// cryptlib.cpp - originally written and placed in the public domain by Wei Dai #include "pch.h" #include "config.h" #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4127 4189 4459) #endif #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE # pragma GCC diagnostic ignored "-Wunused-value" # pragma GCC diagnostic ignored "-Wunused-variable" # pragma GCC diagnostic ignored "-Wunused-parameter" #endif #ifndef CRYPTOPP_IMPORTS #include "cryptlib.h" #include "filters.h" #include "algparam.h" #include "fips140.h" #include "argnames.h" #include "fltrimpl.h" #include "osrng.h" #include "secblock.h" #include "smartptr.h" #include "stdcpp.h" #include "misc.h" NAMESPACE_BEGIN(CryptoPP) CRYPTOPP_COMPILE_ASSERT(SIZE_MAX > 0); CRYPTOPP_COMPILE_ASSERT(sizeof(byte) == 1); CRYPTOPP_COMPILE_ASSERT(sizeof(word16) == 2); CRYPTOPP_COMPILE_ASSERT(sizeof(word32) == 4); CRYPTOPP_COMPILE_ASSERT(sizeof(word64) == 8); #ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE CRYPTOPP_COMPILE_ASSERT(sizeof(dword) == 2*sizeof(word)); #endif BufferedTransformation & TheBitBucket() { static BitBucket bitBucket; return bitBucket; } Algorithm::Algorithm(bool checkSelfTestStatus) { if (checkSelfTestStatus && FIPS_140_2_ComplianceEnabled()) { if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_NOT_DONE && !PowerUpSelfTestInProgressOnThisThread()) throw SelfTestFailure("Cryptographic algorithms are disabled before the power-up self tests are performed."); if (GetPowerUpSelfTestStatus() == POWER_UP_SELF_TEST_FAILED) throw SelfTestFailure("Cryptographic algorithms are disabled after a power-up self test failed."); } } void SimpleKeyingInterface::SetKey(const byte *key, size_t length, const NameValuePairs ¶ms) { this->ThrowIfInvalidKeyLength(length); this->UncheckedSetKey(key, static_cast(length), params); } void SimpleKeyingInterface::SetKeyWithRounds(const byte *key, size_t length, int rounds) { SetKey(key, length, MakeParameters(Name::Rounds(), rounds)); } void SimpleKeyingInterface::SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength) { SetKey(key, length, MakeParameters(Name::IV(), ConstByteArrayParameter(iv, ivLength))); } void SimpleKeyingInterface::ThrowIfInvalidKeyLength(size_t length) { if (!IsValidKeyLength(length)) throw InvalidKeyLength(GetAlgorithm().AlgorithmName(), length); } void SimpleKeyingInterface::ThrowIfResynchronizable() { if (IsResynchronizable()) throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object requires an IV"); } void SimpleKeyingInterface::ThrowIfInvalidIV(const byte *iv) { if (!iv && IVRequirement() == UNPREDICTABLE_RANDOM_IV) throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": this object cannot use a null IV"); } size_t SimpleKeyingInterface::ThrowIfInvalidIVLength(int length) { size_t size = 0; if (length < 0) size = static_cast(IVSize()); else if ((size_t)length < MinIVLength()) throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(length) + " is less than the minimum of " + IntToString(MinIVLength())); else if ((size_t)length > MaxIVLength()) throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": IV length " + IntToString(length) + " exceeds the maximum of " + IntToString(MaxIVLength())); else size = static_cast(length); return size; } const byte * SimpleKeyingInterface::GetIVAndThrowIfInvalid(const NameValuePairs ¶ms, size_t &size) { ConstByteArrayParameter ivWithLength; const byte *iv = NULLPTR; bool found = false; try {found = params.GetValue(Name::IV(), ivWithLength);} catch (const NameValuePairs::ValueTypeMismatch &) {} if (found) { iv = ivWithLength.begin(); ThrowIfInvalidIV(iv); size = ThrowIfInvalidIVLength(static_cast(ivWithLength.size())); } else if (params.GetValue(Name::IV(), iv)) { ThrowIfInvalidIV(iv); size = static_cast(IVSize()); } else { ThrowIfResynchronizable(); size = 0; } return iv; } void SimpleKeyingInterface::GetNextIV(RandomNumberGenerator &rng, byte *iv) { rng.GenerateBlock(iv, IVSize()); } size_t BlockTransformation::AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const { CRYPTOPP_ASSERT(inBlocks); CRYPTOPP_ASSERT(outBlocks); CRYPTOPP_ASSERT(length); const unsigned int blockSize = BlockSize(); size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize; size_t xorIncrement = xorBlocks ? blockSize : 0; size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize; if (flags & BT_ReverseDirection) { inBlocks = PtrAdd(inBlocks, length - blockSize); xorBlocks = PtrAdd(xorBlocks, length - blockSize); outBlocks = PtrAdd(outBlocks, length - blockSize); inIncrement = 0-inIncrement; xorIncrement = 0-xorIncrement; outIncrement = 0-outIncrement; } // Coverity finding. const bool xorFlag = xorBlocks && (flags & BT_XorInput); while (length >= blockSize) { if (xorFlag) { // xorBlocks non-NULL and with BT_XorInput. xorbuf(outBlocks, xorBlocks, inBlocks, blockSize); ProcessBlock(outBlocks); } else { // xorBlocks may be non-NULL and without BT_XorInput. ProcessAndXorBlock(inBlocks, xorBlocks, outBlocks); } if (flags & BT_InBlockIsCounter) const_cast(inBlocks)[blockSize-1]++; inBlocks = PtrAdd(inBlocks, inIncrement); outBlocks = PtrAdd(outBlocks, outIncrement); xorBlocks = PtrAdd(xorBlocks, xorIncrement); length -= blockSize; } return length; } unsigned int BlockTransformation::OptimalDataAlignment() const { return GetAlignmentOf(); } unsigned int StreamTransformation::OptimalDataAlignment() const { return GetAlignmentOf(); } unsigned int HashTransformation::OptimalDataAlignment() const { return GetAlignmentOf(); } #if 0 void StreamTransformation::ProcessLastBlock(byte *outString, const byte *inString, size_t length) { CRYPTOPP_ASSERT(MinLastBlockSize() == 0); // this function should be overridden otherwise if (length == MandatoryBlockSize()) ProcessData(outString, inString, length); else if (length != 0) throw NotImplemented(AlgorithmName() + ": this object doesn't support a special last block"); } #endif size_t StreamTransformation::ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength) { // this function should be overridden otherwise CRYPTOPP_ASSERT(MinLastBlockSize() == 0); if (inLength == MandatoryBlockSize()) { outLength = inLength; // squash unused warning ProcessData(outString, inString, inLength); } else if (inLength != 0) throw NotImplemented(AlgorithmName() + ": this object doesn't support a special last block"); return outLength; } void AuthenticatedSymmetricCipher::SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength) { if (headerLength > MaxHeaderLength()) throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": header length " + IntToString(headerLength) + " exceeds the maximum of " + IntToString(MaxHeaderLength())); if (messageLength > MaxMessageLength()) throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": message length " + IntToString(messageLength) + " exceeds the maximum of " + IntToString(MaxMessageLength())); if (footerLength > MaxFooterLength()) throw InvalidArgument(GetAlgorithm().AlgorithmName() + ": footer length " + IntToString(footerLength) + " exceeds the maximum of " + IntToString(MaxFooterLength())); UncheckedSpecifyDataLengths(headerLength, messageLength, footerLength); } void AuthenticatedSymmetricCipher::EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength) { Resynchronize(iv, ivLength); SpecifyDataLengths(headerLength, messageLength); Update(header, headerLength); ProcessString(ciphertext, message, messageLength); TruncatedFinal(mac, macSize); } bool AuthenticatedSymmetricCipher::DecryptAndVerify(byte *message, const