// blake2_simd.cpp - written and placed in the public domain by // Samuel Neves, Jeffrey Walton, Uri Blumenthal // and Marcel Raad. // // This source file uses intrinsics to gain access to ARMv7a/ARMv8a // NEON, Power7 and SSE4.1 instructions. A separate source file is // needed because additional CXXFLAGS are required to enable the // appropriate instructions sets in some build configurations. // The BLAKE2b and BLAKE2s numbers are consistent with the BLAKE2 team's // numbers. However, we have an Altivec implementation of BLAKE2s, // and a POWER8 implementation of BLAKE2b (BLAKE2 team is missing them). // Altivec code is about 2x faster than C++ when using GCC 5.0 or // above. The POWER8 code is about 2.5x faster than C++ when using GCC 5.0 // or above. If you use GCC 4.0 (PowerMac) or GCC 4.8 (GCC Compile Farm) // then the PowerPC code will be slower than C++. Be sure to use GCC 5.0 // or above for PowerPC builds or disable Altivec for BLAKE2b and BLAKE2s // if using the old compilers. #include "pch.h" #include "config.h" #include "misc.h" #include "blake2.h" // Uncomment for benchmarking C++ against SSE2 or NEON. // Do so in both blake2.cpp and blake2_simd.cpp. // #undef CRYPTOPP_SSE41_AVAILABLE // #undef CRYPTOPP_ARM_NEON_AVAILABLE // #undef CRYPTOPP_ALTIVEC_AVAILABLE // Disable NEON/ASIMD for Cortex-A53 and A57. The shifts are too slow and C/C++ is about // 3 cpb faster than NEON/ASIMD. Also see http://github.com/weidai11/cryptopp/issues/367. #if (defined(__aarch32__) || defined(__aarch64__)) && defined(CRYPTOPP_SLOW_ARMV8_SHIFT) # undef CRYPTOPP_ARM_NEON_AVAILABLE #endif // BLAKE2s bug on AIX 7.1 (POWER7) with XLC 12.01 // https://github.com/weidai11/cryptopp/issues/743 #if defined(__xlC__) && (__xlC__ < 0x0d01) # define CRYPTOPP_DISABLE_ALTIVEC 1 # undef CRYPTOPP_POWER7_AVAILABLE # undef CRYPTOPP_ALTIVEC_AVAILABLE #endif #if defined(__XOP__) # if defined(CRYPTOPP_GCC_COMPATIBLE) # include # endif # include #endif // XOP #if (CRYPTOPP_SSE41_AVAILABLE) # include # include # include #endif #if (CRYPTOPP_ARM_NEON_HEADER) # include #endif #if (CRYPTOPP_ARM_ACLE_HEADER) # include # include #endif #if (CRYPTOPP_ALTIVEC_AVAILABLE) # include "ppc_simd.h" #endif #if defined(CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE) /* Ignore "warning: vec_lvsl is deprecated..." */ # pragma GCC diagnostic ignored "-Wdeprecated" #endif // Squash MS LNK4221 and libtool warnings extern const char BLAKE2S_SIMD_FNAME[] = __FILE__; NAMESPACE_BEGIN(CryptoPP) // Exported by blake2.cpp extern const word32 BLAKE2S_IV[8]; extern const word64 BLAKE2B_IV[8]; #if CRYPTOPP_SSE41_AVAILABLE #define LOADU(p) _mm_loadu_si128((const __m128i *)(const void*)(p)) #define STOREU(p,r) _mm_storeu_si128((__m128i *)(void*)(p), r) #define TOF(reg) _mm_castsi128_ps((reg)) #define TOI(reg) _mm_castps_si128((reg)) void BLAKE2_Compress32_SSE4(const byte* input, BLAKE2s_State& state) { #define BLAKE2S_LOAD_MSG_0_1(buf) \ buf = TOI(_mm_shuffle_ps(TOF(m0), TOF(m1), _MM_SHUFFLE(2,0,2,0))); #define BLAKE2S_LOAD_MSG_0_2(buf) \ buf = TOI(_mm_shuffle_ps(TOF(m0), TOF(m1), _MM_SHUFFLE(3,1,3,1))); #define BLAKE2S_LOAD_MSG_0_3(buf) \ t0 = _mm_shuffle_epi32(m2, _MM_SHUFFLE(3,2,0,1)); \ t1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(0,1,3,2)); \ buf = _mm_blend_epi16(t0, t1, 0xC3); #define BLAKE2S_LOAD_MSG_0_4(buf) \ t0 = _mm_blend_epi16(t0, t1, 0x3C); \ buf = _mm_shuffle_epi32(t0, _MM_SHUFFLE(2,3,0,1)); #define BLAKE2S_LOAD_MSG_1_1(buf) \ t0 = _mm_blend_epi16(m1, m2, 0x0C); \ t1 = _mm_slli_si128(m3, 4); \ t2 = _mm_blend_epi16(t0, t1, 0xF0); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,0,3)); #define BLAKE2S_LOAD_MSG_1_2(buf) \ t0 = _mm_shuffle_epi32(m2,_MM_SHUFFLE(0,0,2,0)); \ t1 = _mm_blend_epi16(m1,m3,0xC0); \ t2 = _mm_blend_epi16(t0, t1, 0xF0); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,3,0,1)); #define BLAKE2S_LOAD_MSG_1_3(buf) \ t0 = _mm_slli_si128(m1, 4); \ t1 = _mm_blend_epi16(m2, t0, 0x30); \ t2 = _mm_blend_epi16(m0, t1, 0xF0); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,0,1,2)); #define BLAKE2S_LOAD_MSG_1_4(buf) \ t0 = _mm_unpackhi_epi32(m0,m1); \ t1 = _mm_slli_si128(m3, 4); \ t2 = _mm_blend_epi16(t0, t1, 0x0C); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,0,1,2)); #define BLAKE2S_LOAD_MSG_2_1(buf) \ t0 = _mm_unpackhi_epi32(m2,m3); \ t1 = _mm_blend_epi16(m3,m1,0x0C); \ t2 = _mm_blend_epi16(t0, t1, 