#!/bin/bash # Copyright (c) 2011 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # Sign the final build image using the "official" keys. # # Prerequisite tools needed in the system path: # # gbb_utility (from src/platform/vboot_reference) # vbutil_kernel (from src/platform/vboot_reference) # cgpt (from src/platform/vboot_reference) # dump_kernel_config (from src/platform/vboot_reference) # verity (from src/platform/verity) # load_kernel_test (from src/platform/vboot_reference) # dumpe2fs # sha1sum # Load common constants and variables. . "$(dirname "$0")/common.sh" # Print usage string usage() { cat < input_image /path/to/keys/dir [output_image] [version_file] where is one of: ssd (sign an SSD image) base (sign a base image, similar to an SSD image) recovery (sign a USB recovery image) factory (sign a factory install image) install (old alias to "factory") update_payload (sign a delta update hash) kernel (sign a kernel image) recovery_kernel (sign a recovery_kernel image) firmware (sign a firmware image) usb (sign an image to boot directly from USB) verify (verify an image including rootfs hashes) nv_lp0_firmware (sign nvidia lp0 firmware) output_image: File name of the signed output image version_file: File name of where to read the kernel and firmware versions. If you are signing an image, you must specify an [output_image] and optionally, a [version_file]. EOF if [[ $# -gt 0 ]]; then error "$*" exit 1 fi exit 0 } # Verify we have as many arguments as we expect, else show usage & quit. # Usage: # check_argc # check_argc check_argc() { case $# in 2) if [[ $1 -ne $2 ]]; then usage "command takes exactly $2 args" fi ;; 3) if [[ $1 -lt $2 || $1 -gt $3 ]]; then usage "command takes $2 to $3 args" fi ;; *) die "check_argc: incorrect number of arguments" esac } # Abort on errors. set -e # Add to the path since some tools reside here and may not be in the non-root # system path. PATH=$PATH:/usr/sbin:/sbin # Make sure the tools we need are available. for prereqs in gbb_utility vbutil_kernel cgpt dump_kernel_config verity \ load_kernel_test dumpe2fs sha1sum e2fsck; do type -P "${prereqs}" &>/dev/null || \ { echo "${prereqs} tool not found."; exit 1; } done TYPE=$1 INPUT_IMAGE=$2 KEY_DIR=$3 OUTPUT_IMAGE=$4 VERSION_FILE=$5 FIRMWARE_VERSION=1 KERNEL_VERSION=1 # Get current rootfs hash and kernel command line # ARGS: IMAGE KERNELPART grab_kernel_config() { local image=$1 local kernelpart=$2 # Kernel partition number to grab. # Grab the existing kernel partition and get the kernel config. temp_kimage=$(make_temp_file) extract_image_partition ${image} ${kernelpart} ${temp_kimage} dump_kernel_config ${temp_kimage} } # TODO(gauravsh): These are duplicated from chromeos-setimage. We need # to move all signing and rootfs code to one single place where it can be # reused. crosbug.com/19543 # get_verity_arg -> get_verity_arg() { echo "$1" | sed -n "s/.*\b$2=\([^ \"]*\).*/\1/p" } is_old_verity_argv() { local depth=$(echo "$1" | cut -f7 -d' ') if [ "$depth" = "0" ]; then return 0 fi return 1 } # Get the dmparams parameters from a kernel config. get_dmparams_from_config() { local kernel_config=$1 echo ${kernel_config} | sed -nre 's/.*dm="([^"]*)".