/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "crossystem_arch.h" #include "crossystem.h" #include "crossystem_vbnv.h" #include "host_common.h" #include "utility.h" #include "vboot_struct.h" /* ACPI constants from Chrome OS Main Processor Firmware Spec */ /* Boot reasons from BINF.0, from early H2C firmware */ /* Unknown */ #define BINF0_UNKNOWN 0 /* Normal boot to Chrome OS */ #define BINF0_NORMAL 1 /* Developer mode boot (developer mode warning displayed) */ #define BINF0_DEVELOPER 2 /* Recovery initiated by user, using recovery button */ #define BINF0_RECOVERY_BUTTON 3 /* Recovery initiated by user pressing a key at developer mode warning * screen */ #define BINF0_RECOVERY_DEV_SCREEN_KEY 4 /* Recovery caused by BIOS failed signature check (neither rewritable * firmware was valid) */ #define BINF0_RECOVERY_RW_FW_BAD 5 /* Recovery caused by no OS kernel detected */ #define BINF0_RECOVERY_NO_OS 6 /* Recovery caused by OS kernel failed signature check */ #define BINF0_RECOVERY_BAD_OS 7 /* Recovery initiated by OS */ #define BINF0_RECOVERY_OS_INITIATED 8 /* OS-initiated S3 diagnostic path (debug mode boot) */ #define BINF0_S3_DIAGNOSTIC_PATH 9 /* S3 resume failed */ #define BINF0_S3_RESUME_FAILED 10 /* Recovery caused by TPM error */ #define BINF0_RECOVERY_TPM_ERROR 11 /* CHSW bitflags */ #define CHSW_RECOVERY_BOOT 0x00000002 #define CHSW_RECOVERY_EC_BOOT 0x00000004 #define CHSW_DEV_BOOT 0x00000020 #define CHSW_WP_BOOT 0x00000200 /* CMOS reboot field bitflags */ #define CMOSRF_RECOVERY 0x80 #define CMOSRF_DEBUG_RESET 0x40 #define CMOSRF_TRY_B 0x20 /* GPIO signal types */ #define GPIO_SIGNAL_TYPE_RECOVERY 1 #define GPIO_SIGNAL_TYPE_DEPRECATED_DEV 2 /* Deprecated; see chromium:942901 */ #define GPIO_SIGNAL_TYPE_WP 3 #define GPIO_SIGNAL_TYPE_PHASE_ENFORCEMENT 4 /* Base name for ACPI files */ #define ACPI_BASE_PATH "/sys/devices/platform/chromeos_acpi" /* Paths for frequently used ACPI files */ #define ACPI_BINF_PATH ACPI_BASE_PATH "/BINF" #define ACPI_CHNV_PATH ACPI_BASE_PATH "/CHNV" #define ACPI_CHSW_PATH ACPI_BASE_PATH "/CHSW" #define ACPI_FMAP_PATH ACPI_BASE_PATH "/FMAP" #define ACPI_GPIO_PATH ACPI_BASE_PATH "/GPIO" #define ACPI_VBNV_PATH ACPI_BASE_PATH "/VBNV" #define ACPI_VDAT_PATH ACPI_BASE_PATH "/VDAT" /* Base name for GPIO files */ #define GPIO_BASE_PATH "/sys/class/gpio" #define GPIO_EXPORT_PATH GPIO_BASE_PATH "/export" /* Filename for NVRAM file */ #define NVRAM_PATH "/dev/nvram" /* Filename for legacy firmware update tries */ #define NEED_FWUPDATE_PATH "/mnt/stateful_partition/.need_firmware_update" /* Filenames for PCI Vendor and Device IDs */ #define PCI_VENDOR_ID_PATH "/sys/bus/pci/devices/0000:00:00.0/vendor" #define PCI_DEVICE_ID_PATH "/sys/bus/pci/devices/0000:00:00.0/device" typedef struct { unsigned int base; unsigned int uid; } Basemapping; static void VbFixCmosChecksum(FILE* file) { int fd = fileno(file); ioctl(fd, NVRAM_SETCKS); } static int VbCmosRead(unsigned offs, size_t size, void *ptr) { size_t res; FILE* f; f = fopen(NVRAM_PATH, "rb"); if (!f) return -1; if (0 != fseek(f, offs, SEEK_SET)) { fclose(f); return -1; } res = fread(ptr, size, 1, f); if (1 != res && errno == EIO && ferror(f)) { VbFixCmosChecksum(f); res = fread(ptr, size, 1, f); } fclose(f); return (1 == res) ? 