/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include "cgptlib.h" #include "cgptlib_internal.h" #include "cgptlib_test.h" #include "crc32.h" #include "crc32_test.h" #include "gpt.h" #include "test_common.h" #include "utility.h" /* Testing partition layout (sector_bytes=512) * * LBA Size Usage * --------------------------------------------------------- * 0 1 PMBR * 1 1 primary partition header * 2 32 primary partition entries (128B * 128) * 34 100 kernel A (index: 0) * 134 100 root A (index: 1) * 234 100 root B (index: 2) * 334 100 kernel B (index: 3) * 434 32 secondary partition entries * 466 1 secondary partition header * 467 */ #define KERNEL_A 0 #define KERNEL_B 1 #define ROOTFS_A 2 #define ROOTFS_B 3 #define KERNEL_X 2 /* Overload ROOTFS_A, for some GetNext tests */ #define KERNEL_Y 3 /* Overload ROOTFS_B, for some GetNext tests */ #define DEFAULT_SECTOR_SIZE 512 #define MAX_SECTOR_SIZE 4096 #define DEFAULT_DRIVE_SECTORS 467 #define PARTITION_ENTRIES_SIZE TOTAL_ENTRIES_SIZE /* 16384 */ static const Guid guid_zero = {{{0, 0, 0, 0, 0, {0, 0, 0, 0, 0, 0}}}}; static const Guid guid_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; static const Guid guid_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS; /* Copy a random-for-this-program-only Guid into the dest. The num parameter * completely determines the Guid. */ static void SetGuid(void *dest, uint32_t num) { Guid g = {{{num,0xd450,0x44bc,0xa6,0x93,{0xb8,0xac,0x75,0x5f,0xcd,0x48}}}}; Memcpy(dest, &g, sizeof(Guid)); } /* Given a GptData pointer, first re-calculate entries CRC32 value, * then reset header CRC32 value to 0, and calculate header CRC32 value. * Both primary and secondary are updated. */ static void RefreshCrc32(GptData* gpt) { GptHeader *header, *header2; GptEntry *entries, *entries2; header = (GptHeader*)gpt->primary_header; entries = (GptEntry*)gpt->primary_entries; header2 = (GptHeader*)gpt->secondary_header; entries2 = (GptEntry*)gpt->secondary_entries; header->entries_crc32 = Crc32((uint8_t*)entries, header->number_of_entries * header->size_of_entry); header->header_crc32 = 0; header->header_crc32 = Crc32((uint8_t*)header, header->size); header2->entries_crc32 = Crc32((uint8_t*)entries2, header2->number_of_entries * header2->size_of_entry); header2->header_crc32 = 0; header2->header_crc32 = Crc32((uint8_t*)header2, header2->size); } static void ZeroHeaders(GptData* gpt) { Memset(gpt->primary_header, 0, MAX_SECTOR_SIZE); Memset(gpt->secondary_header, 0, MAX_SECTOR_SIZE); } static void ZeroEntries(GptData* gpt) { Memset(gpt->primary_entries, 0, PARTITION_ENTRIES_SIZE); Memset(gpt->secondary_entries, 0, PARTITION_ENTRIES_SIZE); } static void ZeroHeadersEntries(GptData* gpt) { ZeroHeaders(gpt); ZeroEntries(gpt); } /* Returns a pointer to a static GptData instance (no free is required). * All fields are zero except 4 pointers linking to header and entries. * All content of headers and entries are zero. */ static GptData* GetEmptyGptData() { static GptData gpt; static uint8_t primary_header[MAX_SECTOR_SIZE]; static uint8_t primary_entries[PARTITION_ENTRIES_SIZE]; static uint8_t secondary_header[MAX_SECTOR_SIZE]; static uint8_t secondary_entries[PARTITION_ENTRIES_SIZE]; Memset(&gpt, 0, sizeof(gpt)); gpt.primary_header = primary_header; gpt.primary_entries = primary_entries; gpt.secondary_header = secondary_header; gpt.secondary_entries = secondary_entries; ZeroHeadersEntries(&gpt); /* Initialize GptData internal states. */ gpt.current_kernel = CGPT_KERNEL_ENTRY_NOT_FOUND; return &gpt; } /* Fills in most of fields and creates the layout described in the top of this * file. Before calling this function, primary/secondary header/entries must * have been pointed to the buffer, say, a gpt returned from GetEmptyGptData(). * This function returns a good (valid) copy of GPT layout described in top of * this file. */ static void BuildTestGptData(GptData* gpt) { GptHeader *header, *header2; GptEntry *entries, *entries2; Guid chromeos_kernel = GPT_ENT_TYPE_CHROMEOS_KERNEL; Guid chromeos_rootfs = GPT_ENT_TYPE_CHROMEOS_ROOTFS; gpt->sector_bytes = DEFAULT_SECTOR_SIZE; gpt->drive_sectors = DEFAULT_DRIVE_SECTORS; gpt->current_kernel = CGPT_KERNEL_ENTRY_NOT_FOUND; gpt->valid_headers = MASK_BOTH; gpt->valid_entries = MASK_BOTH; gpt->modified = 0; /* build