// blake2.cpp - written and placed in the public domain by Jeffrey Walton // and Zooko Wilcox-O'Hearn. Based on Aumasson, Neves, // Wilcox-O'Hearn and Winnerlein's reference BLAKE2 // implementation at http://github.com/BLAKE2/BLAKE2. // // The BLAKE2b and BLAKE2s numbers are consistent with the BLAKE2 team's // numbers. However, we have an Altivec implementation of BLAKE2s, // and a POWER8 implementation of BLAKE2b (BLAKE2 team is missing them). // Altivec code is about 2x faster than C++ when using GCC 5.0 or // above. The POWER8 code is about 2.5x faster than C++ when using GCC 5.0 // or above. If you use GCC 4.0 (PowerMac) or GCC 4.8 (GCC Compile Farm) // then the PowerPC code will be slower than C++. Be sure to use GCC 5.0 // or above for PowerPC builds or disable Altivec for BLAKE2b and BLAKE2s // if using the old compilers. #include "pch.h" #include "config.h" #include "cryptlib.h" #include "argnames.h" #include "algparam.h" #include "blake2.h" #include "cpu.h" // Uncomment for benchmarking C++ against SSE2 or NEON. // Do so in both blake2.cpp and blake2_simd.cpp. // #undef CRYPTOPP_SSE41_AVAILABLE // #undef CRYPTOPP_ARM_NEON_AVAILABLE // #undef CRYPTOPP_ALTIVEC_AVAILABLE // #undef CRYPTOPP_POWER8_AVAILABLE // Disable NEON/ASIMD for Cortex-A53 and A57. The shifts are too slow and C/C++ is about // 3 cpb faster than NEON/ASIMD. Also see http://github.com/weidai11/cryptopp/issues/367. #if (defined(__aarch32__) || defined(__aarch64__)) && defined(CRYPTOPP_SLOW_ARMV8_SHIFT) # undef CRYPTOPP_ARM_NEON_AVAILABLE #endif // BLAKE2s bug on AIX 7.1 (POWER7) with XLC 12.01 // https://github.com/weidai11/cryptopp/issues/743 #if defined(__xlC__) && (__xlC__ < 0x0d01) # define CRYPTOPP_DISABLE_ALTIVEC 1 # undef CRYPTOPP_POWER7_AVAILABLE # undef CRYPTOPP_POWER8_AVAILABLE # undef CRYPTOPP_ALTIVEC_AVAILABLE #endif // Can't use GetAlignmentOf() because of C++11 and constexpr // Can use 'const unsigned int' because of MSVC 2013 #if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) # define ALIGN_SPEC32 16 # define ALIGN_SPEC64 16 #else # define ALIGN_SPEC32 4 # define ALIGN_SPEC64 8 #endif NAMESPACE_BEGIN(CryptoPP) // Export the tables to the SIMD files extern const word32 BLAKE2S_IV[8]; extern const word64 BLAKE2B_IV[8]; CRYPTOPP_ALIGN_DATA(ALIGN_SPEC32) const word32 BLAKE2S_IV[8] = { 0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL }; CRYPTOPP_ALIGN_DATA(ALIGN_SPEC64) const word64 BLAKE2B_IV[8] = { W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b), W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1), W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f), W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179) }; NAMESPACE_END ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::word64; using CryptoPP::rotrConstant; CRYPTOPP_ALIGN_DATA(ALIGN_SPEC32) const byte BLAKE2S_SIGMA[10][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, }; CRYPTOPP_ALIGN_DATA(ALIGN_SPEC32) const byte BLAKE2B_SIGMA[12][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } }; template inline void BLAKE2B_G(const word64 m[16], word64& a, word64& b, word64& c, word64& d) { a = a + b + m[BLAKE2B_SIGMA[R][2*N+0]]; d = rotrConstant<32>(d ^ a); c = c + d; b = rotrConstant<24>(b ^ c); a = a + b + m[BLAKE2B_SIGMA[R][2*N+1]]; d = rotrConstant<16>(d ^ a); c = c + d; b = rotrConstant<63>(b ^ c); } template inline void BLAKE2B_ROUND(const word64 m[16], word64 v[16]) { BLAKE2B_G(m,v[ 0],v[ 4],v[ 8],v[12]); BLAKE2B_G(m,v[ 1],v[ 5],v[ 9],v[13]); BLAKE2B_G(m,v[ 2],v[ 6],v[10],v[14]); BLAKE2B_G(m,v[ 3],v[ 7],v[11],v[15]); BLAKE2B_G(m,v[ 0],v[ 5],v[10],v[15]); BLAKE2B_G(m,v[ 1],v[ 6],v[11],v[12]); BLAKE2B_G(m,v[ 2],v[ 7],v[ 8],v[13]); BLAKE2B_G(m,v[ 3],v[ 4],v[ 9],v[14]); } template inline void BLAKE2S_G(const word32 m[16], word32& a, word32& b, word32& c, word32& d) { a = a + b + m[BLAKE2S_SIGMA[R][2*N+0]]; d = rotrConstant<16>(d ^ a); c = c + d; b = rotrConstant<12>(b ^ c); a = a + b + m[BLAKE2S_SIGMA[R][2*N+1]]; d = rotrConstant<8>(d ^ a); c = c + d; b = rotrConstant<7>(b ^ c); } template inline void BLAKE2S_ROUND(const word32 m[16], word32 v[]) { BLAKE2S_G(m,v[ 0],v[ 4],v[ 8],v[12]); BLAKE2S_G(m,v[ 1],v[ 5],v[ 9],v[13]); BLAKE2S_G(m,v[ 2],v[ 6],v[10],v[14]); BLAKE2S_G(m,v[ 3],v[ 7],v[11],v[15]); BLAKE2S_G(m,v[ 0],v[ 5],v[10],v[15]); BLAKE2S_G(m,v[ 1],v[ 6],v[11],v[12]); BLAKE2S_G(m,v[ 2],v[ 7],v[ 8],v[13]); BLAKE2S_G(m,v[ 3],v[ 4],v[ 9],v[14]); } ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) void BLAKE2_Compress32_CXX(const byte* input, BLAKE2s_State& state); void BLAKE2_Compress64_CXX(const byte* input, BLAKE2b_State& state); #if CRYPTOPP_SSE41_AVAILABLE extern void BLAKE2_Compress32_SSE4(const byte* input, BLAKE2s_State& state); extern void BLAKE2_Compress64_SSE4(const byte* input, BLAKE2b_State& state); #endif #if CRYPTOPP_ARM_NEON_AVAILABLE extern void BLAKE2_Compress32_NEON(const byte* input, BLAKE2s_State& state); extern void BLAKE2_Compress64_NEON(const byte* input, BLAKE2b_State& state); #endif #if CRYPTOPP_ALTIVEC_AVAILABLE extern void BLAKE2_Compress32_ALTIVEC(const byte* input, BLAKE2s_State& state); #endif #if CRYPTOPP_POWER8_AVAILABLE extern void BLAKE2_Compress64_POWER8(const byte* input, BLAKE2b_State& state); #endif unsigned int BLAKE2b::OptimalDataAlignment() const { #if defined(CRYPTOPP_SSE41_AVAILABLE) if (HasSSE41()) return 16; // load __m128i else #endif #if (CRYPTOPP_ARM_NEON_AVAILABLE) if (HasNEON()) return 8; // load uint64x2_t else #endif #if (CRYPTOPP_POWER8_AVAILABLE) if (HasPower8()) return 16; // load vector long long else #endif return GetAlignmentOf(); } std::string BLAKE2b::AlgorithmProvider() const { #if defined(CRYPTOPP_SSE41_AVAILABLE) if (HasSSE41()) return "SSE4.1"; else #endif #if (CRYPTOPP_ARM_NEON_AVAILABLE) if (HasNEON()) return "NEON"; else #endif #if (CRYPTOPP_POWER8_AVAILABLE) if (HasPower8()) return "Power8"; else #endif return "C++"; } unsigned int BLAKE2s::OptimalDataAlignment() const { #if defined(CRYPTOPP_SSE41_AVAILABLE) if (HasSSE41()) return 16; // load __m128i else #endif #if (CRYPTOPP_ARM_NEON_AVAILABLE) if (HasNEON()) return 4; // load uint32x4_t else #endif #if (CRYPTOPP_ALTIVEC_AVAILABLE) if (HasAltivec()) return 16; // load vector unsigned int else #endif return GetAlignmentOf(); } std::string BLAKE2s::AlgorithmProvider() const { #if defined(CRYPTOPP_SSE41_AVAILABLE) if (HasSSE41()) return "SSE4.1"; else #endif #if (CRYPTOPP_ARM_NEON_AVAILABLE) if (HasNEON()) return "NEON"; else #endif #if (CRYPTOPP_ALTIVEC_AVAILABLE) if (HasAltivec()) return "Altivec"; else #endif return "C++"; } void BLAKE2s_State::Reset() { std::memset(m_hft, 0x00, m_hft.SizeInBytes()); m_len = 0; } void BLAKE2b_State::Reset() { std::memset(m_hft, 