0 : -1; } static int VbCmosWrite(unsigned offs, size_t size, const void *ptr) { size_t res; FILE* f; f = fopen(NVRAM_PATH, "w+b"); if (!f) return -1; if (0 != fseek(f, offs, SEEK_SET)) { fclose(f); return -1; } res = fwrite(ptr, size, 1, f); if (1 != res && errno == EIO && ferror(f)) { VbFixCmosChecksum(f); res = fwrite(ptr, size, 1, f); } fclose(f); return (1 == res) ? 0 : -1; } int vb2_read_nv_storage(struct vb2_context *ctx) { unsigned offs, blksz; unsigned expectsz = vb2_nv_get_size(ctx); /* Get the byte offset from VBNV */ if (ReadFileInt(ACPI_VBNV_PATH ".0", &offs) < 0) return -1; if (ReadFileInt(ACPI_VBNV_PATH ".1", &blksz) < 0) return -1; if (expectsz > blksz) return -1; /* NV storage block is too small */ if (0 != VbCmosRead(offs, expectsz, ctx->nvdata)) return -1; return 0; } int vb2_write_nv_storage(struct vb2_context *ctx) { unsigned offs, blksz; unsigned expectsz = vb2_nv_get_size(ctx); if (!(ctx->flags & VB2_CONTEXT_NVDATA_CHANGED)) return 0; /* Nothing changed, so no need to write */ /* Get the byte offset from VBNV */ if (ReadFileInt(ACPI_VBNV_PATH ".0", &offs) < 0) return -1; if (ReadFileInt(ACPI_VBNV_PATH ".1", &blksz) < 0) return -1; if (expectsz > blksz) return -1; /* NV storage block is too small */ if (0 != VbCmosWrite(offs, expectsz, ctx->nvdata)) return -1; /* Also attempt to write using mosys if using vboot2 */ VbSharedDataHeader *sh = VbSharedDataRead(); if (sh) { if (sh->flags & VBSD_BOOT_FIRMWARE_VBOOT2) vb2_write_nv_storage_mosys(ctx); free(sh); } return 0; } /* * Get buffer data from ACPI. * * Buffer data is expected to be represented by a file which is a text dump of * the buffer, representing each byte by two hex numbers, space and newline * separated. * * On success, stores the amount of data read in bytes to *buffer_size; on * erros, sets *buffer_size=0. * * Input - ACPI file name to get data from. * * Output: a pointer to AcpiBuffer structure containing the binary * representation of the data. The caller is responsible for * deallocating the pointer, this will take care of both the structure * and the buffer. Null in case of error. */ static uint8_t* VbGetBuffer(const char* filename, int* buffer_size) { FILE* f = NULL; char* file_buffer = NULL; uint8_t* output_buffer = NULL; uint8_t* return_value = NULL; /* Assume error until proven otherwise */ if (buffer_size) *buffer_size = 0; do { struct stat fs; uint8_t* output_ptr; int rv, i, real_size; int parsed_size = 0; int fd = open(filename, O_RDONLY); if (fd == -1) break; rv = fstat(fd, &fs); if (rv || !S_ISREG(fs.st_mode)) { close(fd); break; } f = fdopen(fd, "r"); if (!f) { close(fd); break; } file_buffer = malloc(fs.st_size + 1); if (!file_buffer) break; real_size = fread(file_buffer, 1, fs.st_size, f); if (!real_size) break; file_buffer[real_size] = '\0'; /* Each byte in the output will replace two characters and a * space in the input, so the output size does not exceed input * side/3 (a little less if account for newline characters). */ output_buffer = malloc(real_size/3); if (!output_buffer) break; output_ptr = output_buffer; /* process the file contents */ for (i = 0; i < real_size; i++) { char* base, *end; base = file_buffer + i; if (!isxdigit(*base)) continue; output_ptr[parsed_size++] = strtol(base, &end, 16) & 0xff; if ((end - base) != 2) /* Input file format error */ break; /* skip the second character and the following space */ i += 2; } if (i == real_size) { /* all is well */ return_value = output_buffer; output_buffer = NULL; /* prevent it from deallocating */ if (buffer_size) *buffer_size = parsed_size; } } while(0); /* wrap up */ if (f) fclose(f); if (file_buffer) free(file_buffer); if (output_buffer) free(output_buffer); return return_value; } VbSharedDataHeader* VbSharedDataRead(void) { VbSharedDataHeader* sh; int got_size = 0; int expect_size; sh = (VbSharedDataHeader*)VbGetBuffer(ACPI_VDAT_PATH, &got_size); if (!sh) return NULL; /* Make sure the size is sufficient for the struct version we got. * Check supported old versions first. */ if (1 == sh->struct_version) expect_size = VB_SHARED_DATA_HEADER_SIZE_V1; else { /* There'd better be enough data for the current header size. */ expect_size = sizeof(VbSharedDataHeader); } if (got_size < expect_size) { free(sh); return NULL; } if (sh->data_size > got_size) sh->data_size = got_size; /* Truncated read */ return sh; } /* Read the CMOS reboot field in NVRAM. * * Returns 0 if the mask is clear in the field, 1 if set, or -1 if error. */ static int VbGetCmosRebootField(uint8_t mask) { unsigned chnv; uint8_t nvbyte; /* Get the byte offset from CHNV */ if (ReadFileInt(ACPI_CHNV_PATH, &chnv) < 0) return -1; if (0 != VbCmosRead(chnv, 1, &nvbyte)) return -1; return (nvbyte & mask ? 1 : 0); } /* Write the CMOS reboot field in NVRAM. * * Sets (value=0) or clears (value!=0) the mask in the byte. * * Returns 0 if success, or -1 if error. */ static int VbSetCmosRebootField(uint8_t mask, int value) { unsigned chnv; uint8_t nvbyte; /* Get the byte offset from CHNV */ if (ReadFileInt(ACPI_CHNV_PATH, &chnv) < 0) return -1; if (0 != VbCmosRead(chnv, 1, &nvbyte)) return -1; /* Set/clear the mask */ if (value) nvbyte |= mask; else nvbyte &= ~mask; /* Write the byte back */ if (0 != VbCmosWrite(chnv, 1, &nvbyte)) return -1; /* Success */ return 0; } /* Read the active main firmware type into the destination buffer. * Passed the destination and its size. Returns the destination, or * NULL if error. */ static const char* VbReadMainFwType(char* dest, int size) { unsigned value; /* Try reading type from BINF.3 */ if (ReadFileInt(ACPI_BINF_PATH ".3", &value) == 0) { switch(value) { case BINF3_LEGACY: return StrCopy(dest, "legacy", size); case BINF3_NETBOOT: return StrCopy(dest, "netboot", size); case BINF3_RECOVERY: return StrCopy(dest, "recovery", size); case BINF3_NORMAL: return StrCopy(dest, "normal", size); case BINF3_DEVELOPER: return StrCopy(dest, "developer", size); default: break; /* Fall through to legacy handling */ } } /* Fall back to BINF.0 for legacy systems like Mario. */ if (ReadFileInt(ACPI_BINF_PATH ".0", &value) < 0) /* Both BINF.0 and BINF.3 are missing, so this isn't Chrome OS * firmware. */ return StrCopy(dest, "nonchrome", size); switch(value) { case BINF0_NORMAL: return StrCopy(dest, "normal", size); case BINF0_DEVELOPER: return StrCopy(dest, "developer", size); case BINF0_RECOVERY_BUTTON: case BINF0_RECOVERY_DEV_SCREEN_KEY: case BINF0_RECOVERY_RW_FW_BAD: case BINF0_RECOVERY_NO_OS: case BINF0_RECOVERY_BAD_OS: case BINF0_RECOVERY_OS_INITIATED: case BINF0_RECOVERY_TPM_ERROR: /* Assorted flavors of recovery boot reason. */ return StrCopy(dest, "recovery", size); default: /* Other values don't map cleanly to firmware type. */ return NULL; } } /* Read the recovery reason. Returns