primary */ header = (GptHeader*)gpt->primary_header; entries = (GptEntry*)gpt->primary_entries; Memcpy(header->signature, GPT_HEADER_SIGNATURE, sizeof(GPT_HEADER_SIGNATURE)); header->revision = GPT_HEADER_REVISION; header->size = sizeof(GptHeader); header->reserved_zero = 0; header->my_lba = 1; header->alternate_lba = DEFAULT_DRIVE_SECTORS - 1; header->first_usable_lba = 34; header->last_usable_lba = DEFAULT_DRIVE_SECTORS - 1 - 32 - 1; /* 433 */ header->entries_lba = 2; header->number_of_entries = 128; /* 512B / 128B * 32sectors = 128 entries */ header->size_of_entry = 128; /* bytes */ Memcpy(&entries[0].type, &chromeos_kernel, sizeof(chromeos_kernel)); SetGuid(&entries[0].unique, 0); entries[0].starting_lba = 34; entries[0].ending_lba = 133; Memcpy(&entries[1].type, &chromeos_rootfs, sizeof(chromeos_rootfs)); SetGuid(&entries[1].unique, 1); entries[1].starting_lba = 134; entries[1].ending_lba = 232; Memcpy(&entries[2].type, &chromeos_rootfs, sizeof(chromeos_rootfs)); SetGuid(&entries[2].unique, 2); entries[2].starting_lba = 234; entries[2].ending_lba = 331; Memcpy(&entries[3].type, &chromeos_kernel, sizeof(chromeos_kernel)); SetGuid(&entries[3].unique, 3); entries[3].starting_lba = 334; entries[3].ending_lba = 430; /* build secondary */ header2 = (GptHeader*)gpt->secondary_header; entries2 = (GptEntry*)gpt->secondary_entries; Memcpy(header2, header, sizeof(GptHeader)); Memcpy(entries2, entries, PARTITION_ENTRIES_SIZE); header2->my_lba = DEFAULT_DRIVE_SECTORS - 1; /* 466 */ header2->alternate_lba = 1; header2->entries_lba = DEFAULT_DRIVE_SECTORS - 1 - 32; /* 434 */ RefreshCrc32(gpt); } /* Tests if the structures are the expected size; if this fails, * struct packing is not working properly. */ static int StructSizeTest() { EXPECT(GUID_EXPECTED_SIZE == sizeof(Guid)); EXPECT(GPTHEADER_EXPECTED_SIZE == sizeof(GptHeader)); EXPECT(GPTENTRY_EXPECTED_SIZE == sizeof(GptEntry)); return TEST_OK; } /* Tests if the default structure returned by BuildTestGptData() is good. */ static int TestBuildTestGptData() { GptData* gpt; gpt = GetEmptyGptData(); BuildTestGptData(gpt); EXPECT(GPT_SUCCESS == GptInit(gpt)); return TEST_OK; } /* Tests if wrong sector_bytes or drive_sectors is detected by GptInit(). * Currently we only support 512 bytes per sector. * In the future, we may support other sizes. * A too small drive_sectors should be rejected by GptInit(). */ static int ParameterTests() { GptData* gpt; struct { uint32_t sector_bytes; uint64_t drive_sectors; int expected_retval; } cases[] = { {512, DEFAULT_DRIVE_SECTORS, GPT_SUCCESS}, {520, DEFAULT_DRIVE_SECTORS, GPT_ERROR_INVALID_SECTOR_SIZE}, {512, 0, GPT_ERROR_INVALID_SECTOR_NUMBER}, {512, 66, GPT_ERROR_INVALID_SECTOR_NUMBER}, {512, GPT_PMBR_SECTOR + GPT_HEADER_SECTOR * 2 + GPT_ENTRIES_SECTORS * 2, GPT_SUCCESS}, {4096, DEFAULT_DRIVE_SECTORS, GPT_ERROR_INVALID_SECTOR_SIZE}, }; int i; gpt = GetEmptyGptData(); for (i = 0; i < ARRAY_SIZE(cases); ++i) { BuildTestGptData(gpt); gpt->sector_bytes = cases[i].sector_bytes; gpt->drive_sectors = cases[i].drive_sectors; EXPECT(cases[i].expected_retval == CheckParameters(gpt)); } return TEST_OK; } /* Tests if header CRC in two copies are calculated. */ static int HeaderCrcTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; BuildTestGptData(gpt); EXPECT(HeaderCrc(h1) == h1->header_crc32); /* CRC covers first byte of header */ BuildTestGptData(gpt); gpt->primary_header[0] ^= 0xa5; EXPECT(HeaderCrc(h1) != h1->header_crc32); /* CRC covers last byte of header */ BuildTestGptData(gpt); gpt->primary_header[h1->size - 1] ^= 0x5a; EXPECT(HeaderCrc(h1) != h1->header_crc32); /* CRC only covers header */ BuildTestGptData(gpt); gpt->primary_header[h1->size] ^= 0x5a; EXPECT(HeaderCrc(h1) == h1->header_crc32); return TEST_OK; } /* Tests if signature ("EFI PART") is checked. */ static int SignatureTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; int i; for (i = 0; i < 8; ++i) { BuildTestGptData(gpt); h1->signature[i] ^= 0xff; h2->signature[i] ^= 0xff; RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); } return TEST_OK; } /* The revision we currently support is GPT_HEADER_REVISION. * If the revision in header is not that, we expect the header is invalid. */ static int RevisionTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; int i; struct { uint32_t