0x0F); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,1,0,2)); #define BLAKE2S_LOAD_MSG_2_2(buf) \ t0 = _mm_unpacklo_epi32(m2,m0); \ t1 = _mm_blend_epi16(t0, m0, 0xF0); \ t2 = _mm_slli_si128(m3, 8); \ buf = _mm_blend_epi16(t1, t2, 0xC0); #define BLAKE2S_LOAD_MSG_2_3(buf) \ t0 = _mm_blend_epi16(m0, m2, 0x3C); \ t1 = _mm_srli_si128(m1, 12); \ t2 = _mm_blend_epi16(t0,t1,0x03); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(0,3,2,1)); #define BLAKE2S_LOAD_MSG_2_4(buf) \ t0 = _mm_slli_si128(m3, 4); \ t1 = _mm_blend_epi16(m0, m1, 0x33); \ t2 = _mm_blend_epi16(t1, t0, 0xC0); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(1,2,3,0)); #define BLAKE2S_LOAD_MSG_3_1(buf) \ t0 = _mm_unpackhi_epi32(m0,m1); \ t1 = _mm_unpackhi_epi32(t0, m2); \ t2 = _mm_blend_epi16(t1, m3, 0x0C); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,1,0,2)); #define BLAKE2S_LOAD_MSG_3_2(buf) \ t0 = _mm_slli_si128(m2, 8); \ t1 = _mm_blend_epi16(m3,m0,0x0C); \ t2 = _mm_blend_epi16(t1, t0, 0xC0); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,0,1,3)); #define BLAKE2S_LOAD_MSG_3_3(buf) \ t0 = _mm_blend_epi16(m0,m1,0x0F); \ t1 = _mm_blend_epi16(t0, m3, 0xC0); \ buf = _mm_shuffle_epi32(t1, _MM_SHUFFLE(0,1,2,3)); #define BLAKE2S_LOAD_MSG_3_4(buf) \ t0 = _mm_alignr_epi8(m0, m1, 4); \ buf = _mm_blend_epi16(t0, m2, 0x33); #define BLAKE2S_LOAD_MSG_4_1(buf) \ t0 = _mm_unpacklo_epi64(m1,m2); \ t1 = _mm_unpackhi_epi64(m0,m2); \ t2 = _mm_blend_epi16(t0,t1,0x33); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,0,1,3)); #define BLAKE2S_LOAD_MSG_4_2(buf) \ t0 = _mm_unpackhi_epi64(m1,m3); \ t1 = _mm_unpacklo_epi64(m0,m1); \ buf = _mm_blend_epi16(t0,t1,0x33); #define BLAKE2S_LOAD_MSG_4_3(buf) \ t0 = _mm_unpackhi_epi64(m3,m1); \ t1 = _mm_unpackhi_epi64(m2,m0); \ t2 = _mm_blend_epi16(t1,t0,0x33); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,0,3)); #define BLAKE2S_LOAD_MSG_4_4(buf) \ t0 = _mm_blend_epi16(m0,m2,0x03); \ t1 = _mm_slli_si128(t0, 8); \ t2 = _mm_blend_epi16(t1,m3,0x0F); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,0,3,1)); #define BLAKE2S_LOAD_MSG_5_1(buf) \ t0 = _mm_unpackhi_epi32(m0,m1); \ t1 = _mm_unpacklo_epi32(m0,m2); \ buf = _mm_unpacklo_epi64(t0,t1); #define BLAKE2S_LOAD_MSG_5_2(buf) \ t0 = _mm_srli_si128(m2, 4); \ t1 = _mm_blend_epi16(m0,m3,0x03); \ buf = _mm_blend_epi16(t1,t0,0x3C); #define BLAKE2S_LOAD_MSG_5_3(buf) \ t0 = _mm_blend_epi16(m1,m0,0x0C); \ t1 = _mm_srli_si128(m3, 4); \ t2 = _mm_blend_epi16(t0,t1,0x30); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,3,0,1)); #define BLAKE2S_LOAD_MSG_5_4(buf) \ t0 = _mm_unpacklo_epi64(m2,m1); \ t1 = _mm_shuffle_epi32(m3, _MM_SHUFFLE(2,0,1,0)); \ t2 = _mm_srli_si128(t0, 4); \ buf = _mm_blend_epi16(t1,t2,0x33); #define BLAKE2S_LOAD_MSG_6_1(buf) \ t0 = _mm_slli_si128(m1, 12); \ t1 = _mm_blend_epi16(m0,m3,0x33); \ buf = _mm_blend_epi16(t1,t0,0xC0); #define BLAKE2S_LOAD_MSG_6_2(buf) \ t0 = _mm_blend_epi16(m3,m2,0x30); \ t1 = _mm_srli_si128(m1, 4); \ t2 = _mm_blend_epi16(t0,t1,0x03); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,3,0)); #define BLAKE2S_LOAD_MSG_6_3(buf) \ t0 = _mm_unpacklo_epi64(m0,m2); \ t1 = _mm_srli_si128(m1, 4); \ t2 = _mm_blend_epi16(t0,t1,0x0C); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(3,1,0,2)); #define BLAKE2S_LOAD_MSG_6_4(buf) \ t0 = _mm_unpackhi_epi32(m1,m2); \ t1 = _mm_unpackhi_epi64(m0,t0); \ buf = _mm_shuffle_epi32(t1, _MM_SHUFFLE(0,1,2,3)); #define BLAKE2S_LOAD_MSG_7_1(buf) \ t0 = _mm_unpackhi_epi32(m0,m1); \ t1 = _mm_blend_epi16(t0,m3,0x0F); \ buf = _mm_shuffle_epi32(t1,_MM_SHUFFLE(2,0,3,1)); #define BLAKE2S_LOAD_MSG_7_2(buf) \ t0 = _mm_blend_epi16(m2,m3,0x30); \ t1 = _mm_srli_si128(m0,4); \ t2 = _mm_blend_epi16(t0,t1,0x03); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(1,0,2,3)); #define BLAKE2S_LOAD_MSG_7_3(buf) \ t0 = _mm_unpackhi_epi64(m0,m3); \ t1 = _mm_unpacklo_epi64(m1,m2); \ t2 = _mm_blend_epi16(t0,t1,0x3C); \ buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(2,3,1,0)); #define BLAKE2S_LOAD_MSG_7_4(buf) \ t0 = _mm_unpacklo_epi32(m0,m1); \ t1 = _mm_unpackhi_epi32(m1,m2); \ t2 = _mm_unpacklo_epi64(t0,t1); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2,1,0,3)); #define BLAKE2S_LOAD_MSG_8_1(buf) \ t0 = _mm_unpackhi_epi32(m1,m3); \ t1 = _mm_unpacklo_epi64(t0,m0); \ t2 = _mm_blend_epi16(t1,m2,0xC0); \ buf = _mm_shufflehi_epi16(t2,_MM_SHUFFLE(1,0,3,2)); #define