the reason code or -1 if error. */ static vb2_error_t VbGetRecoveryReason(void) { unsigned value; /* Try reading type from BINF.4 */ if (ReadFileInt(ACPI_BINF_PATH ".4", &value) == 0) return value; /* Fall back to BINF.0 for legacy systems like Mario. */ if (ReadFileInt(ACPI_BINF_PATH ".0", &value) < 0) return -1; switch(value) { case BINF0_NORMAL: case BINF0_DEVELOPER: return VB2_RECOVERY_NOT_REQUESTED; case BINF0_RECOVERY_BUTTON: return VB2_RECOVERY_RO_MANUAL; case BINF0_RECOVERY_RW_FW_BAD: return VB2_RECOVERY_RO_INVALID_RW; case BINF0_RECOVERY_NO_OS: return VB2_RECOVERY_RW_NO_KERNEL; case BINF0_RECOVERY_BAD_OS: return VB2_RECOVERY_RW_INVALID_OS; case BINF0_RECOVERY_OS_INITIATED: return VB2_RECOVERY_LEGACY; default: /* Other values don't map cleanly to firmware type. */ return -1; } } /* Physical GPIO number may be accessed through /sys/class/gpio/gpio/, * but and may differ by some offset . To determine that constant, * we look for a directory named /sys/class/gpio/gpiochip/. If there's not * exactly one match for that, we're SOL. */ static int FindGpioChipOffset(unsigned *gpio_num, unsigned *offset, const char *name) { DIR *dir; struct dirent *ent; int match = 0; dir = opendir(GPIO_BASE_PATH); if (!dir) { return 0; } while(0 != (ent = readdir(dir))) { if (1 == sscanf(ent->d_name, "gpiochip%u", offset)) { match++; } } closedir(dir); return (1 == match); } /* Physical GPIO number may be accessed through /sys/class/gpio/gpio/, * but and may differ by some offset . To determine that constant, * we look for a directory named /sys/class/gpio/gpiochip/ and check for * a 'label' file inside of it to find the expected the controller name. */ static int FindGpioChipOffsetByLabel(unsigned *gpio_num, unsigned *offset, const char *name) { DIR *dir; struct dirent *ent; char filename[128]; char chiplabel[128]; int match = 0; unsigned controller_offset = 0; dir = opendir(GPIO_BASE_PATH); if (!dir) { return 0; } while(0 != (ent = readdir(dir))) { if (1 == sscanf(ent->d_name, "gpiochip%u", &controller_offset)) { /* * Read the file at gpiochip/label to get the * identifier for this bank of GPIOs. */ snprintf(filename, sizeof(filename), "%s/gpiochip%u/label", GPIO_BASE_PATH, controller_offset); if (ReadFileString(chiplabel, sizeof(chiplabel), filename)) { if (!strncasecmp(chiplabel, name, strlen(name))) { /* * Store offset when chip label is * matched. */ *offset = controller_offset; match++; } } } } closedir(dir); return (1 == match); } static int FindGpioChipOffsetByNumber(unsigned *gpio_num, unsigned *offset, Basemapping *data) { DIR *dir; struct dirent *ent; int match = 0; /* Obtain relative GPIO number. * The assumption here is the Basemapping * table is arranged in decreasing order of * base address and ends with 0. * A UID with value 0 indicates an invalid range * and causes an early return to avoid the directory * opening code below. */ do { if (*gpio_num >= data->base) { *gpio_num -= data->base; break; } data++; } while(1); if (data->uid == 0) { return 0; } dir = opendir(GPIO_BASE_PATH); if (!dir) { return 0; } while(0 != (ent = readdir(dir))) { /* For every gpiochip entry determine uid. */ if (1 == sscanf(ent->d_name, "gpiochip%u", offset)) { char uid_file[128]; unsigned uid_value; snprintf(uid_file, sizeof(uid_file), "%s/gpiochip%u/device/firmware_node/uid", GPIO_BASE_PATH, *offset); if (ReadFileInt(uid_file, &uid_value) < 0) continue; if (data->uid == uid_value) { match++; break; } } } closedir(dir); return (1 == match); } /* Braswell has 4 sets of GPIO banks. It is expected the firmware exposes each * bank of gpios using a UID in ACPI. Furthermore the gpio number exposed is * relative to the bank. e.g. gpio MF_ISH_GPIO_4 in the bank specified by UID 3 * would be encoded as 0x10016. * * UID | Bank Offset * ----+------------ * 1 | 0x0000 * 2 | 0x8000 * 3 | 0x10000 * 4 | 0x18000 */ static int BraswellFindGpioChipOffset(unsigned *gpio_num, unsigned *offset, const char *name) { static Basemapping data[]={ {0x20000, 0}, {0x18000, 4}, {0x10000, 3}, {0x08000, 2}, {0x00000, 1}}; return FindGpioChipOffsetByNumber(gpio_num, offset, data); } /* BayTrail has 3 sets of GPIO banks. It is expected the firmware exposes * each bank of gpios using a UID in ACPI. Furthermore the gpio number exposed * is relative to the bank. e.g. gpio 6 in the bank specified by UID 3 would * be encoded as 0x2006. * UID | Bank Offset * ----+------------ * 1 | 0x0000 * 2 | 0x1000 * 3 | 0x2000 */ static int BayTrailFindGpioChipOffset(unsigned *gpio_num, unsigned *offset, const char *name) { static Basemapping data[]={ {0x3000, 0}, {0x2000, 3}, {0x1000, 2}, {0x0000, 1}}; return FindGpioChipOffsetByNumber(gpio_num, offset, data); } struct GpioChipset { const char *name; int (*ChipOffsetAndGpioNumber)(unsigned *gpio_num, unsigned *chip_offset, const char *name); }; static const struct GpioChipset chipsets_supported[] = { { "AMD0030", FindGpioChipOffset }, { "NM10", FindGpioChipOffset }, { "CougarPoint", FindGpioChipOffset }, { "PantherPoint", FindGpioChipOffset }, { "LynxPoint", FindGpioChipOffset }, { "PCH-LP", FindGpioChipOffset }, { "INT3437:00", FindGpioChipOffsetByLabel }, { "INT344B:00", FindGpioChipOffsetByLabel }, /* INT3452 are for Apollolake */ { "INT3452:00", FindGpioChipOffsetByLabel }, { "INT3452:01", FindGpioChipOffsetByLabel }, { "INT3452:02", FindGpioChipOffsetByLabel }, { "INT3452:03", FindGpioChipOffsetByLabel }, { "INT3455:00", FindGpioChipOffsetByLabel }, { "INT34BB:00", FindGpioChipOffsetByLabel }, { "INT34C5:00", FindGpioChipOffsetByLabel }, /* INT3453 are for GLK */ { "INT3453:00", FindGpioChipOffsetByLabel }, { "INT3453:01", FindGpioChipOffsetByLabel }, { "INT3453:02", FindGpioChipOffsetByLabel }, { "INT3453:03", FindGpioChipOffsetByLabel }, { "BayTrail", BayTrailFindGpioChipOffset }, { "Braswell", BraswellFindGpioChipOffset }, { NULL }, }; static const struct GpioChipset *FindChipset(const char *name) { const struct GpioChipset *chipset = &chipsets_supported[0]; while (chipset->name != NULL) { if (!strcmp(name, chipset->name)) return chipset; chipset++; } return NULL; } /* Read a GPIO of the specified signal type (see ACPI GPIO SignalType). * * Returns 1 if the signal is asserted, 0 if not asserted, or -1 if error. */ static int ReadGpio(unsigned signal_type) { char name[128]; int index = 0; unsigned gpio_type; unsigned active_high; unsigned controller_num; unsigned controller_offset = 0; char controller_name[128]; unsigned value; const struct GpioChipset *chipset; /* Scan GPIO.* to find a matching signal type */ for (index = 0; ; index++) { snprintf(name, sizeof(name), "%s.