// des.cpp - modified by Wei Dai from Phil Karn's des.c // The original code and all modifications are in the public domain. /* * This is a major rewrite of my old public domain DES code written * circa 1987, which in turn borrowed heavily from Jim Gillogly's 1977 * public domain code. I pretty much kept my key scheduling code, but * the actual encrypt/decrypt routines are taken from from Richard * Outerbridge's DES code as printed in Schneier's "Applied Cryptography." * * This code is in the public domain. I would appreciate bug reports and * enhancements. * * Phil Karn KA9Q, karn@unix.ka9q.ampr.org, August 1994. */ #include "pch.h" #include "misc.h" #include "des.h" NAMESPACE_BEGIN(CryptoPP) typedef BlockGetAndPut Block; // Richard Outerbridge's initial permutation algorithm /* inline void IPERM(word32 &left, word32 &right) { word32 work; work = ((left >> 4) ^ right) & 0x0f0f0f0f; right ^= work; left ^= work << 4; work = ((left >> 16) ^ right) & 0xffff; right ^= work; left ^= work << 16; work = ((right >> 2) ^ left) & 0x33333333; left ^= work; right ^= (work << 2); work = ((right >> 8) ^ left) & 0xff00ff; left ^= work; right ^= (work << 8); right = rotl(right, 1); work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = rotl(left, 1); } inline void FPERM(word32 &left, word32 &right) { word32 work; right = rotr(right, 1); work = (left ^ right) & 0xaaaaaaaa; left ^= work; right ^= work; left = rotr(left, 1); work = ((left >> 8) ^ right) & 0xff00ff; right ^= work; left ^= work << 8; work = ((left >> 2) ^ right) & 0x33333333; right ^= work; left ^= work << 2; work = ((right >> 16) ^ left) & 0xffff; left ^= work; right ^= work << 16; work = ((right >> 4) ^ left) & 0x0f0f0f0f; left ^= work; right ^= work << 4; } */ // Wei Dai's modification to Richard Outerbridge's initial permutation // algorithm, this one is faster if you have access to rotate instructions // (like in MSVC) static inline void IPERM(word32 &left, word32 &right) { word32 work; right = rotlConstant<4>(right); work = (left ^ right) & 0xf0f0f0f0; left ^= work; right = rotrConstant<20>(right^work); work = (left ^ right) & 0xffff0000; left ^= work; right = rotrConstant<18>(right^work); work = (left ^ right) & 0x33333333; left ^= work; right = rotrConstant<6>(right^work); work = (left ^ right) & 0x00ff00ff; left ^= work; right = rotlConstant<9>(right^work); work = (left ^ right) & 0xaaaaaaaa; left = rotlConstant<1>(left^work); right ^= work; } static inline void FPERM(word32 &left, word32 &right) { word32 work; right = rotrConstant<1>(right); work = (left ^ right) & 0xaaaaaaaa; right ^= work; left = rotrConstant<9>(left^work); work = (left ^ right) & 0x00ff00ff; right ^= work; left = rotlConstant<6>(left^work); work = (left ^ right) & 0x33333333; right ^= work; left = rotlConstant<18>(left^work); work = (left ^ right) & 0xffff0000; right ^= work; left = rotlConstant<20>(left^work); work = (left ^ right) & 0xf0f0f0f0; right ^= work; left = rotrConstant<4>(left^work); } void DES::Base::UncheckedSetKey(const byte *userKey, unsigned int length, const NameValuePairs &) { AssertValidKeyLength(length); RawSetKey(GetCipherDirection(), userKey); } #ifndef CRYPTOPP_IMPORTS /* Tables defined in the Data Encryption Standard documents * Three of these tables, the initial permutation, the final * permutation and the expansion operator, are regular enough that * for speed, we hard-code them. They're here for reference only. * Also, the S and P boxes are used by a separate program, gensp.c, * to build the combined SP box, Spbox[]. They're also here just * for reference. */ #ifdef notdef /* initial permutation IP */ static byte ip[] = { 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }; /* final permutation IP^-1 */ static byte fp[] = { 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31, 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29, 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27, 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25 }; /* expansion operation matrix */ static byte ei[] = { 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 }; /* The (in)famous S-boxes */ static byte sbox[8][64] = { /* S1 */ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13, /* S2 */ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9, /* S3 */ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12, /* S4 */ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14, /* S5 */ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3, /* S6 */ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13, /* S7 */ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12, /* S8 */ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }; /* 32-bit permutation function P used on the output of the S-boxes */ namespace { const byte p32i[] = { 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 }; } #endif /* permuted choice table (key) */ namespace { const byte pc1[] = { 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36, 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4 }; } /* number left rotations of pc1 */ namespace { const byte totrot[] = { 1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28 }; } /* permuted choice