BLAKE2S_LOAD_MSG_8_2(buf) \ t0 = _mm_unpackhi_epi32(m0,m3); \ t1 = _mm_blend_epi16(m2,t0,0xF0); \ buf = _mm_shuffle_epi32(t1,_MM_SHUFFLE(0,2,1,3)); #define BLAKE2S_LOAD_MSG_8_3(buf) \ t0 = _mm_unpacklo_epi64(m0,m3); \ t1 = _mm_srli_si128(m2,8); \ t2 = _mm_blend_epi16(t0,t1,0x03); \ buf = _mm_shuffle_epi32(t2, _MM_SHUFFLE(1,3,2,0)); #define BLAKE2S_LOAD_MSG_8_4(buf) \ t0 = _mm_blend_epi16(m1,m0,0x30); \ buf = _mm_shuffle_epi32(t0,_MM_SHUFFLE(0,3,2,1)); #define BLAKE2S_LOAD_MSG_9_1(buf) \ t0 = _mm_blend_epi16(m0,m2,0x03); \ t1 = _mm_blend_epi16(m1,m2,0x30); \ t2 = _mm_blend_epi16(t1,t0,0x0F); \ buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(1,3,0,2)); #define BLAKE2S_LOAD_MSG_9_2(buf) \ t0 = _mm_slli_si128(m0,4); \ t1 = _mm_blend_epi16(m1,t0,0xC0); \ buf = _mm_shuffle_epi32(t1,_MM_SHUFFLE(1,2,0,3)); #define BLAKE2S_LOAD_MSG_9_3(buf) \ t0 = _mm_unpackhi_epi32(m0,m3); \ t1 = _mm_unpacklo_epi32(m2,m3); \ t2 = _mm_unpackhi_epi64(t0,t1); \ buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(0,2,1,3)); #define BLAKE2S_LOAD_MSG_9_4(buf) \ t0 = _mm_blend_epi16(m3,m2,0xC0); \ t1 = _mm_unpacklo_epi32(m0,m3); \ t2 = _mm_blend_epi16(t0,t1,0x0F); \ buf = _mm_shuffle_epi32(t2,_MM_SHUFFLE(1,2,3,0)); #ifdef __XOP__ # define MM_ROTI_EPI32(r, c) \ _mm_roti_epi32(r, c) #else # define MM_ROTI_EPI32(r, c) ( \ (8==-(c)) ? _mm_shuffle_epi8(r,r8) \ : (16==-(c)) ? _mm_shuffle_epi8(r,r16) \ : _mm_xor_si128(_mm_srli_epi32((r), -(c)), \ _mm_slli_epi32((r), 32-(-(c))))) #endif #define BLAKE2S_G1(row1,row2,row3,row4,buf) \ row1 = _mm_add_epi32( _mm_add_epi32( row1, buf), row2 ); \ row4 = _mm_xor_si128( row4, row1 ); \ row4 = MM_ROTI_EPI32(row4, -16); \ row3 = _mm_add_epi32( row3, row4 ); \ row2 = _mm_xor_si128( row2, row3 ); \ row2 = MM_ROTI_EPI32(row2, -12); #define BLAKE2S_G2(row1,row2,row3,row4,buf) \ row1 = _mm_add_epi32( _mm_add_epi32( row1, buf), row2 ); \ row4 = _mm_xor_si128( row4, row1 ); \ row4 = MM_ROTI_EPI32(row4, -8); \ row3 = _mm_add_epi32( row3, row4 ); \ row2 = _mm_xor_si128( row2, row3 ); \ row2 = MM_ROTI_EPI32(row2, -7); #define DIAGONALIZE(row1,row2,row3,row4) \ row1 = _mm_shuffle_epi32( row1, _MM_SHUFFLE(2,1,0,3) ); \ row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(1,0,3,2) ); \ row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(0,3,2,1) ); #define UNDIAGONALIZE(row1,row2,row3,row4) \ row1 = _mm_shuffle_epi32( row1, _MM_SHUFFLE(0,3,2,1) ); \ row4 = _mm_shuffle_epi32( row4, _MM_SHUFFLE(1,0,3,2) ); \ row3 = _mm_shuffle_epi32( row3, _MM_SHUFFLE(2,1,0,3) ); #define BLAKE2S_ROUND(r) \ BLAKE2S_LOAD_MSG_ ##r ##_1(buf1); \ BLAKE2S_G1(row1,row2,row3,row4,buf1); \ BLAKE2S_LOAD_MSG_ ##r ##_2(buf2); \ BLAKE2S_G2(row1,row2,row3,row4,buf2); \ DIAGONALIZE(row1,row2,row3,row4); \ BLAKE2S_LOAD_MSG_ ##r ##_3(buf3); \ BLAKE2S_G1(row1,row2,row3,row4,buf3); \ BLAKE2S_LOAD_MSG_ ##r ##_4(buf4); \ BLAKE2S_G2(row1,row2,row3,row4,buf4); \ UNDIAGONALIZE(row1,row2,row3,row4); __m128i row1, row2, row3, row4; __m128i buf1, buf2, buf3, buf4; __m128i t0, t1, t2, ff0, ff1; const __m128i r8 = _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1); const __m128i r16 = _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2); const __m128i m0 = LOADU(input + 00); const __m128i m1 = LOADU(input + 16); const __m128i m2 = LOADU(input + 32); const __m128i m3 = LOADU(input + 48); row1 = ff0 = LOADU(state.h()+0); row2 = ff1 = LOADU(state.h()+4); row3 = LOADU(BLAKE2S_IV+0); row4 = _mm_xor_si128(LOADU(BLAKE2S_IV+4), LOADU(state.t()+0)); BLAKE2S_ROUND(0); BLAKE2S_ROUND(1); BLAKE2S_ROUND(2); BLAKE2S_ROUND(3); BLAKE2S_ROUND(4); BLAKE2S_ROUND(5); BLAKE2S_ROUND(6); BLAKE2S_ROUND(7); BLAKE2S_ROUND(8); BLAKE2S_ROUND(9); STOREU(state.h()+0, _mm_xor_si128(ff0, _mm_xor_si128(row1, row3))); STOREU(state.h()+4, _mm_xor_si128(ff1, _mm_xor_si128(row2, row4))); } #endif // CRYPTOPP_SSE41_AVAILABLE #if CRYPTOPP_ARM_NEON_AVAILABLE void BLAKE2_Compress32_NEON(const byte* input, BLAKE2s_State& state) { #define BLAKE2S_LOAD_MSG_0_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m0), vget_high_u32(m0)).val[0]; \ t1 = vzip_u32(vget_low_u32(m1), vget_high_u32(m1)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_0_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m0), vget_high_u32(m0)).val[1]; \ t1 = vzip_u32(vget_low_u32(m1), vget_high_u32(m1)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_0_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m2), vget_high_u32(m2)).val[0]; \ t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m3)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_0_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m2), vget_high_u32(m2)).val[1]; \ t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m3)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_1_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m3), vget_low_u32(m1)).val[0]; \ t1 = vzip_u32(vget_low_u32(m2), vget_low_u32(m3)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_1_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m2), vget_low_u32(m2)).val[0]; \ t1 = vext_u32(vget_high_u32(m3), vget_high_u32(m1), 1); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_1_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vext_u32(vget_low_u32(m0), vget_low_u32(m0), 1); \ t1 = vzip_u32(vget_high_u32(m2), vget_low_u32(m1)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_1_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m3), vget_high_u32(m0)).val[0]; \ t1 = vzip_u32(vget_high_u32(m1), vget_high_u32(m0)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_2_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vext_u32(vget_high_u32(m2), vget_low_u32(m3), 1); \ t1 = vzip_u32(vget_low_u32(m1), vget_high_u32(m3)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_2_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m2), vget_low_u32(m0)).val[0]; \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_low_u32(m3)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_2_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m2), vget_high_u32(m0)); \ t1 = vzip_u32(vget_high_u32(m1), vget_low_u32(m2)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_2_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m3), vget_high_u32(m1)).val[0]; \ t1 = vext_u32(vget_low_u32(m0), vget_low_u32(m1), 1); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_3_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m0)).val[1]; \ t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m2)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_3_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m2), vget_low_u32(m0)).val[1]; \ t1 = vzip_u32(vget_low_u32(m3), vget_high_u32(m3)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_3_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_low_u32(m1)); \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_high_u32(m3)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_3_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m2)).val[0]; \ t1 = vzip_u32(vget_low_u32(m0), vget_low_u32(m2)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_4_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m2), vget_low_u32(m1)).val[1]; \ t1 = vzip_u32((vget_high_u32(m0)), vget_high_u32(m2)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_4_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m0), vget_high_u32(m1)); \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_high_u32(m3)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_4_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m3), vget_high_u32(m2)); \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m1), vget_high_u32(m0)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_4_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vext_u32(vget_low_u32(m0), vget_low_u32(m3), 1); \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m2), vget_low_u32(m3)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_5_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32((vget_high_u32(m0)), vget_high_u32(m1)).val[0]; \ t1 = vzip_u32(vget_low_u32(m0), vget_low_u32(m2)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_5_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m3), vget_high_u32(m2)).val[0]; \ t1 = vzip_u32(vget_high_u32(m2), vget_high_u32(m0)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_5_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_high_u32(m1)); \ t1 = vzip_u32(vget_high_u32(m3), vget_low_u32(m0)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_5_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m3), vget_low_u32(m1)).val[1]; \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m3), vget_low_u32(m2)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_6_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m3), vget_low_u32(m0)); \ t1 = vzip_u32(vget_high_u32(m3), vget_low_u32(m1)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_6_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m1), vget_high_u32(m3)).val[1]; \ t1 = vext_u32(vget_low_u32(m3), vget_high_u32(m2), 1); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_6_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m0), vget_high_u32(m1)).val[0]; \ t1 = vext_u32(vget_low_u32(m2), vget_low_u32(m2), 1); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_6_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m0)).val[1]; \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_high_u32(m2)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_7_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m3), vget_high_u32(m1)).val[1]; \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m3), vget_high_u32(m0)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_7_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vext_u32(vget_high_u32(m2), vget_high_u32(m3), 1); \ t1 = vzip_u32(vget_low_u32(m0), vget_low_u32(m2)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_7_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m1), vget_high_u32(m3)).val[1]; \ t1 = vzip_u32(vget_low_u32(m2), vget_high_u32(m0)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_7_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_low_u32(m0), vget_low_u32(m1)).val[0]; \ t1 = vzip_u32(vget_high_u32(m1), vget_high_u32(m2)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_8_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m1), vget_high_u32(m3)).val[0]; \ t1 = vext_u32(vget_high_u32(m2), vget_low_u32(m0), 1); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_8_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m3), vget_low_u32(m2)).val[1]; \ t1 = vext_u32(vget_high_u32(m0), vget_low_u32(m2), 1); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_8_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m3), vget_low_u32(m3)); \ t1 = vext_u32(vget_low_u32(m0), vget_high_u32(m2), 1); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_8_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m0), vget_high_u32(m1)); \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_low_u32(m1), vget_low_u32(m1)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_9_1(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m2), vget_low_u32(m2)).val[0]; \ t1 = vzip_u32(vget_high_u32(m1), vget_low_u32(m0)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_9_2(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32((vget_high_u32(m0)), vget_low_u32(m1)).val[0]; \ t1 = vbsl_u32(vcreate_u32(0xFFFFFFFF), vget_high_u32(m1), vget_low_u32(m1)); \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_9_3(buf) \ do { uint32x2_t t0, t1; \ t0 = vzip_u32(vget_high_u32(m3), vget_low_u32(m2)).val[1]; \ t1 = vzip_u32((vget_high_u32(m0)), vget_low_u32(m3)).val[1]; \ buf = vcombine_u32(t0, t1); } while(0) #define BLAKE2S_LOAD_MSG_9_4(buf) \ do { uint32x2_t t0, t1; \ t0 = vext_u32(vget_high_u32(m2), vget_high_u32(m3), 1); \ t1 = vzip_u32(vget_low_u32(m3), vget_low_u32(m0)).val[0]; \ buf = vcombine_u32(t0, t1); } while(0) #define vrorq_n_u32_16(x) vreinterpretq_u32_u16(vrev32q_u16(vreinterpretq_u16_u32(x))) #define vrorq_n_u32_8(x) vsriq_n_u32(vshlq_n_u32((x), 24), (x), 8) #define vrorq_n_u32(x, c) vsriq_n_u32(vshlq_n_u32((x), 32-(c)), (x), (c)) #define BLAKE2S_G1(row1,row2,row3,row4,buf) \ do { \ row1 = vaddq_u32(vaddq_u32(row1, buf), row2); row4 = veorq_u32(row4, row1); \ row4 = vrorq_n_u32_16(row4); row3 = vaddq_u32(row3, row4); \ row2 = veorq_u32(row2, row3); row2 = vrorq_n_u32(row2, 12); \ } while(0) #define BLAKE2S_G2(row1,row2,row3,row4,buf) \ do { \ row1 = vaddq_u32(vaddq_u32(row1, buf), row2); row4 = veorq_u32(row4, row1); \ row4 = vrorq_n_u32_8(row4); row3 = vaddq_u32(row3, row4); \ row2 = veorq_u32(row2, row3); row2 = vrorq_n_u32(row2, 7); \ } while(0) #define BLAKE2S_DIAGONALIZE(row1,row2,row3,row4) \ do { \ row4 = vextq_u32(row4, row4, 3); row3 = vextq_u32(row3, row3, 2); row2 = vextq_u32(row2, row2, 1); \ } while(0) #define BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4) \ do { \ row4 = vextq_u32(row4, row4, 1); \ row3 = vextq_u32(row3, row3, 2); \ row2 = vextq_u32(row2, row2, 3); \ } while(0) #define BLAKE2S_ROUND(r) \ do { \ uint32x4_t