byte *mac, size_t macLength, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength) { Resynchronize(iv, ivLength); SpecifyDataLengths(headerLength, ciphertextLength); Update(header, headerLength); ProcessString(message, ciphertext, ciphertextLength); return TruncatedVerify(mac, macLength); } std::string AuthenticatedSymmetricCipher::AlgorithmName() const { // Squash C4505 on Visual Studio 2008 and friends return "Unknown"; } unsigned int RandomNumberGenerator::GenerateBit() { return GenerateByte() & 1; } byte RandomNumberGenerator::GenerateByte() { byte b; GenerateBlock(&b, 1); return b; } word32 RandomNumberGenerator::GenerateWord32(word32 min, word32 max) { const word32 range = max-min; const unsigned int maxBits = BitPrecision(range); word32 value; do { GenerateBlock((byte *)&value, sizeof(value)); value = Crop(value, maxBits); } while (value > range); return value+min; } // Stack recursion below... GenerateIntoBufferedTransformation calls GenerateBlock, // and GenerateBlock calls GenerateIntoBufferedTransformation. Ad infinitum. Also // see http://github.com/weidai11/cryptopp/issues/38. // // According to Wei, RandomNumberGenerator is an interface, and it should not // be instantiable. Its now spilt milk, and we are going to CRYPTOPP_ASSERT it in Debug // builds to alert the programmer and throw in Release builds. Developers have // a reference implementation in case its needed. If a programmer // unintentionally lands here, then they should ensure use of a // RandomNumberGenerator pointer or reference so polymorphism can provide the // proper runtime dispatching. void RandomNumberGenerator::GenerateBlock(byte *output, size_t size) { CRYPTOPP_UNUSED(output), CRYPTOPP_UNUSED(size); ArraySink s(output, size); GenerateIntoBufferedTransformation(s, DEFAULT_CHANNEL, size); } void RandomNumberGenerator::DiscardBytes(size_t n) { GenerateIntoBufferedTransformation(TheBitBucket(), DEFAULT_CHANNEL, n); } void RandomNumberGenerator::GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length) { FixedSizeSecBlock buffer; while (length) { size_t len = UnsignedMin(buffer.size(), length); GenerateBlock(buffer, len); (void)target.ChannelPut(channel, buffer, len); length -= len; } } size_t KeyDerivationFunction::MinDerivedLength() const { return 0; } size_t KeyDerivationFunction::MaxDerivedLength() const { return static_cast(-1); } void KeyDerivationFunction::ThrowIfInvalidDerivedLength(size_t length) const { if (!IsValidDerivedLength(length)) throw InvalidDerivedLength(GetAlgorithm().AlgorithmName(), length); } void KeyDerivationFunction::SetParameters(const NameValuePairs& params) { CRYPTOPP_UNUSED(params); } /// \brief Random Number Generator that does not produce random numbers /// \details ClassNullRNG can be used for functions that require a RandomNumberGenerator /// but don't actually use it. The class throws NotImplemented when a generation function is called. /// \sa NullRNG() class ClassNullRNG : public RandomNumberGenerator { public: /// \brief The name of the generator /// \returns the string \a NullRNGs std::string AlgorithmName() const {return "NullRNG";} #if defined(CRYPTOPP_DOXYGEN_PROCESSING) /// \brief An implementation that throws NotImplemented byte GenerateByte () {} /// \brief An implementation that throws NotImplemented unsigned int GenerateBit () {} /// \brief An implementation that throws NotImplemented word32 GenerateWord32 (word32 min, word32 max) {} #endif /// \brief An implementation that throws NotImplemented void GenerateBlock(byte *output, size_t size) { CRYPTOPP_UNUSED(output); CRYPTOPP_UNUSED(size); throw NotImplemented("NullRNG: NullRNG should only be passed to functions that don't need to generate random bytes"); } #if defined(CRYPTOPP_DOXYGEN_PROCESSING) /// \brief