// authenc.h - originally written and placed in the public domain by Wei Dai /// \file /// \brief Classes for authenticated encryption modes of operation /// \details Authenticated encryption (AE) schemes combine confidentiality and authenticity /// into a single mode of operation They gained traction in the early 2000's because manually /// combining them was error prone for the typical developer. Around that time, the desire to /// authenticate but not ecrypt additional data (AAD) was also identified. When both features /// are available from a scheme, the system is referred to as an AEAD scheme. /// \details Crypto++ provides four authenticated encryption modes of operation - CCM, EAX, GCM /// and OCB mode. All modes derive from AuthenticatedSymmetricCipherBase() and the /// motivation for the API, like calling AAD a "header", can be found in Bellare, /// Rogaway and Wagner's The EAX /// Mode of Operation. The EAX paper suggested a basic API to help standardize AEAD /// schemes in software and promote adoption of the modes. /// \sa Authenticated /// Encryption on the Crypto++ wiki. /// \since Crypto++ 5.6.0 #ifndef CRYPTOPP_AUTHENC_H #define CRYPTOPP_AUTHENC_H #include "cryptlib.h" #include "secblock.h" NAMESPACE_BEGIN(CryptoPP) /// \brief Base class for authenticated encryption modes of operation /// \details AuthenticatedSymmetricCipherBase() serves as a base implementation for one direction /// (encryption or decryption) of a stream cipher or block cipher mode with authentication. /// \details Crypto++ provides four authenticated encryption modes of operation - CCM, EAX, GCM /// and OCB mode. All modes derive from AuthenticatedSymmetricCipherBase() and the /// motivation for the API, like calling AAD a "header", can be found in Bellare, /// Rogaway and Wagner's The EAX /// Mode of Operation. The EAX paper suggested a basic API to help standardize AEAD /// schemes in software and promote adoption of the modes. /// \sa Authenticated /// Encryption on the Crypto++ wiki. /// \since Crypto++ 5.6.0 class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedSymmetricCipherBase : public AuthenticatedSymmetricCipher { public: AuthenticatedSymmetricCipherBase() : m_totalHeaderLength(0), m_totalMessageLength(0), m_totalFooterLength(0), m_bufferedDataLength(0), m_state(State_Start) {} // StreamTransformation interface bool IsRandomAccess() const {return false;} bool IsSelfInverting() const {return true;} void SetKey(const byte *userKey, size_t keylength, const NameValuePairs ¶ms); void Restart() {if (m_state > State_KeySet) m_state = State_KeySet;} void Resynchronize(const byte *iv, int length=-1); void Update(const byte *input, size_t length); void ProcessData(byte *outString, const byte *inString, size_t length); void TruncatedFinal(byte *mac, size_t macSize); protected: void UncheckedSetKey(const byte * key, unsigned int length,const CryptoPP::NameValuePairs ¶ms) {CRYPTOPP_UNUSED(key), CRYPTOPP_UNUSED(length), CRYPTOPP_UNUSED(params); CRYPTOPP_ASSERT(false);} void AuthenticateData(const byte *data, size_t len); const SymmetricCipher & GetSymmetricCipher() const {return const_cast(this)->AccessSymmetricCipher();} virtual SymmetricCipher & AccessSymmetricCipher() =0; virtual bool AuthenticationIsOnPlaintext() const =0; virtual unsigned int AuthenticationBlockSize() const =0; virtual void SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs ¶ms) =0; virtual void Resync(const byte *iv, size_t len) =0; virtual size_t AuthenticateBlocks(const byte *data, size_t len) =0; virtual void AuthenticateLastHeaderBlock() =0; virtual void AuthenticateLastConfidentialBlock() {} virtual void AuthenticateLastFooterBlock(byte *mac, size_t macSize) =0; // State_AuthUntransformed: authentication is applied to plain text (Authenticate-then-Encrypt) // State_AuthTransformed: authentication is applied to cipher text (Encrypt-then-Authenticate) enum State {State_Start, State_KeySet, State_IVSet, State_AuthUntransformed, State_AuthTransformed, State_AuthFooter}; AlignedSecByteBlock m_buffer; lword m_totalHeaderLength, m_totalMessageLength, m_totalFooterLength; unsigned int m_bufferedDataLength; State m_state; }; NAMESPACE_END #endif