*/\1/p' } # Get the verity root digest hash from a kernel config command line. get_hash_from_config() { local kernel_config=$1 local dm_config=$(get_dmparams_from_config "${kernel_config}") local vroot_dev=$(get_dm_slave "${dm_config}" vroot) if is_old_verity_argv "${vroot_dev}"; then echo ${vroot_dev} | cut -f9 -d ' ' else echo $(get_verity_arg "${vroot_dev}" root_hexdigest) fi } # Get the slave device and its args # get_dm_ags $dm_config [vboot|vroot] # Assumes we have only one slave device per device get_dm_slave() { local dm=$1 local device=$2 echo $(echo "${dm}" | sed -nre "s/.*${device}[^,]*,([^,]*).*/\1/p") } # Set the slave device and its args for a device # get_dm_ags $dm_config [vboot|vroot] args # Assumes we have only one slave device per device set_dm_slave() { local dm=$1 local device=$2 local slave=$3 echo $(echo "${dm}" | sed -nre "s#(.*${device}[^,]*,)([^,]*)(.*)#\1${slave}\3#p") } CALCULATED_KERNEL_CONFIG= CALCULATED_DM_ARGS= # Calculate rootfs hash of an image # Args: ROOTFS_IMAGE KERNEL_CONFIG HASH_IMAGE # # rootfs calculation parameters are grabbed from KERNEL_CONFIG # # Updated dm-verity arguments (to be replaced in kernel config command line) # with the new hash is stored in $CALCULATED_DM_ARGS and the new hash image is # written to the file HASH_IMAGE. calculate_rootfs_hash() { local rootfs_image=$1 local kernel_config=$2 local hash_image=$3 local dm_config=$(get_dmparams_from_config "${kernel_config}") if [ -z "${dm_config}" ]; then echo "WARNING: Couldn't grab dm_config. Aborting rootfs hash calculation." return 1 fi local vroot_dev=$(get_dm_slave "${dm_config}" vroot) local rootfs_sectors local verity_depth local verity_algorithm local root_dev local hash_dev local verity_bin="verity" if is_old_verity_argv "${vroot_dev}"; then # dm="0 2097152 verity ROOT_DEV HASH_DEV 2097152 1 \ # sha1 63b7ad16cb9db4b70b28593f825aa6b7825fdcf2" rootfs_sectors=$(echo ${vroot_dev} | cut -f2 -d' ') verity_depth=$(echo ${vroot_dev} | cut -f7 -d' ') verity_algorithm=$(echo ${vroot_dev} | cut -f8 -d' ') root_dev=$(echo ${vroot_dev} | cut -f4 -d ' ') hash_dev=$(echo ${vroot_dev} | cut -f5 -d ' ') # Hack around the fact that the signer needs to use the old version of # verity to generate legacy verity kernel parameters. If we find it, # we use it. type -P "verity-old" &>/dev/null && verity_bin="verity-old" else # Key-value parameters. rootfs_sectors=$(get_verity_arg "${vroot_dev}" hashstart) verity_depth=0 verity_algorithm=$(get_verity_arg "${vroot_dev}" alg) root_dev=$(get_verity_arg "${vroot_dev}" payload) hash_dev=$(get_verity_arg "${vroot_dev}" hashtree) salt=$(get_verity_arg "${vroot_dev}" salt) fi local salt_arg if [ -n "$salt" ]; then salt_arg="salt=$salt" fi # Run the verity tool on the rootfs partition. local slave=$(sudo ${verity_bin} mode=create \ alg=${verity_algorithm} \ payload="${rootfs_image}" \ payload_blocks=$((rootfs_sectors / 8)) \ hashtree="${hash_image}" ${salt_arg}) # Reconstruct new kernel config command line and replace placeholders. slave="$(echo "${slave}" | sed -s "s|ROOT_DEV|${root_dev}|g;s|HASH_DEV|${hash_dev}|")" CALCULATED_DM_ARGS="$(set_dm_slave "${dm_config}" vroot "${slave}")" CALCULATED_KERNEL_CONFIG="$(echo "${kernel_config}" | sed -e 's#\(.*dm="\)\([^"]*\)\(".