/* Copyright 2014 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include #include /* For PRIu64 */ #include #include #include #include #include "2api.h" #include "2common.h" #include "2rsa.h" #include "2sha.h" #include "2sysincludes.h" #include "file_type.h" #include "futility.h" #include "host_common.h" #include "kernel_blob.h" #include "util_misc.h" #include "vb1_helper.h" #include "vb2_common.h" /****************************************************************************/ /* Here are globals containing all the bits & pieces I'm working on. * * kernel vblock = keyblock + kernel preamble + padding to 64K (or whatever) * kernel blob = 32-bit kernel + config file + params + bootloader stub + * vmlinuz_header * kernel partition = kernel vblock + kernel blob * * The vb2_kernel_preamble.preamble_size includes the padding. */ /* The keyblock, preamble, and kernel blob are kept in separate places. */ static struct vb2_keyblock *g_keyblock; static struct vb2_kernel_preamble *g_preamble; static uint8_t *g_kernel_blob_data; static uint32_t g_kernel_blob_size; /* These refer to individual parts within the kernel blob. */ static uint8_t *g_kernel_data; static uint32_t g_kernel_size; static uint8_t *g_config_data; static uint32_t g_config_size; static uint8_t *g_param_data; static uint32_t g_param_size; static uint8_t *g_bootloader_data; static uint32_t g_bootloader_size; static uint8_t *g_vmlinuz_header_data; static uint32_t g_vmlinuz_header_size; static uint64_t g_ondisk_bootloader_addr; static uint64_t g_ondisk_vmlinuz_header_addr; /* * Read the kernel command line from a file. Get rid of \n characters along * the way and verify that the line fits into a 4K buffer. * * Return the buffer contaning the line on success (and set the line length * using the passed in parameter), or NULL in case something goes wrong. */ uint8_t *ReadConfigFile(const char *config_file, uint32_t *config_size) { uint8_t *config_buf; int i; if (VB2_SUCCESS != vb2_read_file(config_file, &config_buf, config_size)) return NULL; VB2_DEBUG(" config file size=%#x\n", *config_size); if (CROS_CONFIG_SIZE <= *config_size) { /* room for trailing '\0' */ fprintf(stderr, "Config file %s is too large (>= %d bytes)\n", config_file, CROS_CONFIG_SIZE); free(config_buf); return NULL; } /* Replace newlines with spaces */ for (i = 0; i < *config_size; i++) if ('\n' == config_buf[i]) config_buf[i] = ' '; return config_buf; } /****************************************************************************/ /* Return the smallest integral multiple of [alignment] that is equal * to or greater than [val]. Used to determine the number of * pages/sectors/blocks/whatever needed to contain [val] * items/bytes/etc. */ static uint32_t roundup(uint32_t val, uint32_t alignment) { uint32_t rem = val % alignment; if (rem) return val + (alignment - rem); return val; } /* Match regexp /\b--\b/ to delimit the start of the kernel commandline. If we * don't find one, we'll use the whole thing. */ static unsigned int find_cmdline_start(uint8_t *buf_ptr, unsigned int max_len) { char *input = (char *)buf_ptr; int start = 0; int i; for (i = 0; i < max_len - 1 && input[i]; i++) { if ('-' == input[i] && '-' == input[i + 1]) { if ((i == 0 || ' ' == input[i - 1]) && (i + 2 >= max_len || ' ' == input[i + 2])) { /* found "--" with nothing before or after it */ start = i + 2; /* hope for a trailing '\0' */ break; } } } while (' ' == input[start]) /* skip leading spaces */ start++; return