value_to_test; int expect_rv; } cases[] = { {0x01000000, 1}, {0x00010000, 0}, /* GPT_HEADER_REVISION */ {0x00000100, 1}, {0x00000001, 1}, {0x23010456, 1}, }; for (i = 0; i < ARRAY_SIZE(cases); ++i) { BuildTestGptData(gpt); h1->revision = cases[i].value_to_test; h2->revision = cases[i].value_to_test; RefreshCrc32(gpt); EXPECT(CheckHeader(h1, 0, gpt->drive_sectors) == cases[i].expect_rv); EXPECT(CheckHeader(h2, 1, gpt->drive_sectors) == cases[i].expect_rv); } return TEST_OK; } static int SizeTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; int i; struct { uint32_t value_to_test; int expect_rv; } cases[] = { {91, 1}, {92, 0}, {93, 0}, {511, 0}, {512, 0}, {513, 1}, }; for (i = 0; i < ARRAY_SIZE(cases); ++i) { BuildTestGptData(gpt); h1->size = cases[i].value_to_test; h2->size = cases[i].value_to_test; RefreshCrc32(gpt); EXPECT(CheckHeader(h1, 0, gpt->drive_sectors) == cases[i].expect_rv); EXPECT(CheckHeader(h2, 1, gpt->drive_sectors) == cases[i].expect_rv); } return TEST_OK; } /* Tests if CRC is checked. */ static int CrcFieldTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; BuildTestGptData(gpt); /* Modify a field that the header verification doesn't care about */ h1->entries_crc32++; h2->entries_crc32++; EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); /* Refresh the CRC; should pass now */ RefreshCrc32(gpt); EXPECT(0 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(0 == CheckHeader(h2, 1, gpt->drive_sectors)); return TEST_OK; } /* Tests if reserved fields are checked. * We'll try non-zero values to test. */ static int ReservedFieldsTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; BuildTestGptData(gpt); h1->reserved_zero ^= 0x12345678; /* whatever random */ h2->reserved_zero ^= 0x12345678; /* whatever random */ RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); #ifdef PADDING_CHECKED /* TODO: padding check is currently disabled */ BuildTestGptData(gpt); h1->padding[12] ^= 0x34; /* whatever random */ h2->padding[56] ^= 0x78; /* whatever random */ RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); #endif return TEST_OK; } /* Technically, any size which is 2^N where N > 6 should work, but our * library only supports one size. */ static int SizeOfPartitionEntryTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; int i; struct { uint32_t value_to_test; int expect_rv; } cases[] = { {127, 1}, {128, 0}, {129, 1}, {256, 1}, {512, 1}, }; /* Check size of entryes */ for (i = 0; i < ARRAY_SIZE(cases); ++i) { BuildTestGptData(gpt); h1->size_of_entry = cases[i].value_to_test; h2->size_of_entry = cases[i].value_to_test; h1->number_of_entries = TOTAL_ENTRIES_SIZE / cases[i].value_to_test; h2->number_of_entries = TOTAL_ENTRIES_SIZE / cases[i].value_to_test; RefreshCrc32(gpt); EXPECT(CheckHeader(h1, 0, gpt->drive_sectors) == cases[i].expect_rv); EXPECT(CheckHeader(h2, 1, gpt->drive_sectors) == cases[i].expect_rv); } return TEST_OK; } /* Technically, any size which is 2^N where N > 6 should work, but our * library only supports one size. */ static int NumberOfPartitionEntriesTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; BuildTestGptData(gpt); h1->number_of_entries--; h2->number_of_entries /= 2; RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); return TEST_OK; } /* Tests if myLBA field is checked (1 for primary, last for secondary). */ static int MyLbaTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; /* myLBA depends on primary vs secondary flag */ BuildTestGptData(gpt); EXPECT(1 == CheckHeader(h1, 1, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 0, gpt->drive_sectors)); BuildTestGptData(gpt); h1->my_lba--; h2->my_lba--; RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); BuildTestGptData(gpt); h1->my_lba = 2; h2->my_lba--; RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); /* We should ignore the alternate_lba field entirely */ BuildTestGptData(gpt); h1->alternate_lba++; h2->alternate_lba++; RefreshCrc32(gpt); EXPECT(0 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(0 == CheckHeader(h2, 1, gpt->drive_sectors)); BuildTestGptData(gpt); h1->alternate_lba--; h2->alternate_lba--; RefreshCrc32(gpt); EXPECT(0 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(0 == CheckHeader(h2, 