*\)'"#\1${CALCULATED_DM_ARGS}\3#g")" } # Re-calculate rootfs hash, update rootfs and kernel command line(s). # Args: IMAGE DM_PARTNO KERN_A_KEYBLOCK KERN_A_PRIVKEY KERN_B_KEYBLOCK \ # KERN_B_PRIVKEY # # The rootfs is hashed by tool 'verity', and the hash data is stored after the # rootfs. A hash of those hash data (also known as final verity hash) may be # contained in kernel 2 or kernel 4 command line. # # This function reads dm-verity configuration from DM_PARTNO, rebuilds rootfs # hash, and then resigns kernel A & B by their keyblock and private key files. update_rootfs_hash() { local image=$1 # Input image. local dm_partno="$2" # Partition number of kernel that contains verity args. local kern_a_keyblock="$3" # Keyblock file for kernel A. local kern_a_privkey="$4" # Private key file for kernel A. local kern_b_keyblock="$5" # Keyblock file for kernel B. local kern_b_privkey="$6" # Private key file for kernel A. # Note even though there are two kernels, there is one place (after rootfs) # for hash data, so we must assume both kernel use same hash algorithm (i.e., # DM config). echo "Updating rootfs hash and updating config for Kernel partitions" # If we can't find dm parameters in the kernel config, bail out now. local kernel_config=$(grab_kernel_config "${image}" "${dm_partno}") local dm_config=$(get_dmparams_from_config "${kernel_config}") if [ -z "${dm_config}" ]; then echo "ERROR: Couldn't grab dm_config from kernel partition ${dm_partno}" echo " (config: ${kernel_config})" return 1 fi # check and clear need_to_resign tag local rootfs_dir=$(make_temp_dir) mount_image_partition_ro "${image}" 3 "${rootfs_dir}" if has_needs_to_be_resigned_tag "${rootfs_dir}"; then # remount as RW sudo umount "${rootfs_dir}" mount_image_partition "${image}" 3 "${rootfs_dir}" sudo rm -f "${rootfs_dir}/${TAG_NEEDS_TO_BE_SIGNED}" fi sudo umount "${rootfs_dir}" local rootfs_image=$(make_temp_file) extract_image_partition ${image} 3 ${rootfs_image} local hash_image=$(make_temp_file) # Disable rw mount support prior to hashing. disable_rw_mount "${rootfs_image}" if ! calculate_rootfs_hash "${rootfs_image}" "${kernel_config}" \ "${hash_image}"; then echo "calculate_rootfs_hash failed!" echo "Aborting rootfs hash update!" return 1 fi local rootfs_blocks=$(sudo dumpe2fs "${rootfs_image}" 2> /dev/null | grep "Block count" | tr -d ' ' | cut -f2 -d:) local rootfs_sectors=$((rootfs_blocks * 8)) # Overwrite the appended hashes in the rootfs dd if=${hash_image} of=${rootfs_image} bs=512 \ seek=${rootfs_sectors} conv=notrunc 2>/dev/null replace_image_partition ${image} 3 ${rootfs_image} # Update kernel command lines local dm_args="${CALCULATED_DM_ARGS}" local temp_config=$(make_temp_file) local temp_kimage=$(make_temp_file) local updated_kimage=$(make_temp_file) local kernelpart= local keyblock= local priv_key= local new_kernel_config= for kernelpart in 2 4; do if ! new_kernel_config="$( grab_kernel_config "${image}" "${kernelpart}" 2>/dev/null)" && [[ "${kernelpart}" == 4 ]]; then # Legacy images don't have partition 4. echo "Skipping empty kernel partition 4 (legacy images)." continue fi new_kernel_config="$(echo "${new_kernel_config}" | sed -e 's#\(.*dm="\)\([^"]*\)\(".