0x00, m_hft.SizeInBytes()); m_len = 0; } BLAKE2s_ParameterBlock::BLAKE2s_ParameterBlock(size_t digestLen, size_t keyLen, const byte* saltStr, size_t saltLen, const byte* personalizationStr, size_t personalizationLen) { Reset(digestLen, keyLen); if (saltStr && saltLen) memcpy_s(salt(), SALTSIZE, saltStr, saltLen); if (personalizationStr && personalizationLen) memcpy_s(personalization(), PERSONALIZATIONSIZE, personalizationStr, personalizationLen); } BLAKE2b_ParameterBlock::BLAKE2b_ParameterBlock(size_t digestLen, size_t keyLen, const byte* saltStr, size_t saltLen, const byte* personalizationStr, size_t personalizationLen) { Reset(digestLen, keyLen); if (saltStr && saltLen) memcpy_s(salt(), SALTSIZE, saltStr, saltLen); if (personalizationStr && personalizationLen) memcpy_s(personalization(), PERSONALIZATIONSIZE, personalizationStr, personalizationLen); } void BLAKE2s_ParameterBlock::Reset(size_t digestLen, size_t keyLen) { std::memset(m_data, 0x00, m_data.size()); m_data[DigestOff] = static_cast(digestLen); m_data[KeyOff] = static_cast(keyLen); m_data[FanoutOff] = m_data[DepthOff] = 1; } void BLAKE2b_ParameterBlock::Reset(size_t digestLen, size_t keyLen) { std::memset(m_data, 0x00, m_data.size()); m_data[DigestOff] = static_cast(digestLen); m_data[KeyOff] = static_cast(keyLen); m_data[FanoutOff] = m_data[DepthOff] = 1; } BLAKE2s::BLAKE2s(bool treeMode, unsigned int digestSize) : m_digestSize(digestSize), m_keyLength(0), m_treeMode(treeMode) { CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); UncheckedSetKey(NULLPTR, 0, MakeParameters (Name::DigestSize(), (int)digestSize) (Name::TreeMode(), treeMode)); } BLAKE2b::BLAKE2b(bool treeMode, unsigned int digestSize) : m_digestSize(digestSize), m_keyLength(0), m_treeMode(treeMode) { CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); UncheckedSetKey(NULLPTR, 0, MakeParameters (Name::DigestSize(), (int)digestSize) (Name::TreeMode(), treeMode)); } BLAKE2s::BLAKE2s(unsigned int digestSize) : m_digestSize(digestSize), m_keyLength(0), m_treeMode(false) { CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); UncheckedSetKey(NULLPTR, 0, MakeParameters (Name::DigestSize(), (int)digestSize) (Name::TreeMode(), false)); } BLAKE2b::BLAKE2b(unsigned int digestSize) : m_digestSize(digestSize), m_keyLength(0), m_treeMode(false) { CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); UncheckedSetKey(NULLPTR, 0, MakeParameters (Name::DigestSize(), (int)digestSize) (Name::TreeMode(), false)); } BLAKE2s::BLAKE2s(const byte *key, size_t keyLength, const byte* salt, size_t saltLength, const byte* personalization, size_t personalizationLength, bool treeMode, unsigned int digestSize) : m_digestSize(digestSize), m_keyLength(static_cast(keyLength)), m_treeMode(treeMode) { CRYPTOPP_ASSERT(keyLength <= MAX_KEYLENGTH); CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); CRYPTOPP_ASSERT(saltLength <= SALTSIZE); CRYPTOPP_ASSERT(personalizationLength <= PERSONALIZATIONSIZE); UncheckedSetKey(key, static_cast(keyLength), MakeParameters (Name::DigestSize(),(int)digestSize) (Name::TreeMode(),treeMode) (Name::Salt(), ConstByteArrayParameter(salt, saltLength)) (Name::Personalization(), ConstByteArrayParameter(personalization, personalizationLength))); } BLAKE2b::BLAKE2b(const byte *key, size_t keyLength, const byte* salt, size_t saltLength, const