1, gpt->drive_sectors)); BuildTestGptData(gpt); h1->entries_lba++; h2->entries_lba++; RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); BuildTestGptData(gpt); h1->entries_lba--; h2->entries_lba--; RefreshCrc32(gpt); EXPECT(1 == CheckHeader(h1, 0, gpt->drive_sectors)); EXPECT(1 == CheckHeader(h2, 1, gpt->drive_sectors)); return TEST_OK; } /* Tests if FirstUsableLBA and LastUsableLBA are checked. * FirstUsableLBA must be after the end of the primary GPT table array. * LastUsableLBA must be before the start of the secondary GPT table array. * FirstUsableLBA <= LastUsableLBA. */ static int FirstUsableLbaAndLastUsableLbaTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptHeader* h2 = (GptHeader*)gpt->secondary_header; int i; struct { uint64_t primary_entries_lba; uint64_t primary_first_usable_lba; uint64_t primary_last_usable_lba; uint64_t secondary_first_usable_lba; uint64_t secondary_last_usable_lba; uint64_t secondary_entries_lba; int primary_rv; int secondary_rv; } cases[] = { {2, 34, 433, 34, 433, 434, 0, 0}, {2, 34, 432, 34, 430, 434, 0, 0}, {2, 33, 433, 33, 433, 434, 1, 1}, {2, 34, 434, 34, 433, 434, 1, 0}, {2, 34, 433, 34, 434, 434, 0, 1}, {2, 35, 433, 35, 433, 434, 0, 0}, {2, 433, 433, 433, 433, 434, 0, 0}, {2, 434, 433, 434, 434, 434, 1, 1}, {2, 433, 34, 34, 433, 434, 1, 0}, {2, 34, 433, 433, 34, 434, 0, 1}, }; for (i = 0; i < ARRAY_SIZE(cases); ++i) { BuildTestGptData(gpt); h1->entries_lba = cases[i].primary_entries_lba; h1->first_usable_lba = cases[i].primary_first_usable_lba; h1->last_usable_lba = cases[i].primary_last_usable_lba; h2->entries_lba = cases[i].secondary_entries_lba; h2->first_usable_lba = cases[i].secondary_first_usable_lba; h2->last_usable_lba = cases[i].secondary_last_usable_lba; RefreshCrc32(gpt); EXPECT(CheckHeader(h1, 0, gpt->drive_sectors) == cases[i].primary_rv); EXPECT(CheckHeader(h2, 1, gpt->drive_sectors) == cases[i].secondary_rv); } return TEST_OK; } /* Tests if PartitionEntryArrayCRC32 is checked. * PartitionEntryArrayCRC32 must be calculated over SizeOfPartitionEntry * * NumberOfPartitionEntries bytes. */ static int EntriesCrcTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptEntry* e1 = (GptEntry*)(gpt->primary_entries); GptEntry* e2 = (GptEntry*)(gpt->secondary_entries); /* Modify the first byte of primary entries, and expect the CRC is wrong. */ BuildTestGptData(gpt); EXPECT(0 == CheckEntries(e1, h1)); EXPECT(0 == CheckEntries(e2, h1)); gpt->primary_entries[0] ^= 0xa5; /* just XOR a non-zero value */ gpt->secondary_entries[TOTAL_ENTRIES_SIZE-1] ^= 0x5a; EXPECT(1 == CheckEntries(e1, h1)); EXPECT(1 == CheckEntries(e2, h1)); return TEST_OK; } /* Tests if partition geometry is checked. * All active (non-zero PartitionTypeGUID) partition entries should have: * entry.StartingLBA >= header.FirstUsableLBA * entry.EndingLBA <= header.LastUsableLBA * entry.StartingLBA <= entry.EndingLBA */ static int ValidEntryTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; GptEntry* e1 = (GptEntry*)(gpt->primary_entries); /* error case: entry.StartingLBA < header.FirstUsableLBA */ BuildTestGptData(gpt); e1[0].starting_lba = h1->first_usable_lba - 1; RefreshCrc32(gpt); EXPECT(1 == CheckEntries(e1, h1)); /* error case: entry.EndingLBA > header.LastUsableLBA */ BuildTestGptData(gpt); e1[2].ending_lba = h1->last_usable_lba + 1; RefreshCrc32(gpt); EXPECT(1 == CheckEntries(e1, h1)); /* error case: entry.StartingLBA > entry.EndingLBA */ BuildTestGptData(gpt); e1[3].starting_lba = e1[3].ending_lba + 1; RefreshCrc32(gpt); EXPECT(1 == CheckEntries(e1, h1)); /* case: non active entry should be ignored. */ BuildTestGptData(gpt); Memset(&e1[1].type, 0, sizeof(e1[1].type)); e1[1].starting_lba = e1[1].ending_lba + 1; RefreshCrc32(gpt); EXPECT(0 == CheckEntries(e1, h1)); return TEST_OK; } /* Tests if overlapped partition tables can be detected. */ static int OverlappedPartitionTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h = (GptHeader*)gpt->primary_header; GptEntry* e = (GptEntry*)gpt->primary_entries; int i, j; struct { int overlapped; struct { int active; uint64_t starting_lba; uint64_t ending_lba; } entries[16]; /* enough for testing. */ } cases[] = { {0, {{0, 100, 199}}}, {0, {{1, 100, 199}}}, {0, {{1, 100, 150}, {1, 200, 250}, {1, 300, 350}}}, {1, {{1, 200, 299}, {1, 100, 199}, {1, 100, 100}}}, {1, {{1, 200, 299}, {1, 100, 199}, {1, 299, 299}}}, {0, {{1, 300, 