*\)'"#\1${dm_args}\3#g")" echo "New config for kernel partition ${kernelpart} is:" echo "${new_kernel_config}" | tee "${temp_config}" extract_image_partition "${image}" "${kernelpart}" "${temp_kimage}" # Re-calculate kernel partition signature and command line. if [[ "$kernelpart" == 2 ]]; then keyblock="${kern_a_keyblock}" priv_key="${kern_a_privkey}" else keyblock="${kern_b_keyblock}" priv_key="${kern_b_privkey}" fi vbutil_kernel --repack ${updated_kimage} \ --keyblock ${keyblock} \ --signprivate ${priv_key} \ --version "${KERNEL_VERSION}" \ --oldblob ${temp_kimage} \ --config ${temp_config} replace_image_partition ${image} ${kernelpart} ${updated_kimage} done } # Update the SSD install-able vblock file on stateful partition. # ARGS: Image # This is deprecated because all new images should have a SSD boot-able kernel # in partition 4. However, the signer needs to be able to sign new & old images # (crbug.com/449450#c13) so we will probably never remove this. update_stateful_partition_vblock() { local image="$1" local kernb_image="$(make_temp_file)" local temp_out_vb="$(make_temp_file)" extract_image_partition "${image}" 4 "${kernb_image}" if [[ "$(dump_kernel_config "${kernb_image}" 2>/dev/null)" == "" ]]; then echo "Building vmlinuz_hd.vblock from legacy image partition 2." extract_image_partition "${image}" 2 "${kernb_image}" fi # vblock should always use kernel keyblock. vbutil_kernel --repack "${temp_out_vb}" \ --keyblock "${KEY_DIR}/kernel.keyblock" \ --signprivate "${KEY_DIR}/kernel_data_key.vbprivk" \ --oldblob "${kernb_image}" \ --vblockonly # Copy the installer vblock to the stateful partition. local stateful_dir=$(make_temp_dir) mount_image_partition "${image}" 1 "${stateful_dir}" sudo cp ${temp_out_vb} ${stateful_dir}/vmlinuz_hd.vblock sudo umount "${stateful_dir}" } # Do a sanity check on the image's rootfs # ARGS: Image verify_image_rootfs() { local image=$1 local rootfs_image=$(make_temp_file) extract_image_partition ${image} 3 ${rootfs_image} # This flips the read-only compatibility flag, so that e2fsck does not # complain about unknown file system capabilities. enable_rw_mount ${rootfs_image} echo "Running e2fsck to check root file system for errors" sudo e2fsck -fn "${rootfs_image}" || { echo "Root file system has errors!" && exit 1;} } # Extracts a firmware updater bundle (for firmware image binaries) file # (generated by src/platform/firmware/pack_firmware.sh). # Args: INPUT_FILE OUTPUT_DIR extract_firmware_bundle() { local input="$(readlink -f "$1")" local output_dir="$2" if [ ! -s "${input}" ]; then return 1 elif grep -q '^##CUTHERE##' "${input}"; then # Bundle supports self-extraction. "$input" --sb_extract "${output_dir}" || die "Extracting firmware autoupdate (--sb_extract) failed." else # Legacy bundle - try uudecode. uudecode -o - ${input} | tar -C ${output_dir} -zxf - 2>/dev/null || die "Extracting firmware autoupdate failed." fi } # Repacks firmware updater bundle content from given folder. # Args: INPUT_DIR TARGET_SCRIPT repack_firmware_bundle() { local input_dir="$1" local target="$(readlink -f "$2")" if [ ! -s "${target}" ]; then return 1 elif grep -q '^##CUTHERE##' "${target}"; then # Bundle supports repacking. # Workaround issue crosbug.com/p/33719 sed -i \ 's/shar -Q -q -x -m -w/shar -Q -q -x -m --no-character-count/' \ "${target}" "$target" --sb_repack "${input_dir}" || die "Updating firmware autoupdate (--sb_repack) failed." else # Legacy bundle using uuencode + tar.gz. # Replace MD5 checksum in the firmware update payload. local newfd_checksum="$(md5sum ${input_dir}/bios.bin | cut -f 1 -d ' ')" local temp_version="$(make_temp_file)" cat ${input_dir}/VERSION | sed -e "s#\(.