// blake2.cpp - written and placed in the public domain by Jeffrey Walton and Zooko // Wilcox-O'Hearn. Based on Aumasson, Neves, Wilcox-O'Hearn and Winnerlein's // reference BLAKE2 implementation at http://github.com/BLAKE2/BLAKE2. #include "pch.h" #include "config.h" #include "cryptlib.h" #include "argnames.h" #include "algparam.h" #include "blake2.h" #include "cpu.h" // Uncomment for benchmarking C++ against SSE2 or NEON. // Do so in both blake2.cpp and blake2-simd.cpp. // #undef CRYPTOPP_SSE41_AVAILABLE // #undef CRYPTOPP_ARM_NEON_AVAILABLE // Disable NEON/ASIMD for Cortex-A53 and A57. The shifts are too slow and C/C++ is about // 3 cpb faster than NEON/ASIMD. Also see http://github.com/weidai11/cryptopp/issues/367. #if (defined(__aarch32__) || defined(__aarch64__)) && defined(CRYPTOPP_SLOW_ARMV8_SHIFT) # undef CRYPTOPP_ARM_NEON_AVAILABLE #endif ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::word64; using CryptoPP::rotrConstant; template struct BLAKE2_IV { CRYPTOPP_ALIGN_DATA(16) static const W iv[8]; }; template <> const word32 BLAKE2_IV::iv[8] = { 0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL }; template <> const word64 BLAKE2_IV::iv[8] = { W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b), W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1), W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f), W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179) }; CRYPTOPP_ALIGN_DATA(16) const byte BLAKE2S_SIGMA[10][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, }; CRYPTOPP_ALIGN_DATA(16) const byte BLAKE2B_SIGMA[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } }; template inline void BLAKE2B_G(const word64 m[16], word64& a, word64& b, word64& c, word64& d) { a = a + b + m[BLAKE2B_SIGMA[R][2*N+0]]; d = rotrConstant<32>(d ^ a); c = c + d; b = rotrConstant<24>(b ^ c); a = a + b + m[BLAKE2B_SIGMA[R][2*N+1]]; d = rotrConstant<16>(d ^ a); c = c + d; b = rotrConstant<63>(b ^ c); } template inline void BLAKE2B_ROUND(const word64 m[16], word64 v[16]) { BLAKE2B_G(m,v[ 0],v[ 4],v[ 8],v[12]); BLAKE2B_G(m,v[ 1],v[ 5],v[ 9],v[13]); BLAKE2B_G(m,v[ 2],v[ 6],v[10],v[14]); BLAKE2B_G(m,v[ 3],v[ 7],v[11],v[15]); BLAKE2B_G(m,v[ 0],v[ 5],v[10],v[15]); BLAKE2B_G(m,v[ 1],v[ 6],v[11],v[12]); BLAKE2B_G(m,v[ 2],v[ 7],v[ 8],v[13]); BLAKE2B_G(m,v[ 3],v[ 4],v[ 9],v[14]); } template inline void BLAKE2S_G(const word32 m[16], word32& a, word32& b, word32& c, word32& d) { a = a + b + m[BLAKE2S_SIGMA[R][2*N+0]]; d = rotrConstant<16>(d ^ a); c = c + d; b = rotrConstant<12>(b ^ c); a = a + b + m[BLAKE2S_SIGMA[R][2*N+1]]; d = rotrConstant<8>(d ^ a); c = c + d; b = rotrConstant<7>(b ^ c); } template inline void BLAKE2S_ROUND(const word32 m[16], word32 v[]) { BLAKE2S_G(m,v[ 0],v[ 4],v[ 8],v[12]); BLAKE2S_G(m,v[ 1],v[ 5],v[ 9],v[13]); BLAKE2S_G(m,v[ 2],v[ 6],v[10],v[14]); BLAKE2S_G(m,v[ 3],v[ 7],v[11],v[15]); BLAKE2S_G(m,v[ 0],v[ 5],v[10],v[15]); BLAKE2S_G(m,v[ 1],v[ 6],v[11],v[12]); BLAKE2S_G(m,v[ 2],v[ 7],v[ 8],v[13]); BLAKE2S_G(m,v[ 3],v[ 4],v[ 9],v[14]); } ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) void BLAKE2_Compress32_CXX(const byte* input, BLAKE2_State& state); void BLAKE2_Compress64_CXX(const byte* input, BLAKE2_State& state); #if CRYPTOPP_SSE41_AVAILABLE extern void BLAKE2_Compress32_SSE4(const byte* input, BLAKE2_State& state); extern void BLAKE2_Compress64_SSE4(const byte* input, BLAKE2_State& state); #endif #if CRYPTOPP_ARM_NEON_AVAILABLE extern void BLAKE2_Compress32_NEON(const byte* input, BLAKE2_State& state); extern void BLAKE2_Compress64_NEON(const byte* input, BLAKE2_State& state); #endif BLAKE2_ParameterBlock::BLAKE2_ParameterBlock(size_t digestLen, size_t keyLen, const byte* saltStr, size_t saltLen, const byte* personalizationStr, size_t personalizationLen) { // Avoid Coverity finding SIZEOF_MISMATCH/suspicious_sizeof digestLength = (byte)digestLen; keyLength = (byte)keyLen; fanout = depth = 1; nodeDepth = innerLength = 0; memset(leafLength, 0x00, COUNTOF(leafLength)); memset(nodeOffset, 0x00, COUNTOF(nodeOffset)); if (saltStr && saltLen) { memcpy_s(salt, COUNTOF(salt), saltStr, saltLen); const size_t rem = COUNTOF(salt) - saltLen; const size_t off = COUNTOF(salt) - rem; if (rem) memset(salt+off, 0x00, rem); } else { memset(salt, 0x00, COUNTOF(salt)); } if (personalizationStr && personalizationLen) { memcpy_s(personalization, COUNTOF(personalization), personalizationStr, personalizationLen); const size_t rem = COUNTOF(personalization) - personalizationLen; const size_t off = COUNTOF(personalization) - rem; if (rem) memset(personalization+off, 0x00, rem); } else { memset(personalization, 0x00, COUNTOF(personalization)); } } BLAKE2_ParameterBlock::BLAKE2_ParameterBlock(size_t digestLen, size_t keyLen, const byte* saltStr, size_t saltLen, const byte* personalizationStr, size_t personalizationLen) { // Avoid Coverity finding SIZEOF_MISMATCH/suspicious_sizeof digestLength = (byte)digestLen; keyLength = (byte)keyLen; fanout = depth = 1; nodeDepth = innerLength = 0; memset(rfu, 0x00, COUNTOF(rfu)); memset(leafLength, 0x00, COUNTOF(leafLength)); memset(nodeOffset, 0x00, COUNTOF(nodeOffset)); if (saltStr && saltLen) { memcpy_s(salt, COUNTOF(salt), saltStr, saltLen); const size_t rem = COUNTOF(salt) - saltLen; const size_t off = COUNTOF(salt) - rem; if (rem) memset(salt+off, 0x00, rem); } else { memset(salt, 0x00, COUNTOF(salt)); } if (personalizationStr && personalizationLen) { memcpy_s(personalization, COUNTOF(personalization), personalizationStr, personalizationLen); const size_t rem = COUNTOF(personalization) - personalizationLen; const size_t off = COUNTOF(personalization) - rem; if (rem) memset(personalization+off, 0x00, rem); } else { memset(personalization, 0x00, COUNTOF(personalization)); } } template void BLAKE2_Base::UncheckedSetKey(const byte *key, unsigned int length, const CryptoPP::NameValuePairs& params) { if (key && length) { AlignedSecByteBlock temp(BLOCKSIZE); memcpy_s(temp, BLOCKSIZE, key, length); const size_t rem = BLOCKSIZE - length; if (rem) memset(temp+length, 0x00, rem); m_key.swap(temp); } else { m_key.resize(0); } #if defined(__COVERITY__) // Avoid Coverity finding SIZEOF_MISMATCH/suspicious_sizeof ParameterBlock& block = *m_block.data(); memset(m_block.data(), 0x00, sizeof(ParameterBlock)); #else // Set Head bytes; Tail bytes are set below ParameterBlock& block = *m_block.data(); memset(m_block.data(), 0x00, T_64bit ? 