An implementation that throws NotImplemented void GenerateIntoBufferedTransformation (BufferedTransformation &target, const std::string &channel, lword length) {} /// \brief An implementation that throws NotImplemented void IncorporateEntropy (const byte *input, size_t length) {} /// \brief An implementation that returns \p false bool CanIncorporateEntropy () const {} /// \brief An implementation that does nothing void DiscardBytes (size_t n) {} /// \brief An implementation that does nothing void Shuffle (IT begin, IT end) {} private: Clonable* Clone () const { return NULLPTR; } #endif }; RandomNumberGenerator & NullRNG() { static ClassNullRNG s_nullRNG; return s_nullRNG; } bool HashTransformation::TruncatedVerify(const byte *digest, size_t digestLength) { // Allocate at least 1 for calculated to avoid triggering diagnostics ThrowIfInvalidTruncatedSize(digestLength); SecByteBlock calculated(digestLength ? digestLength : 1); TruncatedFinal(calculated, digestLength); return VerifyBufsEqual(calculated, digest, digestLength); } void HashTransformation::ThrowIfInvalidTruncatedSize(size_t size) const { if (size > DigestSize()) throw InvalidArgument("HashTransformation: can't truncate a " + IntToString(DigestSize()) + " byte digest to " + IntToString(size) + " bytes"); } unsigned int BufferedTransformation::GetMaxWaitObjectCount() const { const BufferedTransformation *t = AttachedTransformation(); return t ? t->GetMaxWaitObjectCount() : 0; } void BufferedTransformation::GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack) { BufferedTransformation *t = AttachedTransformation(); if (t) t->GetWaitObjects(container, callStack); // reduce clutter by not adding to stack here } void BufferedTransformation::Initialize(const NameValuePairs ¶meters, int propagation) { CRYPTOPP_UNUSED(propagation); CRYPTOPP_ASSERT(!AttachedTransformation()); IsolatedInitialize(parameters); } bool BufferedTransformation::Flush(bool hardFlush, int propagation, bool blocking) { CRYPTOPP_UNUSED(propagation); CRYPTOPP_ASSERT(!AttachedTransformation()); return IsolatedFlush(hardFlush, blocking); } bool BufferedTransformation::MessageSeriesEnd(int propagation, bool blocking) { CRYPTOPP_UNUSED(propagation); CRYPTOPP_ASSERT(!AttachedTransformation()); return IsolatedMessageSeriesEnd(blocking); } byte * BufferedTransformation::ChannelCreatePutSpace(const std::string &channel, size_t &size) { byte* space = NULLPTR; if (channel.empty()) space = CreatePutSpace(size); else throw NoChannelSupport(AlgorithmName()); return space; } size_t BufferedTransformation::ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking) { size_t size = 0; if (channel.empty()) size = Put2(inString, length, messageEnd, blocking); else throw NoChannelSupport(AlgorithmName()); return size; } size_t BufferedTransformation::ChannelPutModifiable2(const std::string &channel, byte *inString, size_t length, int messageEnd, bool blocking) { size_t size = 0; if (channel.empty()) size = PutModifiable2(inString, length, messageEnd, blocking); else size = ChannelPut2(channel, inString, length, messageEnd, blocking); return size; } bool BufferedTransformation::ChannelFlush(const std::string &channel, bool hardFlush, int propagation, bool blocking) { bool result = 0; if (channel.empty()) result = Flush(hardFlush, propagation, blocking); else throw NoChannelSupport(AlgorithmName()); return result; } bool BufferedTransformation::ChannelMessageSeriesEnd(const std::string &channel, int propagation, bool blocking) { bool result = false; if (channel.empty()) result = MessageSeriesEnd(propagation, blocking); else throw NoChannelSupport(AlgorithmName()); return result; } lword BufferedTransformation::MaxRetrievable() const { lword size = 0; if (AttachedTransformation()) size = AttachedTransformation()->MaxRetrievable(); else size = CopyTo(TheBitBucket()); return size; } bool BufferedTransformation::AnyRetrievable() const { bool result = false; if (AttachedTransformation()) result = AttachedTransformation()->AnyRetrievable(); else { byte b; result = Peek(b) != 0; } return result; } size_t BufferedTransformation::Get(byte &outByte) { size_t size = 0; if (AttachedTransformation()) size = AttachedTransformation()->Get(outByte); else size = Get(&outByte, 1); return size; } size_t BufferedTransformation::Get(byte *outString, size_t getMax) { size_t size = 0; if (AttachedTransformation()) size = AttachedTransformation()->Get(outString, getMax); else { ArraySink arraySink(outString, getMax); size = (size_t)TransferTo(arraySink, getMax); } return size; } size_t BufferedTransformation::Peek(byte &outByte) const { size_t size = 0; if (AttachedTransformation()) size = AttachedTransformation()->Peek(outByte); else size = Peek(&outByte, 1); return size; } size_t BufferedTransformation::Peek(byte *outString, size_t peekMax) const { size_t size = 0; if (AttachedTransformation()) size = AttachedTransformation()->Peek(outString, peekMax); else { ArraySink arraySink(outString, peekMax); size = (size_t)CopyTo(arraySink, peekMax); } return size; } lword BufferedTransformation::Skip(lword skipMax) { lword size = 0; if (AttachedTransformation()) size = AttachedTransformation()->Skip(skipMax); else size = TransferTo(TheBitBucket(), skipMax); return size; } lword BufferedTransformation::TotalBytesRetrievable() const { lword size = 0; if (AttachedTransformation()) size = AttachedTransformation()->TotalBytesRetrievable(); else size = MaxRetrievable(); return size; } unsigned int BufferedTransformation::NumberOfMessages() const { unsigned int size = 0; if (AttachedTransformation()) size = AttachedTransformation()->NumberOfMessages(); else size = CopyMessagesTo(TheBitBucket()); return size; } bool BufferedTransformation::AnyMessages() const { bool result = false; if (AttachedTransformation()) result = AttachedTransformation()->AnyMessages(); else result = NumberOfMessages() != 0; return result; } bool BufferedTransformation::GetNextMessage() { bool result = false; if (AttachedTransformation()) result = AttachedTransformation()->GetNextMessage(); else { CRYPTOPP_ASSERT(!AnyMessages()); } return result; } unsigned int BufferedTransformation::SkipMessages(unsigned int count) { unsigned int size = 0; if (AttachedTransformation()) size = AttachedTransformation()->SkipMessages(count); else size = TransferMessagesTo(TheBitBucket(), count); return size; } size_t BufferedTransformation::TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel, bool blocking) { if (AttachedTransformation()) return AttachedTransformation()->TransferMessagesTo2(target, messageCount, channel, blocking); else { unsigned int maxMessages = messageCount; for (messageCount=0; messageCount < maxMessages && AnyMessages(); messageCount++) { size_t blockedBytes; lword transferredBytes; while (AnyRetrievable()) { transferredBytes = LWORD_MAX; blockedBytes = TransferTo2(target, transferredBytes, channel, blocking); if (blockedBytes > 0) return blockedBytes; } if (target.ChannelMessageEnd(channel, GetAutoSignalPropagation(), blocking)) return 1; bool result = GetNextMessage(); CRYPTOPP_UNUSED(result); CRYPTOPP_ASSERT(result); } return 0; } } unsigned int BufferedTransformation::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const { unsigned int size = 0; if (AttachedTransformation()) size = AttachedTransformation()->CopyMessagesTo(target, count, channel); return size; } void BufferedTransformation::SkipAll() { if (AttachedTransformation()) AttachedTransformation()->SkipAll(); else { while (SkipMessages()) {} while (Skip()) {} } } size_t BufferedTransformation::TransferAllTo2(BufferedTransformation &target, const std::string &channel, bool blocking) { if (AttachedTransformation()) return AttachedTransformation()->TransferAllTo2(target, channel, blocking); else { CRYPTOPP_ASSERT(!NumberOfMessageSeries()); unsigned int messageCount; do { messageCount = UINT_MAX; size_t blockedBytes = TransferMessagesTo2(target, messageCount, channel, blocking); if (blockedBytes) return blockedBytes; } while (messageCount != 0); lword byteCount; do { byteCount = ULONG_MAX; size_t blockedBytes = TransferTo2(target, byteCount, channel, blocking); if (blockedBytes) return blockedBytes; } while (byteCount != 0); return 0; } } void BufferedTransformation::CopyAllTo(BufferedTransformation &target, const std::string &channel) const { if (AttachedTransformation()) AttachedTransformation()->CopyAllTo(target, channel); else { CRYPTOPP_ASSERT(!NumberOfMessageSeries()); while (CopyMessagesTo(target, UINT_MAX, channel)) {} } } void BufferedTransformation::SetRetrievalChannel(const std::string &channel) { if (AttachedTransformation()) AttachedTransformation()->SetRetrievalChannel(channel); } size_t BufferedTransformation::ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order, bool blocking) { PutWord(false, order, m_buf, value); return ChannelPut(channel, m_buf, 2, blocking); } size_t BufferedTransformation::ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order, bool blocking) { PutWord(false, order, m_buf, value); return ChannelPut(channel, m_buf, 4, blocking); } size_t BufferedTransformation::ChannelPutWord64(const std::string &channel, word64 value, ByteOrder order, bool blocking) { PutWord(false, order, m_buf, value); return ChannelPut(channel, m_buf, 8, blocking); } size_t BufferedTransformation::PutWord16(word16 value, ByteOrder order, bool blocking) { return ChannelPutWord16(DEFAULT_CHANNEL, value, order, blocking); } size_t BufferedTransformation::PutWord32(word32 value, ByteOrder order, bool blocking) { return ChannelPutWord32(DEFAULT_CHANNEL, value, order, blocking); } size_t BufferedTransformation::PutWord64(word64 value, ByteOrder order, bool blocking) { return ChannelPutWord64(DEFAULT_CHANNEL, value, order, blocking); } size_t BufferedTransformation::PeekWord16(word16 &value, ByteOrder order) const { byte buf[2] = {0, 0}; size_t len = Peek(buf, 2); if (order == BIG_ENDIAN_ORDER) value = ((word16)buf[0] << 8) | (word16)buf[1]; else value = ((word16)buf[1] << 8) | (word16)buf[0]; return len; } size_t BufferedTransformation::PeekWord32(word32 &value, ByteOrder order) const { byte buf[4] = {0, 0, 0, 0}; size_t len = Peek(buf, 4); if (order == BIG_ENDIAN_ORDER) value = ((word32)buf[0] << 24) | ((word32)buf[1] << 16) | ((word32)buf[2] << 8) | (word32)buf[3]; else value = ((word32)buf[3] << 24) | ((word32)buf[2] << 16) | ((word32)buf[1] << 8) | (word32)buf[0]; return len; } size_t BufferedTransformation::PeekWord64(word64 &value, ByteOrder order) const { byte buf[8] = {0, 0, 0, 0, 0, 0, 0, 0}; size_t len = Peek(buf, 8); if (order == BIG_ENDIAN_ORDER) value = ((word64)buf[0] << 56) | ((word64)buf[1] << 48) | ((word64)buf[2] << 40) | ((word64)buf[3] << 32) | ((word64)buf[4] << 24) | ((word64)buf[5] << 16) | ((word64)buf[6] << 8) | (word64)buf[7]; else value = ((word64)buf[7] << 56) | ((word64)buf[6] << 48) | ((word64)buf[5] << 40) | ((word64)buf[4] << 32) | ((word64)buf[3] << 24) | ((word64)buf[2] << 16) | ((word64)buf[1] << 8) | (word64)buf[0]; return len; } size_t BufferedTransformation::GetWord16(word16 &value, ByteOrder order) { return (size_t)Skip(PeekWord16(value, order)); } size_t BufferedTransformation::GetWord32(word32 &value, ByteOrder order) { return (size_t)Skip(PeekWord32(value, order)); } size_t BufferedTransformation::GetWord64(word64 &value, ByteOrder order) { return (size_t)Skip(PeekWord64(value, order)); } void BufferedTransformation::Attach(BufferedTransformation *newAttachment) { if (AttachedTransformation() && AttachedTransformation()->Attachable()) AttachedTransformation()->Attach(newAttachment); else Detach(newAttachment); } void GeneratableCryptoMaterial::GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize) { GenerateRandom(rng, MakeParameters("KeySize", (int)keySize)); } class PK_DefaultEncryptionFilter : public Unflushable { public: PK_DefaultEncryptionFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment, const NameValuePairs ¶meters) : m_rng(rng), m_encryptor(encryptor), m_parameters(parameters) { Detach(attachment); } size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) { FILTER_BEGIN; m_plaintextQueue.Put(inString, length); if (messageEnd) { { size_t plaintextLength; if (!SafeConvert(m_plaintextQueue.CurrentSize(), plaintextLength)) throw InvalidArgument("PK_DefaultEncryptionFilter: plaintext too long"); size_t ciphertextLength = m_encryptor.CiphertextLength(plaintextLength); SecByteBlock plaintext(plaintextLength); m_plaintextQueue.Get(plaintext, plaintextLength); m_ciphertext.resize(ciphertextLength); m_encryptor.Encrypt(m_rng, plaintext, plaintextLength, m_ciphertext, m_parameters); } FILTER_OUTPUT(1, m_ciphertext, m_ciphertext.size(), messageEnd); } FILTER_END_NO_MESSAGE_END; } RandomNumberGenerator &m_rng; const PK_Encryptor &m_encryptor; const NameValuePairs &m_parameters; ByteQueue m_plaintextQueue; SecByteBlock m_ciphertext; }; BufferedTransformation * PK_Encryptor::CreateEncryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs ¶meters) const { return new PK_DefaultEncryptionFilter(rng, *this, attachment, parameters); } class PK_DefaultDecryptionFilter : public Unflushable { public: PK_DefaultDecryptionFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment, const NameValuePairs ¶meters) : m_rng(rng), m_decryptor(decryptor), m_parameters(parameters) { Detach(attachment); } size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) { FILTER_BEGIN; m_ciphertextQueue.Put(inString, length); if (messageEnd) { { size_t ciphertextLength; if (!SafeConvert(m_ciphertextQueue.CurrentSize(), ciphertextLength)) throw InvalidArgument("PK_DefaultDecryptionFilter: ciphertext too long"); size_t maxPlaintextLength = m_decryptor.MaxPlaintextLength(ciphertextLength); SecByteBlock ciphertext(ciphertextLength); m_ciphertextQueue.Get(ciphertext, ciphertextLength); m_plaintext.resize(maxPlaintextLength); m_result = m_decryptor.Decrypt(m_rng, ciphertext, ciphertextLength, m_plaintext, m_parameters); if (!m_result.isValidCoding) throw InvalidCiphertext(m_decryptor.AlgorithmName() + ": invalid ciphertext"); } FILTER_OUTPUT(1, m_plaintext, m_result.messageLength, messageEnd); } FILTER_END_NO_MESSAGE_END; } RandomNumberGenerator &m_rng; const PK_Decryptor &m_decryptor; const NameValuePairs &m_parameters; ByteQueue m_ciphertextQueue; SecByteBlock m_plaintext; DecodingResult m_result; }; BufferedTransformation * PK_Decryptor::CreateDecryptionFilter(RandomNumberGenerator &rng, BufferedTransformation *attachment, const NameValuePairs ¶meters) const { return new PK_DefaultDecryptionFilter(rng, *this, attachment, parameters); } size_t PK_Signer::Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const { member_ptr m(messageAccumulator); return SignAndRestart(rng, *m, signature, false); } size_t PK_Signer::SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const { member_ptr m(NewSignatureAccumulator(rng)); m->Update(message, messageLen); return SignAndRestart(rng, *m, signature, false); } size_t