*\)\ \(.*bios.bin.*\)#${newfd_checksum}\ \2#" > ${temp_version} mv ${temp_version} ${input_dir}/VERSION # Re-generate firmware_update.tgz and copy over encoded archive in # the original shell ball. sed -ine '/^begin .*firmware_package/,/end/D' "$target" tar zcf - -C "${input_dir}" . | uuencode firmware_package.tgz >>"${target}" fi } # Sign a firmware in-place with the given keys. # Args: FIRMWARE_IMAGE KEY_DIR FIRMWARE_VERSION [LOEM_OUTPUT_DIR] sign_firmware() { local image=$1 local key_dir=$2 local firmware_version=$3 local loem_output_dir=${4:-} # Resign the firmware with new keys, also replacing the root and recovery # public keys in the GBB. "${SCRIPT_DIR}/sign_firmware.sh" "${image}" "${key_dir}" "${image}" \ "${firmware_version}" "${loem_output_dir}" echo "Signed firmware image output to ${image}" } # Sign nvidia lp0 firmware with the given keys. # Args: NV_LP0_FIRMWARE_IMAGE KEY_DIR sign_nv_lp0_firmware() { local nv_lp0_fw_image=$1 local key_dir=$2 "${SCRIPT_DIR}/sign_nv_cbootimage.sh" "lp0_firmware" \ "${key_dir%/}/nv_pkc.pem" "${nv_lp0_fw_image}" "tegra210" echo "Signed nvidia lp0 firmware image output to ${nv_lp0_fw_image}" } # Sign a kernel in-place with the given keys. # Args: KERNEL_IMAGE KEY_DIR KERNEL_VERSION sign_kernel() { local image=$1 local key_dir=$2 local kernel_version=$3 # Note: Although vbutil_kernel may correctly handle specifying the same # output file as the input file, we do not want to rely on it correctly # handing that. Hence, the use of a temporary file. local temp_kernel=$(make_temp_file) # Resign the kernel with new keys. vbutil_kernel --repack "${temp_kernel}" \ --keyblock "${key_dir}/kernel.keyblock" \ --signprivate "${key_dir}/kernel_data_key.vbprivk" \ --version "${kernel_version}" \ --oldblob "${image}" mv "${temp_kernel}" "${image}" echo "Signed kernel image output to ${image}" } # Sign a recovery kernel in-place with the given keys. # Args: KERNEL_IMAGE KEY_DIR KERNEL_VERSION sign_recovery_kernel() { local image=$1 local key_dir=$2 local kernel_version=$3 # Note: Although vbutil_kernel may correctly handle specifying the same # output file as the input file, we do not want to rely on it correctly # handing that. Hence, the use of a temporary file. local temp_kernel=$(make_temp_file) # Resign the kernel with new recovery keys. vbutil_kernel --repack "${temp_kernel}" \ --keyblock "${key_dir}/recovery_kernel.keyblock" \ --signprivate "${key_dir}/recovery_kernel_data_key.vbprivk" \ --version "${kernel_version}" \ --oldblob "${image}" mv "${temp_kernel}" "${image}" echo "Signed recovery_kernel image output to ${image}" } # Sign a delta update payload (usually created by paygen). # Args: INPUT_IMAGE KEY_DIR OUTPUT_IMAGE sign_update_payload() { local image=$1 local key_dir=$2 local output=$3 local key_size key_file="${key_dir}/update_key.pem" # Maps key size to verified boot's algorithm id (for pad_digest_utility). # Hashing algorithm is always SHA-256. local algo algos=( [1024]=1 [2048]=4 [4096]=7 [8192]=10 ) key_size=$(openssl rsa -text -noout -in "${key_file}" | \ sed -n -r '1{s/Private-Key: \(([0-9]*) bit\)/\1/p}') algo=${algos[${key_size}]} if [[ -z ${algo} ]]; then die "Unknown algorithm specified by