32 : 16); #endif block.keyLength = (byte)length; block.digestLength = (byte)params.GetIntValueWithDefault(Name::DigestSize(), DIGESTSIZE); block.fanout = block.depth = 1; ConstByteArrayParameter t; if (params.GetValue(Name::Salt(), t) && t.begin() && t.size()) { memcpy_s(block.salt, COUNTOF(block.salt), t.begin(), t.size()); const size_t rem = COUNTOF(block.salt) - t.size(); const size_t off = COUNTOF(block.salt) - rem; if (rem) memset(block.salt+off, 0x00, rem); } else { memset(block.salt, 0x00, COUNTOF(block.salt)); } if (params.GetValue(Name::Personalization(), t) && t.begin() && t.size()) { memcpy_s(block.personalization, COUNTOF(block.personalization), t.begin(), t.size()); const size_t rem = COUNTOF(block.personalization) - t.size(); const size_t off = COUNTOF(block.personalization) - rem; if (rem) memset(block.personalization+off, 0x00, rem); } else { memset(block.personalization, 0x00, COUNTOF(block.personalization)); } } template BLAKE2_Base::BLAKE2_Base() : m_state(1), m_block(1), m_digestSize(DIGESTSIZE), m_treeMode(false) { UncheckedSetKey(NULLPTR, 0, g_nullNameValuePairs); Restart(); } template BLAKE2_Base::BLAKE2_Base(bool treeMode, unsigned int digestSize) : m_state(1), m_block(1), m_digestSize(digestSize), m_treeMode(treeMode) { CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); UncheckedSetKey(NULLPTR, 0, MakeParameters(Name::DigestSize(), (int)digestSize)(Name::TreeMode(), treeMode, false)); Restart(); } template BLAKE2_Base::BLAKE2_Base(const byte *key, size_t keyLength, const byte* salt, size_t saltLength, const byte* personalization, size_t personalizationLength, bool treeMode, unsigned int digestSize) : m_state(1), m_block(1), m_digestSize(digestSize), m_treeMode(treeMode) { CRYPTOPP_ASSERT(keyLength <= MAX_KEYLENGTH); CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); CRYPTOPP_ASSERT(saltLength <= SALTSIZE); CRYPTOPP_ASSERT(personalizationLength <= PERSONALIZATIONSIZE); UncheckedSetKey(key, static_cast(keyLength), MakeParameters(Name::DigestSize(),(int)digestSize)(Name::TreeMode(),treeMode, false) (Name::Salt(), ConstByteArrayParameter(salt, saltLength))(Name::Personalization(), ConstByteArrayParameter(personalization, personalizationLength))); Restart(); } template void BLAKE2_Base::Restart() { static const W zero[2] = {0,0}; Restart(*m_block.data(), zero); } template void BLAKE2_Base::Restart(const BLAKE2_ParameterBlock& block, const W counter[2]) { // We take a parameter block as a parameter to allow customized state. // Avoid the copy of the parameter block when we are passing our own block. if (&block != m_block.data()) { memcpy_s(m_block.data(), sizeof(ParameterBlock), &block, sizeof(ParameterBlock)); m_block.data()->digestLength = (byte)m_digestSize; m_block.data()->keyLength = (byte)m_key.size(); } State& state = *m_state.data(); state.t[0] = state.t[1] = 0, state.f[0] = state.f[1] = 0, state.length = 0; if (counter != NULLPTR) { state.t[0] = counter[0]; state.t[1] = counter[1]; } const W* iv = BLAKE2_IV::iv; PutBlock put(m_block.data(), &state.h[0]); put(iv[0])(iv[1])(iv[2])(iv[3])(iv[4])(iv[5])(iv[6])(iv[7]); // When BLAKE2 is keyed, the input stream is simply {key||message}. Key it // during Restart to avoid FirstPut and friends. Key size == 0 means no key. if (m_key.size()) Update(m_key, m_key.size()); } template void BLAKE2_Base::Update(const byte *input, size_t length) { State& state = *m_state.data(); if (state.length + length > BLOCKSIZE) { // Complete current block const size_t fill = BLOCKSIZE - state.length; memcpy_s(&state.buffer[state.length], fill, input, fill); IncrementCounter(); Compress(state.buffer); state.length = 0; length -= fill, input += fill; // Compress in-place to avoid copies while (length > BLOCKSIZE) { IncrementCounter(); Compress(input); length -= BLOCKSIZE, input += BLOCKSIZE; } } // Copy tail bytes if (input && length) { CRYPTOPP_ASSERT(length <= BLOCKSIZE - state.length); memcpy_s(&state.buffer[state.length], length, input, length); state.length += static_cast(length); } } template void BLAKE2_Base::TruncatedFinal(byte *hash, size_t size) { this->ThrowIfInvalidTruncatedSize(size); // Set last block unconditionally State& state = *m_state.data(); state.f[0] = static_cast(-1); // Set last node if tree mode if (m_treeMode) state.f[1] = static_cast(-1); // Increment counter for tail bytes only IncrementCounter(state.length); memset(state.buffer + state.length, 0x00, BLOCKSIZE - state.length); Compress(state.buffer); // Copy to caller buffer memcpy_s(hash, size, &state.h[0], size); Restart(); } template void BLAKE2_Base::IncrementCounter(size_t count) { State& state = *m_state.data(); state.t[0] += static_cast(count); state.t[1] += !!(state.t[0] < count); } template <> void BLAKE2_Base::Compress(const byte *input) { #if CRYPTOPP_SSE41_AVAILABLE if(HasSSE41()) { return BLAKE2_Compress64_SSE4(input, *m_state.data()); } #endif #if CRYPTOPP_ARM_NEON_AVAILABLE if(HasNEON()) { return BLAKE2_Compress64_NEON(input, *m_state.data()); } #endif return BLAKE2_Compress64_CXX(input, *m_state.data()); } template <> void BLAKE2_Base::Compress(const byte *input) { #if CRYPTOPP_SSE41_AVAILABLE if(HasSSE41()) { return BLAKE2_Compress32_SSE4(input, *m_state.data()); } #endif #if CRYPTOPP_ARM_NEON_AVAILABLE if(HasNEON()) { return BLAKE2_Compress32_NEON(input, *m_state.data()); } #endif return BLAKE2_Compress32_CXX(input, *m_state.data()); } void BLAKE2_Compress64_CXX(const byte* input, BLAKE2_State& state) { word64 m[16], v[16]; GetBlock get1(input); get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]); GetBlock get2(&state.h[0]); get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]); const word64* iv = BLAKE2_IV::iv; v[ 8] = iv[0]; v[ 9] = iv[1]; v[10] = iv[2]; v[11] = iv[3]; v[12] = state.t[0] ^ iv[4]; v[13] = state.t[1] ^ iv[5]; v[14] = state.f[0] ^ iv[6]; v[15] = state.f[1] ^ iv[7]; BLAKE2B_ROUND<0>(m, v); BLAKE2B_ROUND<1>(m, v); BLAKE2B_ROUND<2>(m, v); BLAKE2B_ROUND<3>(m, v); BLAKE2B_ROUND<4>(m, v); BLAKE2B_ROUND<5>(m, v); BLAKE2B_ROUND<6>(m, v); BLAKE2B_ROUND<7>(m, v); BLAKE2B_ROUND<8>(m, v); BLAKE2B_ROUND<9>(m, v); BLAKE2B_ROUND<10>(m, v); BLAKE2B_ROUND<11>(m, v); for(unsigned int i = 0; i < 8; ++i) state.h[i] = state.h[i] ^ ConditionalByteReverse(LittleEndian::ToEnum(), v[i] ^ v[i + 8]); } void BLAKE2_Compress32_CXX(const byte* input, BLAKE2_State& state) { word32 m[16], v[16]; GetBlock get1(input); get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]); GetBlock get2(&state.h[0]); get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]); const word32* iv = BLAKE2_IV::iv; v[ 8] = iv[0]; v[ 9] = iv[1]; v[10] = iv[2]; v[11] = iv[3]; v[12] = state.t[0] ^ iv[4]; v[13] = state.t[1] ^ iv[5]; v[14] = state.f[0] ^ iv[6]; v[15] = state.f[1] ^ iv[7]; BLAKE2S_ROUND<0>(m, v); BLAKE2S_ROUND<1>(m, v); BLAKE2S_ROUND<2>(m, v); BLAKE2S_ROUND<3>(m, v); BLAKE2S_ROUND<4>(m, v); BLAKE2S_ROUND<5>(m, v); BLAKE2S_ROUND<6>(m, v); BLAKE2S_ROUND<7>(m, v); BLAKE2S_ROUND<8>(m, v); BLAKE2S_ROUND<9>(m, v); for(unsigned int i = 0; i < 8; ++i) state.h[i] = state.h[i] ^ ConditionalByteReverse(LittleEndian::ToEnum(), v[i] ^ v[i + 8]); } template class BLAKE2_Base; template class BLAKE2_Base; NAMESPACE_END