399}, {1, 200, 299}, {1, 100, 199}}}, {1, {{1, 100, 199}, {1, 199, 299}, {1, 299, 399}}}, {1, {{1, 100, 199}, {1, 200, 299}, {1, 75, 399}}}, {1, {{1, 100, 199}, {1, 75, 250}, {1, 200, 299}}}, {1, {{1, 75, 150}, {1, 100, 199}, {1, 200, 299}}}, {1, {{1, 200, 299}, {1, 100, 199}, {1, 300, 399}, {1, 100, 399}}}, {0, {{1, 200, 299}, {1, 100, 199}, {1, 300, 399}, {0, 100, 399}}}, {1, {{1, 200, 300}, {1, 100, 200}, {1, 100, 400}, {1, 300, 400}}}, {1, {{0, 200, 300}, {1, 100, 200}, {1, 100, 400}, {1, 300, 400}}}, {0, {{1, 200, 300}, {1, 100, 199}, {0, 100, 400}, {0, 300, 400}}}, {1, {{1, 200, 299}, {1, 100, 199}, {1, 199, 199}}}, {0, {{1, 200, 299}, {0, 100, 199}, {1, 199, 199}}}, {0, {{1, 200, 299}, {1, 100, 199}, {0, 199, 199}}}, {1, {{1, 199, 199}, {1, 200, 200}, {1, 201, 201}, {1, 202, 202}, {1, 203, 203}, {1, 204, 204}, {1, 205, 205}, {1, 206, 206}, {1, 207, 207}, {1, 208, 208}, {1, 199, 199}}}, {0, {{1, 199, 199}, {1, 200, 200}, {1, 201, 201}, {1, 202, 202}, {1, 203, 203}, {1, 204, 204}, {1, 205, 205}, {1, 206, 206}, {1, 207, 207}, {1, 208, 208}, {0, 199, 199}}}, }; for (i = 0; i < ARRAY_SIZE(cases); ++i) { BuildTestGptData(gpt); ZeroEntries(gpt); for(j = 0; j < ARRAY_SIZE(cases[0].entries); ++j) { if (!cases[i].entries[j].starting_lba) break; if (cases[i].entries[j].active) Memcpy(&e[j].type, &guid_kernel, sizeof(Guid)); SetGuid(&e[j].unique, j); e[j].starting_lba = cases[i].entries[j].starting_lba; e[j].ending_lba = cases[i].entries[j].ending_lba; } RefreshCrc32(gpt); EXPECT(cases[i].overlapped == CheckEntries(e, h)); } return TEST_OK; } /* Test both sanity checking and repair. */ static int SanityCheckTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h1 = (GptHeader*)gpt->primary_header; /* Unmodified test data is completely sane */ BuildTestGptData(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); /* Repair doesn't damage it */ GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT(0 == gpt->modified); /* Modify headers */ BuildTestGptData(gpt); gpt->primary_header[0]++; gpt->secondary_header[0]++; EXPECT(GPT_ERROR_INVALID_HEADERS == GptSanityCheck(gpt)); EXPECT(0 == gpt->valid_headers); EXPECT(0 == gpt->valid_entries); /* Repair can't fix completely busted headers */ GptRepair(gpt); EXPECT(GPT_ERROR_INVALID_HEADERS == GptSanityCheck(gpt)); EXPECT(0 == gpt->valid_headers); EXPECT(0 == gpt->valid_entries); EXPECT(0 == gpt->modified); BuildTestGptData(gpt); gpt->primary_header[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_SECONDARY == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT(GPT_MODIFIED_HEADER1 == gpt->modified); BuildTestGptData(gpt); gpt->secondary_header[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_PRIMARY == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT(GPT_MODIFIED_HEADER2 == gpt->modified); /* Modify header1 and update its CRC. Since header2 is now different than * header1, it'll be the one considered invalid. */ BuildTestGptData(gpt); h1->size++; RefreshCrc32(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_PRIMARY == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT(GPT_MODIFIED_HEADER2 == gpt->modified); /* Modify entries */ BuildTestGptData(gpt); gpt->primary_entries[0]++; gpt->secondary_entries[0]++; EXPECT(GPT_ERROR_INVALID_ENTRIES == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_NONE == gpt->valid_entries); /* Repair can't fix both copies of entries being bad, either. */ GptRepair(gpt); EXPECT(GPT_ERROR_INVALID_ENTRIES == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_NONE == gpt->valid_entries); EXPECT(0 == gpt->modified); BuildTestGptData(gpt); gpt->primary_entries[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_SECONDARY == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT(GPT_MODIFIED_ENTRIES1 == gpt->modified); BuildTestGptData(gpt); gpt->secondary_entries[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_PRIMARY == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT(GPT_MODIFIED_ENTRIES2 == gpt->modified); /* Modify both header and entries */ BuildTestGptData(gpt); gpt->primary_header[0]++; gpt->primary_entries[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_SECONDARY == gpt->valid_headers); EXPECT(MASK_SECONDARY == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT((GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES1) == gpt->modified); BuildTestGptData(gpt); gpt->secondary_header[0]++; gpt->secondary_entries[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_PRIMARY == gpt->valid_headers); EXPECT(MASK_PRIMARY == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT((GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2) == gpt->modified); /* Test cross-correction (h1+e2, h2+e1) */ BuildTestGptData(gpt); gpt->primary_header[0]++; gpt->secondary_entries[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_SECONDARY == gpt->valid_headers); EXPECT(MASK_PRIMARY == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT((GPT_MODIFIED_HEADER1 | GPT_MODIFIED_ENTRIES2) == gpt->modified); BuildTestGptData(gpt); gpt->secondary_header[0]++; gpt->primary_entries[0]++; EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_PRIMARY == gpt->valid_headers); EXPECT(MASK_SECONDARY == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT((GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES1) == gpt->modified); /* Test mismatched pairs (h1+e1 valid, h2+e2 valid but different. * This simulates a partial update of the drive. */ BuildTestGptData(gpt); gpt->secondary_entries[0]++; RefreshCrc32(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_PRIMARY == gpt->valid_headers); EXPECT(MASK_PRIMARY == gpt->valid_entries); GptRepair(gpt); EXPECT(GPT_SUCCESS == GptSanityCheck(gpt)); EXPECT(MASK_BOTH == gpt->valid_headers); EXPECT(MASK_BOTH == gpt->valid_entries); EXPECT((GPT_MODIFIED_HEADER2 | GPT_MODIFIED_ENTRIES2) == gpt->modified); return TEST_OK; } static int EntryAttributeGetSetTest() { GptData* gpt = GetEmptyGptData(); GptEntry* e = (GptEntry*)(gpt->primary_entries); e->attrs.whole = 0x0000000000000000ULL; SetEntrySuccessful(e, 1); EXPECT(0x0100000000000000ULL == e->attrs.whole); EXPECT(1 == GetEntrySuccessful(e)); e->attrs.whole = 0xFFFFFFFFFFFFFFFFULL; SetEntrySuccessful(e, 0); EXPECT(0xFEFFFFFFFFFFFFFFULL == e->attrs.whole); EXPECT(0 == GetEntrySuccessful(e)); e->attrs.whole = 0x0000000000000000ULL; SetEntryTries(e, 15); EXPECT(15 == GetEntryTries(e)); EXPECT(0x00F0000000000000ULL == e->attrs.whole); e->attrs.whole = 0xFFFFFFFFFFFFFFFFULL; SetEntryTries(e, 0); EXPECT(0xFF0FFFFFFFFFFFFFULL == e->attrs.whole); EXPECT(0 == GetEntryTries(e)); e->attrs.whole = 0x0000000000000000ULL; SetEntryPriority(e, 15); EXPECT(0x000F000000000000ULL == e->attrs.whole); EXPECT(15 == GetEntryPriority(e)); e->attrs.whole = 0xFFFFFFFFFFFFFFFFULL; SetEntryPriority(e, 0); EXPECT(0xFFF0FFFFFFFFFFFFULL == e->attrs.whole); EXPECT(0 == GetEntryPriority(e)); e->attrs.whole = 0xFFFFFFFFFFFFFFFFULL; EXPECT(1 == GetEntrySuccessful(e)); EXPECT(15 == GetEntryPriority(e)); EXPECT(15 == GetEntryTries(e)); e->attrs.whole = 0x0123000000000000ULL; EXPECT(1 == GetEntrySuccessful(e)); EXPECT(2 == GetEntryTries(e)); EXPECT(3 == GetEntryPriority(e)); return TEST_OK; } static int EntryTypeTest() { GptData* gpt = GetEmptyGptData(); GptEntry* e = (GptEntry*)(gpt->primary_entries); Memcpy(&e->type, &guid_zero, sizeof(Guid)); EXPECT(1 == IsUnusedEntry(e)); EXPECT(0 == IsKernelEntry(e)); Memcpy(&e->type, &guid_kernel, sizeof(Guid)); EXPECT(0 == IsUnusedEntry(e)); EXPECT(1 == IsKernelEntry(e)); Memcpy(&e->type, &guid_rootfs, sizeof(Guid)); EXPECT(0 == IsUnusedEntry(e)); EXPECT(0 == IsKernelEntry(e)); return TEST_OK; } /* Make an entry unused by clearing its type. */ static void FreeEntry(GptEntry* e) { Memset(&e->type, 0, sizeof(Guid)); } /* Set up an entry. */ static void FillEntry(GptEntry* e, int is_kernel, int priority, int successful, int tries) { Memcpy(&e->type, (is_kernel ? &guid_kernel : &guid_zero), sizeof(Guid)); SetEntryPriority(e, priority); SetEntrySuccessful(e, successful); SetEntryTries(e, tries); } /* Invalidate all kernel entries and expect GptNextKernelEntry() cannot find * any usable kernel entry. */ static int NoValidKernelEntryTest() { GptData* gpt = GetEmptyGptData(); GptEntry* e1 = (GptEntry*)(gpt->primary_entries); BuildTestGptData(gpt); SetEntryPriority(e1 + KERNEL_A, 0); FreeEntry(e1 + KERNEL_B); RefreshCrc32(gpt); EXPECT(GPT_ERROR_NO_VALID_KERNEL == GptNextKernelEntry(gpt, NULL, NULL)); return TEST_OK; } static int GetNextNormalTest() { GptData* gpt = GetEmptyGptData(); GptEntry* e1 = (GptEntry*)(gpt->primary_entries); uint64_t start, size; /* Normal