key_size=${key_size}" fi pad_digest_utility ${algo} "${image}" | \ openssl rsautl -sign -pkcs -inkey "${key_file}" -out "${output}" } # Re-sign the firmware AU payload inside the image rootfs with a new keys. # Args: IMAGE resign_firmware_payload() { local image=$1 if [ -n "${NO_FWUPDATE}" ]; then echo "Skipping firmware update." return fi # Grab firmware image from the autoupdate bundle (shellball). local rootfs_dir=$(make_temp_dir) mount_image_partition ${image} 3 ${rootfs_dir} local firmware_bundle="${rootfs_dir}/usr/sbin/chromeos-firmwareupdate" local shellball_dir=$(make_temp_dir) # extract_firmware_bundle can fail if the image has no firmware update. if ! extract_firmware_bundle "${firmware_bundle}" "${shellball_dir}"; then # Unmount now to prevent changes. sudo umount "${rootfs_dir}" echo "Didn't find a firmware update. Not signing firmware." return fi echo "Found a valid firmware update shellball." local image_file sign_args=() loem_sfx loem_output_dir for image_file in "${shellball_dir}"/bios*.bin; do if [[ -e "${KEY_DIR}/loem.ini" ]]; then # Extract the extended details from "bios.bin" and use that in the # subdir for the keyset. loem_sfx=$(sed -r 's:.*/bios([^/]*)[.]bin$:\1:' <<<"${image_file}") loem_output_dir="${shellball_dir}/keyset${loem_sfx}" sign_args=( "${loem_output_dir}" ) mkdir -p "${loem_output_dir}" fi sign_firmware "${image_file}" "${KEY_DIR}" "${FIRMWARE_VERSION}" \ "${sign_args[@]}" done local signer_notes="${shellball_dir}/VERSION.signer" echo "" >"$signer_notes" echo "Signed with keyset in $(readlink -f "${KEY_DIR}") ." >>"$signer_notes" new_shellball=$(make_temp_file) cp -f "${firmware_bundle}" "${new_shellball}" chmod a+rx "${new_shellball}" repack_firmware_bundle "${shellball_dir}" "${new_shellball}" sudo cp -f "${new_shellball}" "${firmware_bundle}" sudo chmod a+rx "${firmware_bundle}" # Unmount now to flush changes. sudo umount "${rootfs_dir}" echo "Re-signed firmware AU payload in $image" } # Verify an image including rootfs hash using the specified keys. verify_image() { local rootfs_image=$(make_temp_file) extract_image_partition ${INPUT_IMAGE} 3 ${rootfs_image} echo "Verifying RootFS hash..." # What we get from image. local kernel_config # What we calculate from the rootfs. local new_kernel_config # Depending on the type of image, the verity parameters may # exist in either kernel partition 2 or kernel partition 4 local partnum for partnum in 2 4; do echo "Considering Kernel partition $partnum" kernel_config=$(grab_kernel_config ${INPUT_IMAGE} $partnum) local hash_image=$(make_temp_file) if ! calculate_rootfs_hash "${rootfs_image}" "${kernel_config}" \ "${hash_image}"; then echo "Trying next kernel partition." continue fi new_kernel_config="$CALCULATED_KERNEL_CONFIG" break done # Note: If calculate_rootfs_hash succeeded above, these should # be non-empty. expected_hash=$(get_hash_from_config "${new_kernel_config}") got_hash=$(get_hash_from_config "${kernel_config}") if [ -z "${expected_hash}" ] || [ -z "${got_hash}" ]; then echo "FAILURE: Couldn't verify RootFS hash on the image." exit 1 fi if [ ! "${got_hash}" = "${expected_hash}" ]; then cat </dev/null 2>&1 && \ echo "YES"; } || echo "NO" echo -n "With Recovery Key (Recovery Mode ON, Dev Mode ON): " && \ { load_kernel_test "${INPUT_IMAGE}" "${try_key}" -b 