start; } /* Offset of kernel command line string from the start of the kernel blob */ uint64_t kernel_cmd_line_offset(const struct vb2_kernel_preamble *preamble) { return preamble->bootloader_address - preamble->body_load_address - CROS_CONFIG_SIZE - CROS_PARAMS_SIZE; } /* Returns the size of the 32-bit kernel, or negative on error. */ static int KernelSize(uint8_t *kernel_buf, uint32_t kernel_size, enum arch_t arch) { uint32_t kernel32_start = 0; struct linux_kernel_params *lh; /* Except for x86, the kernel is the kernel. */ if (arch != ARCH_X86) return kernel_size; /* The first part of the x86 vmlinuz is a header, followed by * a real-mode boot stub. We only want the 32-bit part. */ lh = (struct linux_kernel_params *)kernel_buf; if (lh->header != VMLINUZ_HEADER_SIG) { VB2_DEBUG("Not a linux kernel image\n"); return kernel_size; } kernel32_start = (lh->setup_sects + 1) << 9; if (kernel32_start >= kernel_size) { fprintf(stderr, "Malformed kernel\n"); return -1; } return kernel_size - kernel32_start; } /* This extracts g_kernel_* and g_param_* from a standard vmlinuz file. * It returns nonzero on error. */ static int PickApartVmlinuz(uint8_t *kernel_buf, uint32_t kernel_size, enum arch_t arch, uint64_t kernel_body_load_address) { uint32_t kernel32_start = 0; uint32_t kernel32_size = kernel_size; struct linux_kernel_params *lh, *params; /* Except for x86, the kernel is the kernel. */ switch (arch) { case ARCH_X86: /* The first part of the x86 vmlinuz is a header, followed by * a real-mode boot stub. We only want the 32-bit part. */ lh = (struct linux_kernel_params *)kernel_buf; if (lh->header != VMLINUZ_HEADER_SIG) { VB2_DEBUG("Not a linux kernel image\n"); break; } kernel32_start = (lh->setup_sects + 1) << 9; if (kernel32_start >= kernel_size) { fprintf(stderr, "Malformed kernel\n"); return -1; } kernel32_size = kernel_size - kernel32_start; VB2_DEBUG(" kernel16_start=%#x\n", 0); VB2_DEBUG(" kernel16_size=%#x\n", kernel32_start); /* Copy the original zeropage data from kernel_buf into * g_param_data, then tweak a few fields for our purposes */ params = (struct linux_kernel_params *)(g_param_data); memcpy(&(params->setup_sects), &(lh->setup_sects), offsetof(struct linux_kernel_params, e820_entries) - offsetof(struct linux_kernel_params, setup_sects)); params->boot_flag = 0; params->ramdisk_image = 0; /* we don't support initrd */ params->ramdisk_size = 0; params->type_of_loader = 0xff; /* We need to point to the kernel commandline arg. On disk, it * will come right after the 32-bit part of the kernel. */ params->cmd_line_ptr = kernel_body_load_address + roundup(kernel32_size, CROS_ALIGN) + find_cmdline_start(g_config_data, g_config_size); VB2_DEBUG(" cmdline_addr=%#x\n", params->cmd_line_ptr); VB2_DEBUG(" version=%#x\n", params->version); VB2_DEBUG(" kernel_alignment=%#x\n", params->kernel_alignment); VB2_DEBUG(" relocatable_kernel=%#x\n", params->relocatable_kernel); /* Add a fake e820 memory map with 2 entries. */ params->n_e820_entry = 2; params->e820_entries[0].start_addr = 0x00000000; params->e820_entries[0].segment_size = 0x00001000; params->e820_entries[0].segment_type = E820_TYPE_RAM; params->e820_entries[1].start_addr = 0xfffff000; params->e820_entries[1].segment_size = 0x00001000; params->e820_entries[1].segment_type = E820_TYPE_RESERVED; break; default: break; } VB2_DEBUG(" kernel32_start=%#x\n", kernel32_start); VB2_DEBUG(" kernel32_size=%#x\n", kernel32_size); /* Keep just the 32-bit kernel. */ if (kernel32_size) { g_kernel_size = kernel32_size; memcpy(g_kernel_data, kernel_buf + kernel32_start, g_kernel_size); } /* done */ return 0; } /* Split a kernel blob into separate g_kernel, g_param, g_config, * g_bootloader, and g_vmlinuz_header parts. */ static void UnpackKernelBlob(uint8_t *kernel_blob_data) { uint32_t now; uint32_t vmlinuz_header_size = 0; uint64_t vmlinuz_header_address = 0; /* We have to work backwards from the end, because the preamble only describes the bootloader and vmlinuz stubs. */ /* Vmlinuz Header is at the end */ vb2_kernel_get_vmlinuz_header(g_preamble, &vmlinuz_header_address, &vmlinuz_header_size); if (vmlinuz_header_size) { now = vmlinuz_header_address - g_preamble->body_load_address; g_vmlinuz_header_size = vmlinuz_header_size; g_vmlinuz_header_data = kernel_blob_data + now; VB2_DEBUG("vmlinuz_header_size = %#x\n", g_vmlinuz_header_size); VB2_DEBUG("vmlinuz_header_ofs = %#x\n", now); } /* Where does the bootloader stub begin? */ now = g_preamble->bootloader_address - g_preamble->body_load_address; /* Bootloader is at the end */ g_bootloader_size = g_preamble->bootloader_size; g_bootloader_data = kernel_blob_data + now; /* TODO: What to do if this is beyond the end of the blob? */ VB2_DEBUG("bootloader_size = %#x\n", g_bootloader_size); VB2_DEBUG("bootloader_ofs = %#x\n", now); /* Before that is the params */ now -= CROS_PARAMS_SIZE; g_param_size = CROS_PARAMS_SIZE; g_param_data = kernel_blob_data + now; VB2_DEBUG("param_ofs = %#x\n", now); /* Before that is the config */ now -= CROS_CONFIG_SIZE; g_config_size = CROS_CONFIG_SIZE; g_config_data = kernel_blob_data + now; VB2_DEBUG("config_ofs = %#x\n", now); /* The kernel starts at offset 0 and extends up to the config */ g_kernel_data = kernel_blob_data; g_kernel_size = now; VB2_DEBUG("kernel_size = %#x\n", g_kernel_size); } /* Replaces the config section of the specified kernel blob. * Return nonzero on error. */ int UpdateKernelBlobConfig(uint8_t *kblob_data, uint32_t kblob_size, uint8_t *config_data, uint32_t config_size) { /* We should have already examined this blob. If not, we could do it * again, but it's more likely due to an error. */ if (kblob_data != g_kernel_blob_data || kblob_size != g_kernel_blob_size) { fprintf(stderr, "Trying to update some other blob\n"); return -1; } memset(g_config_data, 0, g_config_size); memcpy(g_config_data, config_data, config_size); return 0; } /* Split a kernel partition into separate vblock and blob parts. */ uint8_t *unpack_kernel_partition(uint8_t *kpart_data, uint32_t kpart_size, uint32_t padding, struct vb2_keyblock **keyblock_ptr, struct vb2_kernel_preamble **preamble_ptr, uint32_t *blob_size_ptr) { struct vb2_kernel_preamble *preamble; uint32_t vmlinuz_header_size = 0; uint64_t vmlinuz_header_address = 0; uint32_t now = 0; /* Sanity-check the keyblock */ struct vb2_keyblock *keyblock = (struct vb2_keyblock *)kpart_data; VB2_DEBUG("Keyblock is %#x bytes\n", keyblock->keyblock_size); now += keyblock->keyblock_size; if (now > kpart_size) { fprintf(stderr, "keyblock_size advances past the end of the blob\n"); return NULL; } if (now > padding) { fprintf(stderr, "keyblock_size advances past %u byte padding\n", padding); return NULL; } /* LGTM */ g_keyblock = keyblock; /* And the preamble */ preamble = (struct vb2_kernel_preamble *)(kpart_data + now); VB2_DEBUG("Preamble is %#x bytes\n", preamble->preamble_size); now += preamble->preamble_size; if (now > kpart_size) { fprintf(stderr, "preamble_size