProcessString(ciphertext, plaintext, 24); CFB_FIPS_Mode::Decryption decryption_DES_EDE3_CFB; decryption_DES_EDE3_CFB.SetKeyWithIV(key, sizeof(key), iv); decryption_DES_EDE3_CFB.ProcessString(decrypted, ciphertext, 24); if (std::memcmp(plaintext, decrypted, 24) != 0) { std::cerr << "DES-EDE3-CFB Encryption/decryption failed.\n"; abort(); } std::cout << "3. DES-EDE3-CFB Encryption/decryption succeeded.\n"; // hash const byte message[] = {'a', 'b', 'c'}; const byte expectedDigest[] = {0xA9,0x99,0x3E,0x36,0x47,0x06,0x81,0x6A,0xBA,0x3E,0x25,0x71,0x78,0x50,0xC2,0x6C,0x9C,0xD0,0xD8,0x9D}; byte digest[20]; SHA1 sha; sha.Update(message, 3); sha.Final(digest); if (std::memcmp(digest, expectedDigest, 20) != 0) { std::cerr << "SHA-1 hash failed.\n"; abort(); } std::cout << "4. SHA-1 hash succeeded.\n"; // create auto-seeded X9.17 RNG object, if available #ifdef OS_RNG_AVAILABLE AutoSeededX917RNG rng; #else // this is used to allow this function to compile on platforms that don't have auto-seeded RNGs RandomNumberGenerator &rng(NullRNG()); #endif // generate DSA key DSA::PrivateKey dsaPrivateKey; dsaPrivateKey.GenerateRandomWithKeySize(rng, 1024); DSA::PublicKey dsaPublicKey; dsaPublicKey.AssignFrom(dsaPrivateKey); if (!dsaPrivateKey.Validate(rng, 3) || !dsaPublicKey.Validate(rng, 3)) { std::cerr << "DSA key generation failed.\n"; abort(); } std::cout << "5. DSA key generation succeeded.\n"; // encode DSA key std::string encodedDsaPublicKey, encodedDsaPrivateKey; dsaPublicKey.DEREncode(StringSink(encodedDsaPublicKey).Ref()); dsaPrivateKey.DEREncode(StringSink(encodedDsaPrivateKey).Ref()); // decode DSA key DSA::PrivateKey decodedDsaPrivateKey; decodedDsaPrivateKey.BERDecode(StringStore(encodedDsaPrivateKey).Ref()); DSA::PublicKey decodedDsaPublicKey; decodedDsaPublicKey.BERDecode(StringStore(encodedDsaPublicKey).Ref()); if (!decodedDsaPrivateKey.Validate(rng, 3) || !decodedDsaPublicKey.Validate(rng, 3)) { std::cerr << "DSA key encode/decode failed.\n"; abort(); } std::cout << "6. DSA key encode/decode succeeded.\n"; // sign and verify byte signature[40]; DSA::Signer signer(dsaPrivateKey); CRYPTOPP_ASSERT(signer.SignatureLength() == 40); signer.SignMessage(rng, message, 3, signature); DSA::Verifier verifier(dsaPublicKey); if (!verifier.VerifyMessage(message, 3, signature, sizeof(signature))) { std::cerr << "DSA signature and verification failed.\n"; abort(); } std::cout << "7. DSA signature and verification succeeded.\n"; // try to verify an invalid signature signature[0] ^= 1; if (verifier.VerifyMessage(message, 3, signature, sizeof(signature))) { std::cerr << "DSA signature verification failed to detect bad signature.\n"; abort(); } std::cout << "8. DSA signature verification successfully detected bad signature.\n"; // try to use an invalid key length try { ECB_Mode::Encryption encryption_DES_EDE3_ECB; encryption_DES_EDE3_ECB.SetKey(key, 5); // should not be here std::cerr << "DES-EDE3 implementation did not detect use of invalid key length.\n"; abort(); } catch (InvalidArgument &e) { std::cout << "9. Caught expected exception when using invalid key length. Exception message follows: "; std::cout << e.what() << std::endl; } std::cout << "\nFIPS 140-2 Sample Application completed normally.\n"; } #ifdef CRYPTOPP_IMPORTS static PNew s_pNew = NULLPTR; static PDelete s_pDelete = NULLPTR; extern "C" __declspec(dllexport) void __cdecl SetNewAndDeleteFromCryptoPP(PNew pNew, PDelete pDelete, PSetNewHandler pSetNewHandler) { (void)(pSetNewHandler); s_pNew = pNew; s_pDelete = pDelete; } void * __cdecl operator new (size_t size) { return s_pNew(size); } void __cdecl operator delete (void * p) { s_pDelete(p); } #endif #ifdef CRYPTOPP_DLL_ONLY int __cdecl main() { FIPS140_SampleApplication(); return 0; } #endif