buf1, buf2, buf3, buf4; \ BLAKE2S_LOAD_MSG_ ##r ##_1(buf1); \ BLAKE2S_G1(row1,row2,row3,row4,buf1); \ BLAKE2S_LOAD_MSG_ ##r ##_2(buf2); \ BLAKE2S_G2(row1,row2,row3,row4,buf2); \ BLAKE2S_DIAGONALIZE(row1,row2,row3,row4); \ BLAKE2S_LOAD_MSG_ ##r ##_3(buf3); \ BLAKE2S_G1(row1,row2,row3,row4,buf3); \ BLAKE2S_LOAD_MSG_ ##r ##_4(buf4); \ BLAKE2S_G2(row1,row2,row3,row4,buf4); \ BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4); \ } while(0) const uint32x4_t m0 = vreinterpretq_u32_u8(vld1q_u8(input + 00)); const uint32x4_t m1 = vreinterpretq_u32_u8(vld1q_u8(input + 16)); const uint32x4_t m2 = vreinterpretq_u32_u8(vld1q_u8(input + 32)); const uint32x4_t m3 = vreinterpretq_u32_u8(vld1q_u8(input + 48)); uint32x4_t row1, row2, row3, row4; const uint32x4_t f0 = row1 = vld1q_u32(state.h()+0); const uint32x4_t f1 = row2 = vld1q_u32(state.h()+4); row3 = vld1q_u32(BLAKE2S_IV+0); row4 = veorq_u32(vld1q_u32(BLAKE2S_IV+4), vld1q_u32(state.t()+0)); BLAKE2S_ROUND(0); BLAKE2S_ROUND(1); BLAKE2S_ROUND(2); BLAKE2S_ROUND(3); BLAKE2S_ROUND(4); BLAKE2S_ROUND(5); BLAKE2S_ROUND(6); BLAKE2S_ROUND(7); BLAKE2S_ROUND(8); BLAKE2S_ROUND(9); vst1q_u32(state.h()+0, veorq_u32(f0, veorq_u32(row1, row3))); vst1q_u32(state.h()+4, veorq_u32(f1, veorq_u32(row2, row4))); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE #if (CRYPTOPP_ALTIVEC_AVAILABLE) template inline uint32x4_p VecLoad32(const T* p) { return VecLoad(p); } template inline uint32x4_p VecLoad32LE(const T* p, const uint8x16_p le_mask) { #if defined(CRYPTOPP_BIG_ENDIAN) const uint32x4_p v = VecLoad(p); return VecPermute(v, v, le_mask); #else CRYPTOPP_UNUSED(le_mask); return VecLoad(p); #endif } template inline void VecStore32(T* p, const uint32x4_p x) { VecStore(x, p); } template inline void VecStore32LE(T* p, const uint32x4_p x, const uint8x16_p le_mask) { #if defined(CRYPTOPP_BIG_ENDIAN) const uint32x4_p v = VecPermute(x, x, le_mask); VecStore(v, p); #else CRYPTOPP_UNUSED(le_mask); VecStore(x, p); #endif } template inline uint32x4_p VectorSet32(const uint32x4_p a, const uint32x4_p b) { // Re-index. I'd like to use something like Z=Y*4 and then // VecShiftLeftOctet(b) but it crashes early Red Hat // GCC compilers. enum {X=E1&3, Y=E2&3}; // Don't care element const unsigned int DC = 31; // Element 0 combinations if (X == 0 && Y == 0) { const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, b, mask); } else if (X == 0 && Y == 1) { const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<4>(b), mask); } else if (X == 0 && Y == 2) { const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<8>(b), mask); } else if (X == 0 && Y == 3) { const uint8x16_p mask = {0,1,2,3, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<12>(b), mask); } // Element 1 combinations else if (X == 1 && Y == 0) { const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, b, mask); } else if (X == 1 && Y == 1) { const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<4>(b), mask); } else if (X == 1 && Y == 2) { const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<8>(b), mask); } else if (X == 1 && Y == 3) { const uint8x16_p mask = {4,5,6,7, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<12>(b), mask); } // Element 2 combinations else if (X == 2 && Y == 0) { const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, b, mask); } else if (X == 2 && Y == 1) { const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<4>(b), mask); } else if (X == 2 && Y == 2) { const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<8>(b), mask); } else if (X == 2 && Y == 3) { const uint8x16_p mask = {8,9,10,11, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<12>(b), mask); } // Element 3 combinations else if (X == 3 && Y == 0) { const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, b, mask); } else if (X == 3 && Y == 1) { const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<4>(b), mask); } else if (X == 3 && Y == 2) { const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<8>(b), mask); } else if (X == 3 && Y == 3) { const uint8x16_p mask = {12,13,14,15, 16,17,18,19, DC,DC,DC,DC, DC,DC,DC,DC}; return VecPermute(a, VecShiftLeftOctet<12>(b), mask); } // Quiet IBM XLC warning return VecXor(a, a); } template inline uint32x4_p VectorSet32(const uint32x4_p a, const uint32x4_p b, const uint32x4_p c, const uint32x4_p d) { // Re-index enum {W=E1&3, X=E2&3, Y=E3&3, Z=E4&3}; const