case - both kernels successful */ BuildTestGptData(gpt); FillEntry(e1 + KERNEL_A, 1, 2, 1, 0); FillEntry(e1 + KERNEL_B, 1, 2, 1, 0); RefreshCrc32(gpt); GptInit(gpt); EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_A == gpt->current_kernel); EXPECT(34 == start); EXPECT(100 == size); EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_B == gpt->current_kernel); EXPECT(134 == start); EXPECT(99 == size); EXPECT(GPT_ERROR_NO_VALID_KERNEL == GptNextKernelEntry(gpt, &start, &size)); EXPECT(-1 == gpt->current_kernel); /* Call as many times as you want; you won't get another kernel... */ EXPECT(GPT_ERROR_NO_VALID_KERNEL == GptNextKernelEntry(gpt, &start, &size)); EXPECT(-1 == gpt->current_kernel); return TEST_OK; } static int GetNextPrioTest() { GptData* gpt = GetEmptyGptData(); GptEntry* e1 = (GptEntry*)(gpt->primary_entries); uint64_t start, size; /* Priority 3, 4, 0, 4 - should boot order B, Y, A */ BuildTestGptData(gpt); FillEntry(e1 + KERNEL_A, 1, 3, 1, 0); FillEntry(e1 + KERNEL_B, 1, 4, 1, 0); FillEntry(e1 + KERNEL_X, 1, 0, 1, 0); FillEntry(e1 + KERNEL_Y, 1, 4, 1, 0); RefreshCrc32(gpt); GptInit(gpt); EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_B == gpt->current_kernel); EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_Y == gpt->current_kernel); EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_A == gpt->current_kernel); EXPECT(GPT_ERROR_NO_VALID_KERNEL == GptNextKernelEntry(gpt, &start, &size)); return TEST_OK; } static int GetNextTriesTest() { GptData* gpt = GetEmptyGptData(); GptEntry* e1 = (GptEntry*)(gpt->primary_entries); uint64_t start, size; /* Tries=nonzero is attempted just like success, but tries=0 isn't */ BuildTestGptData(gpt); FillEntry(e1 + KERNEL_A, 1, 2, 1, 0); FillEntry(e1 + KERNEL_B, 1, 3, 0, 0); FillEntry(e1 + KERNEL_X, 1, 4, 0, 1); FillEntry(e1 + KERNEL_Y, 1, 0, 0, 5); RefreshCrc32(gpt); GptInit(gpt); EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_X == gpt->current_kernel); EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_A == gpt->current_kernel); EXPECT(GPT_ERROR_NO_VALID_KERNEL == GptNextKernelEntry(gpt, &start, &size)); return TEST_OK; } static int GptUpdateTest() { GptData* gpt = GetEmptyGptData(); GptEntry* e = (GptEntry*)(gpt->primary_entries); GptEntry* e2 = (GptEntry*)(gpt->secondary_entries); uint64_t start, size; /* Tries=nonzero is attempted just like success, but tries=0 isn't */ BuildTestGptData(gpt); FillEntry(e + KERNEL_A, 1, 4, 1, 0); FillEntry(e + KERNEL_B, 1, 3, 0, 2); FillEntry(e + KERNEL_X, 1, 2, 0, 2); RefreshCrc32(gpt); GptInit(gpt); gpt->modified = 0; /* Nothing modified yet */ /* Successful kernel */ EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_A == gpt->current_kernel); EXPECT(1 == GetEntrySuccessful(e + KERNEL_A)); EXPECT(4 == GetEntryPriority(e + KERNEL_A)); EXPECT(0 == GetEntryTries(e + KERNEL_A)); EXPECT(1 == GetEntrySuccessful(e2 + KERNEL_A)); EXPECT(4 == GetEntryPriority(e2 + KERNEL_A)); EXPECT(0 == GetEntryTries(e2 + KERNEL_A)); /* Trying successful kernel changes nothing */ EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_TRY)); EXPECT(1 == GetEntrySuccessful(e + KERNEL_A)); EXPECT(4 == GetEntryPriority(e + KERNEL_A)); EXPECT(0 == GetEntryTries(e + KERNEL_A)); EXPECT(0 == gpt->modified); /* Marking it bad also does not update it. */ EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_BAD)); EXPECT(1 == GetEntrySuccessful(e + KERNEL_A)); EXPECT(4 == GetEntryPriority(e + KERNEL_A)); EXPECT(0 == GetEntryTries(e + KERNEL_A)); EXPECT(0 == gpt->modified); /* Kernel with tries */ EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_B == gpt->current_kernel); EXPECT(0 == GetEntrySuccessful(e + KERNEL_B)); EXPECT(3 == GetEntryPriority(e + KERNEL_B)); EXPECT(2 == GetEntryTries(e + KERNEL_B)); /* Marking it bad clears it */ EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_BAD)); EXPECT(0 == GetEntrySuccessful(e + KERNEL_B)); EXPECT(0 == GetEntryPriority(e + KERNEL_B)); EXPECT(0 == GetEntryTries(e + KERNEL_B)); /* Which affects both copies of the partition entries */ EXPECT(0 == GetEntrySuccessful(e2 + KERNEL_B)); EXPECT(0 == GetEntryPriority(e2 + KERNEL_B)); EXPECT(0 == GetEntryTries(e2 + KERNEL_B)); /* And that's caused the GPT to need updating */ EXPECT(0x0F == gpt->modified); /* Another kernel with tries */ EXPECT(GPT_SUCCESS == GptNextKernelEntry(gpt, &start, &size)); EXPECT(KERNEL_X == gpt->current_kernel); EXPECT(0 == GetEntrySuccessful(e + KERNEL_X)); EXPECT(2 == GetEntryPriority(e + KERNEL_X)); EXPECT(2 == GetEntryTries(e + KERNEL_X)); /* Trying it uses up a try */ EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_TRY)); EXPECT(0 == GetEntrySuccessful(e + KERNEL_X)); EXPECT(2 == GetEntryPriority(e + KERNEL_X)); EXPECT(1 == GetEntryTries(e + KERNEL_X)); EXPECT(0 == GetEntrySuccessful(e2 + KERNEL_X)); EXPECT(2 == GetEntryPriority(e2 + KERNEL_X)); EXPECT(1 == GetEntryTries(e2 + KERNEL_X)); /* Trying it again marks it inactive */ EXPECT(GPT_SUCCESS == GptUpdateKernelEntry(gpt, GPT_UPDATE_ENTRY_TRY)); EXPECT(0 == GetEntrySuccessful(e + KERNEL_X)); EXPECT(0 == GetEntryPriority(e + KERNEL_X)); EXPECT(0 == GetEntryTries(e + KERNEL_X)); return TEST_OK; } /* Given an invalid kernel type, and expect GptUpdateKernelEntry() returns * GPT_ERROR_INVALID_UPDATE_TYPE. */ static int UpdateInvalidKernelTypeTest() { GptData* gpt = GetEmptyGptData(); BuildTestGptData(gpt); gpt->current_kernel = 0; /* anything, but not CGPT_KERNEL_ENTRY_NOT_FOUND */ EXPECT(GPT_ERROR_INVALID_UPDATE_TYPE == GptUpdateKernelEntry(gpt, 99)); /* any invalid update_type value */ return TEST_OK; } /* Tests duplicate UniqueGuids can be detected. */ static int DuplicateUniqueGuidTest() { GptData* gpt = GetEmptyGptData(); GptHeader* h = (GptHeader*)gpt->primary_header; GptEntry* e = (GptEntry*)gpt->primary_entries; int i, j; struct { int duplicate; struct { uint64_t starting_lba; uint64_t ending_lba; uint32_t type_guid; uint32_t unique_guid; } entries[16]; /* enough for testing. */ } cases[] = { {0, {{100, 109, 1, 1}, {110, 119, 2, 2}, {120, 129, 3, 3}, {130, 139, 4, 4}, }}, {0, {{100, 109, 1, 1}, {110, 119, 1, 2}, {120, 129, 2, 3}, {130, 139, 2, 4}, }}, {1, {{100, 109, 1, 1}, {110, 119, 2, 2}, {120, 129, 3, 1}, {130, 139, 4, 4}, }}, {1, {{100, 109, 1, 1}, {110, 119, 1, 2}, {120, 129, 2, 3}, {130, 139, 2, 2}, }}, }; for (i = 0; i < ARRAY_SIZE(cases); ++i) { BuildTestGptData(gpt); ZeroEntries(gpt); for(j = 0; j < ARRAY_SIZE(cases[0].entries); ++j) { if (!cases[i].entries[j].starting_lba) break; e[j].starting_lba = cases[i].entries[j].starting_lba; e[j].ending_lba = cases[i].entries[j].ending_lba; SetGuid(&e[j].type, cases[i].entries[j].type_guid); SetGuid(&e[j].unique, cases[i].entries[j].unique_guid); } RefreshCrc32(gpt); EXPECT(cases[i].duplicate == CheckEntries(e, h)); } return TEST_OK; } /* disable MSVC warnings on unused arguments */ __pragma(warning (disable: 4100)) int main(int argc, char *argv[]) { int i; int error_count = 0; struct { char *name; test_func fp; int retval; } test_cases[] = { { TEST_CASE(StructSizeTest), }, { TEST_CASE(TestBuildTestGptData), }, { TEST_CASE(ParameterTests), }, { TEST_CASE(HeaderCrcTest), }, { TEST_CASE(SignatureTest), }, { TEST_CASE(RevisionTest), }, { TEST_CASE(SizeTest), }, { TEST_CASE(CrcFieldTest), }, { TEST_CASE(ReservedFieldsTest), }, { TEST_CASE(SizeOfPartitionEntryTest), }, { TEST_CASE(NumberOfPartitionEntriesTest), }, { TEST_CASE(MyLbaTest), }, { TEST_CASE(FirstUsableLbaAndLastUsableLbaTest), }, { TEST_CASE(EntriesCrcTest), }, { TEST_CASE(ValidEntryTest), }, { TEST_CASE(OverlappedPartitionTest), }, { TEST_CASE(SanityCheckTest), }, { TEST_CASE(NoValidKernelEntryTest), }, { TEST_CASE(EntryAttributeGetSetTest), }, { TEST_CASE(EntryTypeTest), }, { TEST_CASE(GetNextNormalTest), }, { TEST_CASE(GetNextPrioTest), }, { TEST_CASE(GetNextTriesTest), }, { TEST_CASE(GptUpdateTest), }, { TEST_CASE(UpdateInvalidKernelTypeTest), }, { TEST_CASE(DuplicateUniqueGuidTest), }, { TEST_CASE(TestCrc32TestVectors), }, }; for (i = 0; i < sizeof(test_cases)/sizeof(test_cases[0]); ++i) { printf("Running %s() ...\n", test_cases[i].name); test_cases[i].retval = test_cases[i].fp(); if (test_cases[i].retval) { printf(COL_RED "[ERROR]\n\n" COL_STOP); ++error_count; } else { printf(COL_GREEN "[PASS]\n\n" COL_STOP); } } if (error_count) { printf("\n--------------------------------------------------\n"); printf(COL_RED "The following %d test cases are failed:\n" COL_STOP, error_count); for (i = 0; i < sizeof(test_cases)/sizeof(test_cases[0]); ++i) { if (test_cases[i].retval) printf(" %s()\n", test_cases[i].name); } } return (error_count) ? 1 : 0; }