byte* personalization, size_t personalizationLength, bool treeMode, unsigned int digestSize) : m_digestSize(digestSize), m_keyLength(static_cast(keyLength)), m_treeMode(treeMode) { CRYPTOPP_ASSERT(keyLength <= MAX_KEYLENGTH); CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE); CRYPTOPP_ASSERT(saltLength <= SALTSIZE); CRYPTOPP_ASSERT(personalizationLength <= PERSONALIZATIONSIZE); UncheckedSetKey(key, static_cast(keyLength), MakeParameters (Name::DigestSize(),(int)digestSize) (Name::TreeMode(),treeMode) (Name::Salt(), ConstByteArrayParameter(salt, saltLength)) (Name::Personalization(), ConstByteArrayParameter(personalization, personalizationLength))); } void BLAKE2s::UncheckedSetKey(const byte *key, unsigned int length, const CryptoPP::NameValuePairs& params) { if (key && length) { m_key.New(BLOCKSIZE); std::memcpy(m_key, key, length); std::memset(m_key + length, 0x00, BLOCKSIZE - length); m_keyLength = length; } else { m_key.resize(0); m_keyLength = 0; } m_digestSize = static_cast(params.GetIntValueWithDefault( Name::DigestSize(), static_cast(m_digestSize))); m_state.Reset(); m_block.Reset(m_digestSize, m_keyLength); (void)params.GetValue(Name::TreeMode(), m_treeMode); ConstByteArrayParameter t; if (params.GetValue(Name::Salt(), t) && t.begin() && t.size()) memcpy_s(m_block.salt(), SALTSIZE, t.begin(), t.size()); if (params.GetValue(Name::Personalization(), t) && t.begin() && t.size()) memcpy_s(m_block.personalization(), PERSONALIZATIONSIZE, t.begin(), t.size()); Restart(); } void BLAKE2b::UncheckedSetKey(const byte *key, unsigned int length, const CryptoPP::NameValuePairs& params) { if (key && length) { m_key.New(BLOCKSIZE); std::memcpy(m_key, key, length); std::memset(m_key + length, 0x00, BLOCKSIZE - length); m_keyLength = length; } else { m_key.resize(0); m_keyLength = 0; } m_digestSize = static_cast(params.GetIntValueWithDefault( Name::DigestSize(), static_cast(m_digestSize))); m_state.Reset(); m_block.Reset(m_digestSize, m_keyLength); (void)params.GetValue(Name::TreeMode(), m_treeMode); ConstByteArrayParameter t; if (params.GetValue(Name::Salt(), t) && t.begin() && t.size()) memcpy_s(m_block.salt(), SALTSIZE, t.begin(), t.size()); if (params.GetValue(Name::Personalization(), t) && t.begin() && t.size()) memcpy_s(m_block.personalization(), PERSONALIZATIONSIZE, t.begin(), t.size()); Restart(); } void BLAKE2s::Restart() { static const word32 zero[2] = {0,0}; Restart(m_block, zero); } void BLAKE2b::Restart() { static const word64 zero[2] = {0,0}; Restart(m_block, zero); } void BLAKE2s::Restart(const BLAKE2s_ParameterBlock& block, const word32 counter[2]) { // We take a counter as a parameter to allow customized state. m_state.Reset(); if (counter != NULLPTR) { word32* t = m_state.t(); t[0] = counter[0]; t[1] = counter[1]; } // We take a parameter block as a parameter to allow customized state. // Avoid the copy of the parameter block when we are passing our own block. if (block.data() != m_block.data()) { std::memcpy(m_block.data(), block.data(), m_block.size()); } m_block.m_data[BLAKE2s_ParameterBlock::DigestOff] = (byte)m_digestSize; m_block.m_data[BLAKE2s_ParameterBlock::KeyOff] = (byte)m_keyLength; const word32* iv = BLAKE2S_IV; PutBlock put(m_block.data(), m_state.h()); put(iv[0])(iv[1])(iv[2])(iv[3])(iv[4])(iv[5])(iv[6])(iv[7]); // When BLAKE2 is keyed, the input stream