%d/GPIO.0", ACPI_GPIO_PATH, index); if (ReadFileInt(name, &gpio_type) < 0) return -1; /* Ran out of GPIOs before finding a match */ if (gpio_type == signal_type) break; } /* Read attributes and controller info for the GPIO */ snprintf(name, sizeof(name), "%s.%d/GPIO.1", ACPI_GPIO_PATH, index); if (ReadFileInt(name, &active_high) < 0) return -1; snprintf(name, sizeof(name), "%s.%d/GPIO.2", ACPI_GPIO_PATH, index); if (ReadFileInt(name, &controller_num) < 0) return -1; /* Do not attempt to read GPIO that is set to -1 in ACPI */ if (controller_num == 0xFFFFFFFF) return -1; /* Check for chipsets we recognize. */ snprintf(name, sizeof(name), "%s.%d/GPIO.3", ACPI_GPIO_PATH, index); if (!ReadFileString(controller_name, sizeof(controller_name), name)) return -1; chipset = FindChipset(controller_name); if (chipset == NULL) return -1; /* Modify GPIO number by driver's offset */ if (!chipset->ChipOffsetAndGpioNumber(&controller_num, &controller_offset, chipset->name)) return -1; controller_offset += controller_num; /* Try reading the GPIO value */ snprintf(name, sizeof(name), "%s/gpio%d/value", GPIO_BASE_PATH, controller_offset); if (ReadFileInt(name, &value) < 0) { /* Try exporting the GPIO */ FILE* f = fopen(GPIO_EXPORT_PATH, "wt"); if (!f) return -1; fprintf(f, "%u", controller_offset); fclose(f); /* Try re-reading the GPIO value */ if (ReadFileInt(name, &value) < 0) return -1; } /* Normalize the value read from the kernel in case it is not always * 1. */ value = value ? 1 : 0; /* Compare the GPIO value with the active value and return 1 if * match. */ return (value == active_high ? 1 : 0); } int VbGetArchPropertyInt(const char* name) { int value = -1; /* Values from ACPI */ if (!strcasecmp(name,"fmap_base")) { unsigned fmap_base; if (ReadFileInt(ACPI_FMAP_PATH, &fmap_base) < 0) return -1; else value = (int)fmap_base; } /* Switch positions */ if (!strcasecmp(name,"devsw_cur")) { /* Systems with virtual developer switches return at-boot * value */ value = VbGetSystemPropertyInt("devsw_boot"); } else if (!strcasecmp(name,"recoverysw_cur")) { value = ReadGpio(GPIO_SIGNAL_TYPE_RECOVERY); } else if (!strcasecmp(name,"wpsw_cur")) { value = ReadGpio(GPIO_SIGNAL_TYPE_WP); if (-1 != value && FwidStartsWith("Mario.")) value = 1 - value; /* Mario reports this backwards */ } else if (!strcasecmp(name,"recoverysw_ec_boot")) { value = ReadFileBit(ACPI_CHSW_PATH, CHSW_RECOVERY_EC_BOOT); } else if (!strcasecmp(name,"phase_enforcement")) { value = ReadGpio(GPIO_SIGNAL_TYPE_PHASE_ENFORCEMENT); } /* Fields for old systems which don't have VbSharedData */ if (VbSharedDataVersion() < 2) { if (!strcasecmp(name,"recovery_reason")) { value = VbGetRecoveryReason(); } else if (!strcasecmp(name,"devsw_boot")) { value = ReadFileBit(ACPI_CHSW_PATH, CHSW_DEV_BOOT); } else if (!strcasecmp(name,"recoverysw_boot")) { value = ReadFileBit(ACPI_CHSW_PATH, CHSW_RECOVERY_BOOT); } else if (!strcasecmp(name,"wpsw_boot")) { value = ReadFileBit(ACPI_CHSW_PATH, CHSW_WP_BOOT); if (-1 != value && FwidStartsWith("Mario.")) value = 1 - value; /* Mario reports this * backwards */ } } /* NV storage values. If unable to get from NV storage, fall back to * the CMOS reboot field used by older BIOS (e.g. Mario). */ if (!strcasecmp(name,"recovery_request")) { value = vb2_get_nv_storage(VB2_NV_RECOVERY_REQUEST); if (-1 == value) value = VbGetCmosRebootField(CMOSRF_RECOVERY); } else if (!strcasecmp(name,"dbg_reset")) { value = vb2_get_nv_storage(VB2_NV_DEBUG_RESET_MODE); if (-1 == value) value = VbGetCmosRebootField(CMOSRF_DEBUG_RESET); } else if (!strcasecmp(name,"fwb_tries")) { value = vb2_get_nv_storage(VB2_NV_TRY_COUNT); if (-1 == value) value = VbGetCmosRebootField(CMOSRF_TRY_B); } /* Firmware update tries is now stored in the kernel field. On * older systems where it's not, it was stored in a file in the * stateful partition. */ if (!strcasecmp(name,"fwupdate_tries")) { unsigned fwupdate_value; if (-1 != vb2_get_nv_storage(VB2_NV_KERNEL_FIELD)) return -1; /* NvStorage supported; fail through * arch-specific implementation to normal * implementation. */ /* Read value from file; missing file means value=0. */ if (ReadFileInt(NEED_FWUPDATE_PATH, &fwupdate_value) < 0) value = 0; else value = (int)fwupdate_value; } return value; } const char* VbGetArchPropertyString(const char* name, char* dest, size_t size) { unsigned value; if (!strcasecmp(name,"arch")) { return StrCopy(dest, "x86", size); } else if (!strcasecmp(name,"hwid")) { return ReadFileString(dest, size, ACPI_BASE_PATH "/HWID"); } else if (!strcasecmp(name,"fwid")) { return ReadFileString(dest, size, ACPI_BASE_PATH "/FWID"); } else if (!strcasecmp(name,"ro_fwid")) { return ReadFileString(dest, size, ACPI_BASE_PATH "/FRID"); } else if (!strcasecmp(name,"mainfw_act")) { if (ReadFileInt(ACPI_BINF_PATH ".1", &value) < 0) return NULL; switch(value) { case 0: return StrCopy(dest, "recovery", size); case 1: return StrCopy(dest, "A", size); case 2: return StrCopy(dest, "B", size); default: return NULL; } } else if (!strcasecmp(name,"mainfw_type")) { return VbReadMainFwType(dest, size); } else if (!strcasecmp(name,"ecfw_act")) { if (ReadFileInt(ACPI_BINF_PATH ".2", &value) < 0) return NULL; switch(value) { case 0: return StrCopy(dest, "RO", size); case 1: return StrCopy(dest, "RW", size); default: return NULL; } } return NULL; } int VbSetArchPropertyInt(const char* name, int value) { /* NV storage values. If unable to get from NV storage, fall back to * the CMOS reboot field used by older BIOS. */ if (!strcasecmp(name,"recovery_request")) { if (0 == vb2_set_nv_storage(VB2_NV_RECOVERY_REQUEST, value)) return 0; return VbSetCmosRebootField(CMOSRF_RECOVERY, value); } else if (!strcasecmp(name,"dbg_reset")) { if (0 == vb2_set_nv_storage(VB2_NV_DEBUG_RESET_MODE, value)) return 0; return VbSetCmosRebootField(CMOSRF_DEBUG_RESET, value); } else if (!strcasecmp(name,"fwb_tries")) { if (0 == vb2_set_nv_storage(VB2_NV_TRY_COUNT, value)) return 0; return VbSetCmosRebootField(CMOSRF_TRY_B, value); } /* Firmware update tries is now stored in the kernel field. On * older systems where it's not, it was stored in a file in the * stateful partition. */ else if (!strcasecmp(name,"fwupdate_tries")) { if (-1 != vb2_get_nv_storage(VB2_NV_KERNEL_FIELD)) return -1; /* NvStorage supported; fail through * arch-specific implementation to normal * implementation */ if (value) { char buf[32]; snprintf(buf, sizeof(buf), "%d", value); return WriteFile(NEED_FWUPDATE_PATH, buf, strlen(buf)); } else { /* No update tries, so remove file if it exists. */ unlink(NEED_FWUPDATE_PATH); return 0; } } return -1; } int VbSetArchPropertyString(const char* name, const char* value) { /* If there were settable architecture-dependent string properties, * they'd be here. */ return -1; }