uint32x4_p t0 = VectorSet32(a, b); const uint32x4_p t1 = VectorSet32(c, d); // PowerPC follows SSE2's implementation, and this is _mm_set_epi32. const uint8x16_p mask = {20,21,22,23, 16,17,18,19, 4,5,6,7, 0,1,2,3}; return VecPermute(t0, t1, mask); } template<> uint32x4_p VectorSet32<2,0,2,0>(const uint32x4_p a, const uint32x4_p b, const uint32x4_p c, const uint32x4_p d) { // a=b, c=d, mask is {2,0, 2,0} CRYPTOPP_UNUSED(b); CRYPTOPP_UNUSED(d); const uint8x16_p mask = {16,17,18,19, 24,25,26,27, 0,1,2,3, 8,9,10,11}; return VecPermute(a, c, mask); } template<> uint32x4_p VectorSet32<3,1,3,1>(const uint32x4_p a, const uint32x4_p b, const uint32x4_p c, const uint32x4_p d) { // a=b, c=d, mask is {3,1, 3,1} CRYPTOPP_UNUSED(b); CRYPTOPP_UNUSED(d); const uint8x16_p mask = {20,21,22,23, 28,29,30,31, 4,5,6,7, 12,13,14,15}; return VecPermute(a, c, mask); } void BLAKE2_Compress32_ALTIVEC(const byte* input, BLAKE2s_State& state) { # define m1 m0 # define m2 m0 # define m3 m0 # define m5 m4 # define m6 m4 # define m7 m4 # define m9 m8 # define m10 m8 # define m11 m8 # define m13 m12 # define m14 m12 # define m15 m12 // #define BLAKE2S_LOAD_MSG_0_1(buf) buf = VectorSet32<6,4,2,0>(m6,m4,m2,m0); #define BLAKE2S_LOAD_MSG_0_1(buf) buf = VectorSet32<2,0,2,0>(m6,m4,m2,m0); // #define BLAKE2S_LOAD_MSG_0_2(buf) buf = VectorSet32<7,5,3,1>(m7,m5,m3,m1); #define BLAKE2S_LOAD_MSG_0_2(buf) buf = VectorSet32<3,1,3,1>(m7,m5,m3,m1); // #define BLAKE2S_LOAD_MSG_0_3(buf) buf = VectorSet32<14,12,10,8>(m14,m12,m10,m8); #define BLAKE2S_LOAD_MSG_0_3(buf) buf = VectorSet32<2,0,2,0>(m14,m12,m10,m8); // #define BLAKE2S_LOAD_MSG_0_4(buf) buf = VectorSet32<15,13,11,9>(m15,m13,m11,m9); #define BLAKE2S_LOAD_MSG_0_4(buf) buf = VectorSet32<3,1,3,1>(m15,m13,m11,m9); #define BLAKE2S_LOAD_MSG_1_1(buf) buf = VectorSet32<13,9,4,14>(m13,m9,m4,m14); #define BLAKE2S_LOAD_MSG_1_2(buf) buf = VectorSet32<6,15,8,10>(m6,m15,m8,m10) #define BLAKE2S_LOAD_MSG_1_3(buf) buf = VectorSet32<5,11,0,1>(m5,m11,m0,m1) #define BLAKE2S_LOAD_MSG_1_4(buf) buf = VectorSet32<3,7,2,12>(m3,m7,m2,m12) #define BLAKE2S_LOAD_MSG_2_1(buf) buf = VectorSet32<15,5,12,11>(m15,m5,m12,m11) #define BLAKE2S_LOAD_MSG_2_2(buf) buf = VectorSet32<13,2,0,8>(m13,m2,m0,m8) #define BLAKE2S_LOAD_MSG_2_3(buf) buf = VectorSet32<9,7,3,10>(m9,m7,m3,m10) #define BLAKE2S_LOAD_MSG_2_4(buf) buf = VectorSet32<4,1,6,14>(m4,m1,m6,m14) #define BLAKE2S_LOAD_MSG_3_1(buf) buf = VectorSet32<11,13,3,7>(m11,m13,m3,m7) #define BLAKE2S_LOAD_MSG_3_2(buf) buf = VectorSet32<14,12,1,9>(m14,m12,m1,m9) #define BLAKE2S_LOAD_MSG_3_3(buf) buf = VectorSet32<15,4,5,2>(m15,m4,m5,m2) #define BLAKE2S_LOAD_MSG_3_4(buf) buf = VectorSet32<8,0,10,6>(m8,m0,m10,m6) #define BLAKE2S_LOAD_MSG_4_1(buf) buf = VectorSet32<10,2,5,9>(m10,m2,m5,m9) #define BLAKE2S_LOAD_MSG_4_2(buf) buf = VectorSet32<15,4,7,0>(m15,m4,m7,m0) #define BLAKE2S_LOAD_MSG_4_3(buf) buf = VectorSet32<3,6,11,14>(m3,m6,m11,m14) #define BLAKE2S_LOAD_MSG_4_4(buf) buf = VectorSet32<13,8,12,1>(m13,m8,m12,m1) #define BLAKE2S_LOAD_MSG_5_1(buf) buf = VectorSet32<8,0,6,2>(m8,m0,m6,m2) #define BLAKE2S_LOAD_MSG_5_2(buf) buf = VectorSet32<3,11,10,12>(m3,m11,m10,m12) #define BLAKE2S_LOAD_MSG_5_3(buf) buf = VectorSet32<1,15,7,4>(m1,m15,m7,m4) #define BLAKE2S_LOAD_MSG_5_4(buf) buf = VectorSet32<9,14,5,13>(m9,m14,m5,m13) #define BLAKE2S_LOAD_MSG_6_1(buf) buf = VectorSet32<4,14,1,12>(m4,m14,m1,m12) #define BLAKE2S_LOAD_MSG_6_2(buf) buf = VectorSet32<10,13,15,5>(m10,m13,m15,m5) #define BLAKE2S_LOAD_MSG_6_3(buf) buf = VectorSet32<8,9,6,0>(m8,m9,m6,m0) #define BLAKE2S_LOAD_MSG_6_4(buf) buf = VectorSet32<11,2,3,7>(m11,m2,m3,m7) #define BLAKE2S_LOAD_MSG_7_1(buf) buf = VectorSet32<3,12,7,13>(m3,m12,m7,m13) #define BLAKE2S_LOAD_MSG_7_2(buf) buf = VectorSet32<9,1,14,11>(m9,m1,m14,m11) #define BLAKE2S_LOAD_MSG_7_3(buf) buf = VectorSet32<2,8,15,5>(m2,m8,m15,m5) #define BLAKE2S_LOAD_MSG_7_4(buf) buf = VectorSet32<10,6,4,0>(m10,m6,m4,m0) #define BLAKE2S_LOAD_MSG_8_1(buf) buf = VectorSet32<0,11,14,6>(m0,m11,m14,m6) #define BLAKE2S_LOAD_MSG_8_2(buf) buf = VectorSet32<8,3,9,15>(m8,m3,m9,m15) #define BLAKE2S_LOAD_MSG_8_3(buf) buf = VectorSet32<10,1,13,12>(m10,m1,m13,m12) #define BLAKE2S_LOAD_MSG_8_4(buf) buf = VectorSet32<5,4,7,2>(m5,m4,m7,m2) #define BLAKE2S_LOAD_MSG_9_1(buf) buf = VectorSet32<1,7,8,10>(m1,m7,m8,m10) #define BLAKE2S_LOAD_MSG_9_2(buf) buf = VectorSet32<5,6,4,2>(m5,m6,m4,m2) #define