is simply {key || 0 || message}. // The key is padded to a full Blocksize with 0. Key it during Restart to // avoid FirstPut and friends. Key size == 0 means no key. if (m_keyLength) Update(m_key, BLOCKSIZE); } void BLAKE2b::Restart(const BLAKE2b_ParameterBlock& block, const word64 counter[2]) { // We take a counter as a parameter to allow customized state. m_state.Reset(); if (counter != NULLPTR) { word64* t = m_state.t(); t[0] = counter[0]; t[1] = counter[1]; } // We take a parameter block as a parameter to allow customized state. // Avoid the copy of the parameter block when we are passing our own block. if (block.data() != m_block.data()) { std::memcpy(m_block.data(), block.data(), m_block.size()); } m_block.m_data[BLAKE2b_ParameterBlock::DigestOff] = (byte)m_digestSize; m_block.m_data[BLAKE2b_ParameterBlock::KeyOff] = (byte)m_keyLength; const word64* iv = BLAKE2B_IV; PutBlock put(m_block.data(), m_state.h()); put(iv[0])(iv[1])(iv[2])(iv[3])(iv[4])(iv[5])(iv[6])(iv[7]); // When BLAKE2 is keyed, the input stream is simply {key || 0 || message}. // The key is padded to a full Blocksize with 0. Key it during Restart to // avoid FirstPut and friends. Key size == 0 means no key. if (m_keyLength) Update(m_key, BLOCKSIZE); } void BLAKE2s::Update(const byte *input, size_t length) { CRYPTOPP_ASSERT(input != NULLPTR || length == 0); if (length > BLOCKSIZE - m_state.m_len) { if (m_state.m_len != 0) { // Complete current block const size_t fill = BLOCKSIZE - m_state.m_len; std::memcpy(m_state.m_buf+m_state.m_len, input, fill); IncrementCounter(BLOCKSIZE); Compress(m_state.m_buf); m_state.m_len = 0; length -= fill, input += fill; } // Compress in-place to avoid copies while (length > BLOCKSIZE) { IncrementCounter(BLOCKSIZE); Compress(input); length -= BLOCKSIZE, input += BLOCKSIZE; } } // Copy tail bytes if (length) { CRYPTOPP_ASSERT(length <= BLOCKSIZE - m_state.m_len); std::memcpy(m_state.m_buf+m_state.m_len, input, length); m_state.m_len += static_cast(length); } } void BLAKE2b::Update(const byte *input, size_t length) { CRYPTOPP_ASSERT(input != NULLPTR || length == 0); if (length > BLOCKSIZE - m_state.m_len) { if (m_state.m_len != 0) { // Complete current block const size_t fill = BLOCKSIZE - m_state.m_len; std::memcpy(m_state.m_buf+m_state.m_len, input, fill); IncrementCounter(BLOCKSIZE); Compress(m_state.m_buf); m_state.m_len = 0; length -= fill, input += fill; } // Compress in-place to avoid copies while (length > BLOCKSIZE) { CRYPTOPP_ASSERT(m_state.m_len == 0); IncrementCounter(BLOCKSIZE); Compress(input); length -= BLOCKSIZE, input += BLOCKSIZE; } } // Copy tail bytes if (length) { CRYPTOPP_ASSERT(length <= BLOCKSIZE - m_state.m_len); std::memcpy(m_state.m_buf + m_state.m_len, input, length); m_state.m_len += static_cast(length); } } void BLAKE2s::TruncatedFinal(byte *hash, size_t size) { CRYPTOPP_ASSERT(hash != NULLPTR); this->ThrowIfInvalidTruncatedSize(size); word32* f = m_state.f(); // Set last block unconditionally f[0] = ~static_cast(0); // Set last node if tree mode if (m_treeMode) f[1] = ~static_cast(0); // Increment counter for tail bytes only IncrementCounter(m_state.m_len); std::memset(m_state.m_buf + m_state.m_len, 0x00, BLOCKSIZE - m_state.m_len); Compress(m_state.m_buf); // Copy to caller buffer std::memcpy(hash, m_state.h(), size); Restart(); } void BLAKE2b::TruncatedFinal(byte *hash, size_t size) { CRYPTOPP_ASSERT(hash != NULLPTR); this->ThrowIfInvalidTruncatedSize(size); word64* f = m_state.f(); // Set last block unconditionally f[0] = ~static_cast(0); // Set last node if tree mode if (m_treeMode) f[1] = ~static_cast(0); // Increment counter for tail bytes only IncrementCounter(m_state.m_len); std::memset(m_state.m_buf + m_state.m_len, 0x00, BLOCKSIZE - m_state.m_len); Compress(m_state.m_buf); // Copy to caller buffer std::memcpy(hash, m_state.h(), size); Restart(); } void BLAKE2s::IncrementCounter(size_t count) { word32* t = m_state.t(); t[0] += static_cast(count); t[1] += !!(t[0] < count); } void BLAKE2b::IncrementCounter(size_t count) { word64* t = m_state.t(); t[0] += static_cast(count); t[1] += !!(t[0] < count); } void BLAKE2s::Compress(const byte *input) { #if CRYPTOPP_SSE41_AVAILABLE if(HasSSE41()) { return BLAKE2_Compress32_SSE4(input, m_state); } #endif #if CRYPTOPP_ARM_NEON_AVAILABLE if(HasNEON()) { return BLAKE2_Compress32_NEON(input, m_state); } #endif #if CRYPTOPP_ALTIVEC_AVAILABLE if(HasAltivec()) { return BLAKE2_Compress32_ALTIVEC(input, m_state); } #endif return BLAKE2_Compress32_CXX(input, m_state); } void BLAKE2b::Compress(const byte *input) { #if CRYPTOPP_SSE41_AVAILABLE if(HasSSE41()) { return BLAKE2_Compress64_SSE4(input, m_state); } #endif #if CRYPTOPP_ARM_NEON_AVAILABLE if(HasNEON()) { return BLAKE2_Compress64_NEON(input, m_state); } #endif #if CRYPTOPP_POWER8_AVAILABLE if(HasPower8()) { return BLAKE2_Compress64_POWER8(input, m_state); } #endif return BLAKE2_Compress64_CXX(input, m_state); } void BLAKE2_Compress64_CXX(const byte* input, BLAKE2b_State& state) { word64 m[16], v[16]; GetBlock get1(input); get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]); GetBlock get2(state.h()); get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]); const word64* iv = BLAKE2B_IV; const word64* tf = state.t(); v[ 8] = iv[0]; v[ 9] = iv[1]; v[10] = iv[2]; v[11] = iv[3]; v[12] = tf[0] ^ iv[4]; v[13] = tf[1] ^ iv[5]; v[14] = tf[2] ^ iv[6]; v[15] = tf[3] ^ iv[7]; BLAKE2B_ROUND<0>(m, v); BLAKE2B_ROUND<1>(m, v); BLAKE2B_ROUND<2>(m, v); BLAKE2B_ROUND<3>(m, v); BLAKE2B_ROUND<4>(m, v); BLAKE2B_ROUND<5>(m, v); BLAKE2B_ROUND<6>(m, v); BLAKE2B_ROUND<7>(m, v); BLAKE2B_ROUND<8>(m, v); BLAKE2B_ROUND<9>(m, v); BLAKE2B_ROUND<10>(m, v); BLAKE2B_ROUND<11>(m, v); word64* h = state.h(); for (unsigned int i = 0; i < 8; ++i) h[i] = h[i] ^ ConditionalByteReverse(LITTLE_ENDIAN_ORDER, v[i] ^ v[i + 8]); } void BLAKE2_Compress32_CXX(const byte* input, BLAKE2s_State& state) { word32 m[16], v[16]; GetBlock get1(input); get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]); GetBlock get2(state.h()); get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]); const word32* iv = BLAKE2S_IV; const word32* tf = state.t(); v[ 8] = iv[0]; v[ 9] = iv[1]; v[10] = iv[2]; v[11] = iv[3]; v[12] = tf[0] ^ iv[4]; v[13] = tf[1] ^ iv[5]; v[14] = tf[2] ^ iv[6]; v[15] = tf[3] ^ iv[7]; BLAKE2S_ROUND<0>(m, v); BLAKE2S_ROUND<1>(m, v); BLAKE2S_ROUND<2>(m, v); BLAKE2S_ROUND<3>(m, v); BLAKE2S_ROUND<4>(m, v); BLAKE2S_ROUND<5>(m, v); BLAKE2S_ROUND<6>(m, v); BLAKE2S_ROUND<7>(m, v); BLAKE2S_ROUND<8>(m, v); BLAKE2S_ROUND<9>(m, v); word32* h = state.h(); for (unsigned int i = 0; i < 8; ++i) h[i] = h[i] ^ ConditionalByteReverse(LITTLE_ENDIAN_ORDER, v[i] ^ v[i + 8]); } NAMESPACE_END