PK_Signer::SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength, const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const { member_ptr m(NewSignatureAccumulator(rng)); InputRecoverableMessage(*m, recoverableMessage, recoverableMessageLength); m->Update(nonrecoverableMessage, nonrecoverableMessageLength); return SignAndRestart(rng, *m, signature, false); } bool PK_Verifier::Verify(PK_MessageAccumulator *messageAccumulator) const { member_ptr m(messageAccumulator); return VerifyAndRestart(*m); } bool PK_Verifier::VerifyMessage(const byte *message, size_t messageLen, const byte *signature, size_t signatureLen) const { member_ptr m(NewVerificationAccumulator()); InputSignature(*m, signature, signatureLen); m->Update(message, messageLen); return VerifyAndRestart(*m); } DecodingResult PK_Verifier::Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const { member_ptr m(messageAccumulator); return RecoverAndRestart(recoveredMessage, *m); } DecodingResult PK_Verifier::RecoverMessage(byte *recoveredMessage, const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, const byte *signature, size_t signatureLength) const { member_ptr m(NewVerificationAccumulator()); InputSignature(*m, signature, signatureLength); m->Update(nonrecoverableMessage, nonrecoverableMessageLength); return RecoverAndRestart(recoveredMessage, *m); } void SimpleKeyAgreementDomain::GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const { GeneratePrivateKey(rng, privateKey); GeneratePublicKey(rng, privateKey, publicKey); } void AuthenticatedKeyAgreementDomain::GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const { GenerateStaticPrivateKey(rng, privateKey); GenerateStaticPublicKey(rng, privateKey, publicKey); } void AuthenticatedKeyAgreementDomain::GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const { GenerateEphemeralPrivateKey(rng, privateKey); GenerateEphemeralPublicKey(rng, privateKey, publicKey); } // Allow a distro or packager to override the build-time version // http://github.com/weidai11/cryptopp/issues/371 #ifndef CRYPTOPP_BUILD_VERSION # define CRYPTOPP_BUILD_VERSION CRYPTOPP_VERSION #endif int LibraryVersion(CRYPTOPP_NOINLINE_DOTDOTDOT) { return CRYPTOPP_BUILD_VERSION; } class NullNameValuePairs : public NameValuePairs { public: NullNameValuePairs() {} // Clang complains a default ctor must be avilable bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const {CRYPTOPP_UNUSED(name); CRYPTOPP_UNUSED(valueType); CRYPTOPP_UNUSED(pValue); return false;} }; #if HAVE_GCC_INIT_PRIORITY const std::string DEFAULT_CHANNEL __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 25))) = ""; const std::string AAD_CHANNEL __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 26))) = "AAD"; const NullNameValuePairs s_nullNameValuePairs __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 27))); const NameValuePairs& g_nullNameValuePairs = s_nullNameValuePairs; #elif HAVE_MSC_INIT_PRIORITY #pragma warning(disable: 4073) #pragma init_seg(lib) const std::string DEFAULT_CHANNEL = ""; const std::string AAD_CHANNEL = "AAD"; const NullNameValuePairs s_nullNameValuePairs; const NameValuePairs& g_nullNameValuePairs = s_nullNameValuePairs; #pragma warning(default: 4073) #elif HAVE_XLC_INIT_PRIORITY #pragma priority(260) const std::string DEFAULT_CHANNEL = ""; const std::string AAD_CHANNEL = "AAD"; const NullNameValuePairs s_nullNameValuePairs; const NameValuePairs& g_nullNameValuePairs = s_nullNameValuePairs; #else const std::string DEFAULT_CHANNEL = ""; const std::string AAD_CHANNEL = "AAD"; const simple_ptr s_pNullNameValuePairs(new NullNameValuePairs); const NameValuePairs &g_nullNameValuePairs = *s_pNullNameValuePairs.m_p; #endif NAMESPACE_END // CryptoPP #endif // CRYPTOPP_IMPORTS