3 >/dev/null 2>&1 && \ echo "YES"; } || echo "NO" try_key=${KEY_DIR}/kernel_subkey.vbpubk # The SSD key is only used in non-recovery mode. echo -n "With SSD Key (Recovery Mode OFF, Dev Mode OFF): " && \ { load_kernel_test "${INPUT_IMAGE}" "${try_key}" -b 0 >/dev/null 2>&1 && \ echo "YES"; } || echo "NO" echo -n "With SSD Key (Recovery Mode OFF, Dev Mode ON): " && \ { load_kernel_test "${INPUT_IMAGE}" "${try_key}" -b 1 >/dev/null 2>&1 && \ echo "YES"; } || echo "NO" set -e verify_image_rootfs "${INPUT_IMAGE}" # TODO(gauravsh): Check embedded firmware AU signatures. } # Re-calculate recovery kernel hash. # Args: IMAGE_BIN update_recovery_kernel_hash() { image_bin=$1 # Update the Kernel B hash in Kernel A command line local old_kerna_config=$(grab_kernel_config "${image_bin}" 2) local new_kernb=$(make_temp_file) extract_image_partition ${image_bin} 4 ${new_kernb} local new_kernb_hash=$(sha1sum ${new_kernb} | cut -f1 -d' ') new_kerna_config=$(make_temp_file) echo "$old_kerna_config" | sed -e "s#\(kern_b_hash=\)[a-z0-9]*#\1${new_kernb_hash}#" \ > ${new_kerna_config} echo "New config for kernel partition 2 is" cat ${new_kerna_config} local temp_kimagea=$(make_temp_file) extract_image_partition ${image_bin} 2 ${temp_kimagea} # Re-calculate kernel partition signature and command line. local updated_kimagea=$(make_temp_file) vbutil_kernel --repack ${updated_kimagea} \ --keyblock ${KEY_DIR}/recovery_kernel.keyblock \ --signprivate ${KEY_DIR}/recovery_kernel_data_key.vbprivk \ --version "${KERNEL_VERSION}" \ --oldblob ${temp_kimagea} \ --config ${new_kerna_config} replace_image_partition ${image_bin} 2 ${updated_kimagea} } # Sign an image file with proper keys. # Args: IMAGE_TYPE INPUT OUTPUT DM_PARTNO KERN_A_KEYBLOCK KERN_A_PRIVKEY \ # KERN_B_KEYBLOCK KERN_B_PRIVKEY # # A ChromiumOS image file (INPUT) always contains 2 partitions (kernel A & B). # This function will rebuild hash data by DM_PARTNO, resign kernel partitions by # their KEYBLOCK and PRIVKEY files, and then write to OUTPUT file. Note some # special images (specified by IMAGE_TYPE, like 'recovery' or 'factory_install') # may have additional steps (ex, tweaking verity hash or not stripping files) # when generating output file. sign_image_file() { local image_type="$1" local input="$2" local output="$3" local dm_partno="$4" local kernA_keyblock="$5" local kernA_privkey="$6" local kernB_keyblock="$7" local kernB_privkey="$8" echo "Preparing ${image_type} image..." cp --sparse=always "${input}" "${output}" resign_firmware_payload "${output}" # We do NOT strip /boot for factory installer, since some devices need it to # boot EFI. crbug.com/260512 would obsolete this requirement. # # We also do NOT strip /boot for legacy BIOS devices. This is because # "cros_installer postinst" on legacy BIOS relies on presence of /boot in # rootfs. We infer the BIOS type from the kernel config. local kerna_config="$(grab_kernel_config "${input}" 2)" if [[ "${image_type}" != "factory_install" && " ${kerna_config} " != *" cros_legacy "* ]]; then "${SCRIPT_DIR}/strip_boot_from_image.sh" --image "${output}" fi update_rootfs_hash "${output}" "${dm_partno}" \ "${kernA_keyblock}" "${kernA_privkey}" \ "${kernB_keyblock}" "${kernB_privkey}" update_stateful_partition_vblock "${output}" if [[ "${image_type}" == "recovery" ]]; then