key (table) */ namespace { const byte pc2[] = { 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10, 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2, 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48, 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32 }; } /* End of DES-defined tables */ /* bit 0 is left-most in byte */ namespace { const int bytebit[] = { 0200,0100,040,020,010,04,02,01 }; } /* Set key (initialize key schedule array) */ void RawDES::RawSetKey(CipherDir dir, const byte *key) { #if (_MSC_VER >= 1600) || (__cplusplus >= 201103L) # define REGISTER /* Define to nothing for C++11 and above */ #else # define REGISTER register #endif SecByteBlock buffer(56+56+8); byte *const pc1m=buffer; /* place to modify pc1 into */ byte *const pcr=pc1m+56; /* place to rotate pc1 into */ byte *const ks=pcr+56; REGISTER int i,j,l; int m; for (j=0; j<56; j++) { /* convert pc1 to bits of key */ l=pc1[j]-1; /* integer bit location */ m = l & 07; /* find bit */ pc1m[j]=(key[l>>3] & /* find which key byte l is in */ bytebit[m]) /* and which bit of that byte */ ? 1 : 0; /* and store 1-bit result */ } for (i=0; i<16; i++) { /* key chunk for each iteration */ std::memset(ks,0,8); /* Clear key schedule */ for (j=0; j<56; j++) /* rotate pc1 the right amount */ pcr[j] = pc1m[(l=j+totrot[i])<(j<28? 28 : 56) ? l: l-28]; /* rotate left and right halves independently */ for (j=0; j<48; j++){ /* select bits individually */ /* check bit that goes to ks[j] */ if (pcr[pc2[j]-1]){ /* mask it in if it's there */ l= j % 6; ks[j/6] |= bytebit[l] >> 2; } } /* Now convert to odd/even interleaved form for use in F */ k[2*i] = ((word32)ks[0] << 24) | ((word32)ks[2] << 16) | ((word32)ks[4] << 8) | ((word32)ks[6]); k[2*i+1] = ((word32)ks[1] << 24) | ((word32)ks[3] << 16) | ((word32)ks[5] << 8) | ((word32)ks[7]); } if (dir==DECRYPTION) // reverse key schedule order for (i=0; i<16; i+=2) { std::swap(k[i], k[32-2-i]); std::swap(k[i+1], k[32-1-i]); } } void RawDES::RawProcessBlock(word32 &l_, word32 &r_) const { word32 l = l_, r = r_; const word32 *kptr=k; for (unsigned i=0; i<8; i++) { word32 work = rotrConstant<4>(r) ^ kptr[4 * i + 0]; l ^= Spbox[6][(work) & 0x3f] ^ Spbox[4][(work >> 8) & 0x3f] ^ Spbox[2][(work >> 16) & 0x3f] ^ Spbox[0][(work >> 24) & 0x3f]; work = r ^ kptr[4*i+1]; l ^= Spbox[7][(work) & 0x3f] ^ Spbox[5][(work >> 8) & 0x3f] ^ Spbox[3][(work >> 16) & 0x3f] ^ Spbox[1][(work >> 24) & 0x3f]; work = rotrConstant<4>(l) ^ kptr[4 * i + 2]; r ^= Spbox[6][(work) & 0x3f] ^ Spbox[4][(work >> 8) & 0x3f] ^ Spbox[2][(work >> 16) & 0x3f] ^ Spbox[0][(work >> 24) & 0x3f]; work = l ^ kptr[4*i+3]; r ^= Spbox[7][(work) & 0x3f] ^ Spbox[5][(work >> 8) & 0x3f] ^ Spbox[3][(work >> 16) & 0x3f] ^ Spbox[1][(work >> 24) & 0x3f]; } l_ = l; r_ = r; } void DES_EDE2::Base::UncheckedSetKey(const byte *userKey, unsigned int length, const NameValuePairs &) { AssertValidKeyLength(length); m_des1.RawSetKey(GetCipherDirection(), userKey); m_des2.RawSetKey(ReverseCipherDir(GetCipherDirection()), userKey+8); } void DES_EDE2::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word32 l,r; Block::Get(inBlock)(l)(r); IPERM(l,r); m_des1.RawProcessBlock(l, r); m_des2.RawProcessBlock(r, l); m_des1.RawProcessBlock(l, r); FPERM(l,r); Block::Put(xorBlock, outBlock)(r)(l); } void DES_EDE3::Base::UncheckedSetKey(const byte *userKey, unsigned int length, const NameValuePairs &) { AssertValidKeyLength(length); m_des1.RawSetKey(GetCipherDirection(), userKey + (IsForwardTransformation() ? 0 : 16)); m_des2.RawSetKey(ReverseCipherDir(GetCipherDirection()), userKey + 8); m_des3.RawSetKey(GetCipherDirection(), userKey + (IsForwardTransformation() ? 16 : 0)); } void DES_EDE3::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word32 l,r; Block::Get(inBlock)(l)(r); IPERM(l,r); m_des1.RawProcessBlock(l, r); m_des2.RawProcessBlock(r, l); m_des3.RawProcessBlock(l, r); FPERM(l,r); Block::Put(xorBlock, outBlock)(r)(l); } #endif // #ifndef CRYPTOPP_IMPORTS static inline bool CheckParity(byte b) { unsigned int a = b ^ (b >> 4); return ((a ^ (a>>1) ^ (a>>2) ^ (a>>3)) & 1) == 1; } bool DES::CheckKeyParityBits(const byte *key) { for (unsigned int i=0; i<8; i++) if (!CheckParity(key[i])) return false; return true; } void DES::CorrectKeyParityBits(byte *key) { for (unsigned int i=0; i<8; i++) if (!CheckParity(key[i])) key[i] ^= 1; } // Encrypt or decrypt a block of data in ECB mode void DES::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { word32 l,r; Block::Get(inBlock)(l)(r); IPERM(l,r); RawProcessBlock(l, r); FPERM(l,r); Block::Put(xorBlock, outBlock)(r)(l); } void DES_XEX3::Base::UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &) { AssertValidKeyLength(length); if (!m_des.get()) m_des.reset(new DES::Encryption); std::memcpy(m_x1, key + (IsForwardTransformation() ? 0 : 16), BLOCKSIZE); m_des->RawSetKey(GetCipherDirection(), key + 8); std::memcpy(m_x3, key + (IsForwardTransformation() ? 16 : 0), BLOCKSIZE); } void DES_XEX3::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const { xorbuf(outBlock, inBlock, m_x1, BLOCKSIZE); m_des->ProcessAndXorBlock(outBlock, xorBlock, outBlock); xorbuf(outBlock, m_x3, BLOCKSIZE); } NAMESPACE_END