BLAKE2S_LOAD_MSG_9_3(buf) buf = VectorSet32<13,3,9,15>(m13,m3,m9,m15) #define BLAKE2S_LOAD_MSG_9_4(buf) buf = VectorSet32<0,12,14,11>(m0,m12,m14,m11) #define vec_ror_16(x) VecRotateRight<16>(x) #define vec_ror_12(x) VecRotateRight<12>(x) #define vec_ror_8(x) VecRotateRight<8>(x) #define vec_ror_7(x) VecRotateRight<7>(x) #define BLAKE2S_G1(row1,row2,row3,row4,buf) \ row1 = VecAdd(VecAdd(row1, buf), row2); \ row4 = VecXor(row4, row1); \ row4 = vec_ror_16(row4); \ row3 = VecAdd(row3, row4); \ row2 = VecXor(row2, row3); \ row2 = vec_ror_12(row2); #define BLAKE2S_G2(row1,row2,row3,row4,buf) \ row1 = VecAdd(VecAdd(row1, buf), row2); \ row4 = VecXor(row4, row1); \ row4 = vec_ror_8(row4); \ row3 = VecAdd(row3, row4); \ row2 = VecXor(row2, row3); \ row2 = vec_ror_7(row2); const uint8x16_p D2103_MASK = {12,13,14,15, 0,1,2,3, 4,5,6,7, 8,9,10,11}; const uint8x16_p D1032_MASK = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7}; const uint8x16_p D0321_MASK = {4,5,6,7, 8,9,10,11, 12,13,14,15, 0,1,2,3}; #define BLAKE2S_DIAGONALIZE(row1,row2,row3,row4) \ row4 = VecPermute(row4, row4, D2103_MASK); \ row3 = VecPermute(row3, row3, D1032_MASK); \ row2 = VecPermute(row2, row2, D0321_MASK); #define BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4) \ row4 = VecPermute(row4, row4, D0321_MASK); \ row3 = VecPermute(row3, row3, D1032_MASK); \ row2 = VecPermute(row2, row2, D2103_MASK); #define BLAKE2S_ROUND(r) \ BLAKE2S_LOAD_MSG_ ##r ##_1(buf1); \ BLAKE2S_G1(row1,row2,row3,row4,buf1); \ BLAKE2S_LOAD_MSG_ ##r ##_2(buf2); \ BLAKE2S_G2(row1,row2,row3,row4,buf2); \ BLAKE2S_DIAGONALIZE(row1,row2,row3,row4); \ BLAKE2S_LOAD_MSG_ ##r ##_3(buf3); \ BLAKE2S_G1(row1,row2,row3,row4,buf3); \ BLAKE2S_LOAD_MSG_ ##r ##_4(buf4); \ BLAKE2S_G2(row1,row2,row3,row4,buf4); \ BLAKE2S_UNDIAGONALIZE(row1,row2,row3,row4); // Possibly unaligned user messages uint32x4_p m0, m4, m8, m12; // Endian conversion mask const uint8x16_p le_mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12}; #if defined(_ARCH_PWR9) // POWER9 provides loads for char's and short's m0 = (uint32x4_p) vec_xl( 0, CONST_V8_CAST( input )); m4 = (uint32x4_p) vec_xl( 16, CONST_V8_CAST( input )); m8 = (uint32x4_p) vec_xl( 32, CONST_V8_CAST( input )); m12 = (uint32x4_p) vec_xl( 48, CONST_V8_CAST( input )); # if defined(CRYPTOPP_BIG_ENDIAN) m0 = vec_perm(m0, m0, le_mask); m4 = vec_perm(m4, m4, le_mask); m8 = vec_perm(m8, m8, le_mask); m12 = vec_perm(m12, m12, le_mask); # endif #else // Altivec only provides 16-byte aligned loads // http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf m0 = (uint32x4_p) vec_ld( 0, CONST_V8_CAST( input )); m4 = (uint32x4_p) vec_ld( 16, CONST_V8_CAST( input )); m8 = (uint32x4_p) vec_ld( 32, CONST_V8_CAST( input )); m12 = (uint32x4_p) vec_ld( 48, CONST_V8_CAST( input )); // Alignment check for load of the message buffer const uintptr_t addr = (uintptr_t)input; if (addr%16 == 0) { // Already aligned. Perform a little-endian swap as required # if defined(CRYPTOPP_BIG_ENDIAN) m0 = vec_perm(m0, m0, le_mask); m4 = vec_perm(m4, m4, le_mask); m8 = vec_perm(m8, m8, le_mask); m12 = vec_perm(m12, m12, le_mask); # endif } else { // Not aligned. Fix vectors and perform a little-endian swap as required // http://mirror.informatimago.com/next/developer.apple.com/ // hardwaredrivers/ve/code_optimization.html uint32x4_p ex; uint8x16_p perm; ex = (uint32x4_p) vec_ld(48+15, CONST_V8_CAST( input )); perm = vec_lvsl(0, CONST_V8_CAST( addr )); # if defined(CRYPTOPP_BIG_ENDIAN) // Combine the vector permute with the little-endian swap perm = vec_perm(perm, perm, le_mask); # endif m0 = vec_perm(m0, m4, perm); m4 = vec_perm(m4, m8, perm); m8 = vec_perm(m8, m12, perm); m12 = vec_perm(m12, ex, perm); } #endif uint32x4_p row1, row2, row3, row4; uint32x4_p buf1, buf2, buf3, buf4; uint32x4_p ff0, ff1; row1 = ff0 = VecLoad32LE(state.h()+0, le_mask); row2 = ff1 = VecLoad32LE(state.h()+4, le_mask); row3 = VecLoad32(BLAKE2S_IV+0); row4 = VecXor(VecLoad32(BLAKE2S_IV+4), VecLoad32(state.t()+0)); BLAKE2S_ROUND(0); BLAKE2S_ROUND(1); BLAKE2S_ROUND(2); BLAKE2S_ROUND(3); BLAKE2S_ROUND(4); BLAKE2S_ROUND(5); BLAKE2S_ROUND(6); BLAKE2S_ROUND(7); BLAKE2S_ROUND(8); BLAKE2S_ROUND(9); VecStore32LE(state.h()+0, VecXor(ff0, VecXor(row1, row3)), le_mask); VecStore32LE(state.h()+4, VecXor(ff1, VecXor(row2, row4)), le_mask); } #endif // CRYPTOPP_ALTIVEC_AVAILABLE NAMESPACE_END