update_recovery_kernel_hash "${output}" fi echo "Signed ${image_type} image output to ${output}" } # Verification case ${TYPE} in dump_config) check_argc $# 2 for partnum in 2 4; do echo "kernel config in partition number ${partnum}:" grab_kernel_config "${INPUT_IMAGE}" ${partnum} echo done exit 0 ;; verify) check_argc $# 2 verify_image exit 0 ;; *) # All other signing commands take 4 to 5 args. if [ -z "${OUTPUT_IMAGE}" ]; then # Friendlier message. usage "Missing output image name" fi check_argc $# 4 5 ;; esac # If a version file was specified, read the firmware and kernel # versions from there. if [ -n "${VERSION_FILE}" ]; then FIRMWARE_VERSION=$(sed -n 's#^firmware_version=\(.*\)#\1#pg' ${VERSION_FILE}) KERNEL_VERSION=$(sed -n 's#^kernel_version=\(.*\)#\1#pg' ${VERSION_FILE}) fi echo "Using firmware version: ${FIRMWARE_VERSION}" echo "Using kernel version: ${KERNEL_VERSION}" # Make all modifications on output copy. if [[ "${TYPE}" == "ssd" || "${TYPE}" == "base" ]]; then sign_image_file "SSD" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 2 \ "${KEY_DIR}/kernel.keyblock" "${KEY_DIR}/kernel_data_key.vbprivk" \ "${KEY_DIR}/kernel.keyblock" "${KEY_DIR}/kernel_data_key.vbprivk" elif [[ "${TYPE}" == "usb" ]]; then sign_image_file "USB" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 2 \ "${KEY_DIR}/recovery_kernel.keyblock" \ "${KEY_DIR}/recovery_kernel_data_key.vbprivk" \ "${KEY_DIR}/kernel.keyblock" \ "${KEY_DIR}/kernel_data_key.vbprivk" elif [[ "${TYPE}" == "recovery" ]]; then sign_image_file "recovery" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 4 \ "${KEY_DIR}/recovery_kernel.keyblock" \ "${KEY_DIR}/recovery_kernel_data_key.vbprivk" \ "${KEY_DIR}/kernel.keyblock" \ "${KEY_DIR}/kernel_data_key.vbprivk" elif [[ "${TYPE}" == "factory" ]] || [[ "${TYPE}" == "install" ]]; then sign_image_file "factory_install" "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" 2 \ "${KEY_DIR}/installer_kernel.keyblock" \ "${KEY_DIR}/installer_kernel_data_key.vbprivk" \ "${KEY_DIR}/kernel.keyblock" \ "${KEY_DIR}/kernel_data_key.vbprivk" elif [[ "${TYPE}" == "firmware" ]]; then if [[ -e "${KEY_DIR}/loem.ini" ]]; then echo "LOEM signing not implemented yet for firmware images" exit 1 fi cp ${INPUT_IMAGE} ${OUTPUT_IMAGE} sign_firmware ${OUTPUT_IMAGE} ${KEY_DIR} ${FIRMWARE_VERSION} elif [[ "${TYPE}" == "nv_lp0_firmware" ]]; then if [[ -e "${KEY_DIR}/loem.ini" ]]; then echo "LOEM signing not implemented yet for nv_lp0_firmware images" exit 1 fi cp "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" sign_nv_lp0_firmware "${OUTPUT_IMAGE}" "${KEY_DIR}" elif [[ "${TYPE}" == "kernel" ]]; then if [[ -e "${KEY_DIR}/loem.ini" ]]; then echo "LOEM signing not implemented yet for kernel images" exit 1 fi cp "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" sign_kernel "${OUTPUT_IMAGE}" "${KEY_DIR}" "${KERNEL_VERSION}" elif [[ "${TYPE}" == "recovery_kernel" ]]; then if [[ -e "${KEY_DIR}/loem.ini" ]]; then echo "LOEM signing not implemented yet for recovery_kernel images" exit 1 fi cp "${INPUT_IMAGE}" "${OUTPUT_IMAGE}" sign_recovery_kernel "${OUTPUT_IMAGE}" "${KEY_DIR}" "${KERNEL_VERSION}" elif [[ "${TYPE}" == "update_payload" ]]; then sign_update_payload ${INPUT_IMAGE} ${KEY_DIR} ${OUTPUT_IMAGE} else echo "Invalid type ${TYPE}" exit 1 fi