advances past the end of the blob\n"); return NULL; } if (now > padding) { fprintf(stderr, "preamble_size advances past %u" " byte padding\n", padding); return NULL; } /* LGTM */ VB2_DEBUG(" kernel_version = %d\n", preamble->kernel_version); VB2_DEBUG(" bootloader_address = 0x%" PRIx64 "\n", preamble->bootloader_address); VB2_DEBUG(" bootloader_size = %#x\n", preamble->bootloader_size); VB2_DEBUG(" kern_blob_size = %#x\n", preamble->body_signature.data_size); uint32_t flags = vb2_kernel_get_flags(preamble); VB2_DEBUG(" flags = %#x\n", flags); g_preamble = preamble; g_ondisk_bootloader_addr = g_preamble->bootloader_address; vb2_kernel_get_vmlinuz_header(preamble, &vmlinuz_header_address, &vmlinuz_header_size); if (vmlinuz_header_size) { VB2_DEBUG(" vmlinuz_header_address = 0x%" PRIx64 "\n", vmlinuz_header_address); VB2_DEBUG(" vmlinuz_header_size = %#x\n", vmlinuz_header_size); g_ondisk_vmlinuz_header_addr = vmlinuz_header_address; } VB2_DEBUG("kernel blob is at offset %#x\n", now); g_kernel_blob_data = kpart_data + now; g_kernel_blob_size = preamble->body_signature.data_size; /* Sanity check */ if (g_kernel_blob_size < preamble->body_signature.data_size) fprintf(stderr, "Warning: kernel file only has %#x bytes\n", g_kernel_blob_size); /* Update the blob pointers */ UnpackKernelBlob(g_kernel_blob_data); if (keyblock_ptr) *keyblock_ptr = keyblock; if (preamble_ptr) *preamble_ptr = preamble; if (blob_size_ptr) *blob_size_ptr = g_kernel_blob_size; return g_kernel_blob_data; } uint8_t *SignKernelBlob(uint8_t *kernel_blob, uint32_t kernel_size, uint32_t padding, int version, uint64_t kernel_body_load_address, struct vb2_keyblock *keyblock, struct vb2_private_key *signpriv_key, uint32_t flags, uint32_t *vblock_size_ptr) { /* Make sure the preamble fills up the rest of the required padding */ uint32_t min_size = padding > keyblock->keyblock_size ? padding - keyblock->keyblock_size : 0; /* Sign the kernel data */ struct vb2_signature *body_sig = vb2_calculate_signature(kernel_blob, kernel_size, signpriv_key); if (!body_sig) { fprintf(stderr, "Error calculating body signature\n"); return NULL; } /* Create preamble */ struct vb2_kernel_preamble *preamble = vb2_create_kernel_preamble(version, kernel_body_load_address, g_ondisk_bootloader_addr, g_bootloader_size, body_sig, g_ondisk_vmlinuz_header_addr, g_vmlinuz_header_size, flags, min_size, signpriv_key); if (!preamble) { fprintf(stderr, "Error creating preamble.\n"); return 0; } uint32_t outsize = keyblock->keyblock_size + preamble->preamble_size; void *outbuf = calloc(outsize, 1); memcpy(outbuf, keyblock, keyblock->keyblock_size); memcpy(outbuf + keyblock->keyblock_size, preamble, preamble->preamble_size); if (vblock_size_ptr) *vblock_size_ptr = outsize; return outbuf; } /* Returns zero on success */ int WriteSomeParts(const char *outfile, void *part1_data, uint32_t part1_size, void *part2_data, uint32_t part2_size) { FILE *f; /* Write the output file */ VB2_DEBUG("writing %s with %#x, %#x\n", outfile, part1_size, part2_size); f = fopen(outfile, "wb"); if (!f) { fprintf(stderr, "Can't open output file %s: %s\n", outfile, strerror(errno)); return -1; } if (part1_data && part1_size) { if (1 != fwrite(part1_data, part1_size, 1, f)) { fprintf(stderr, "Can't write output file %s: %s\n", outfile, strerror(errno)); fclose(f); unlink(outfile); return -1; } } if (part2_data && part2_size) { if (1 != fwrite(part2_data, part2_size, 1, f)) { fprintf(stderr, "Can't write output file %s: %s\n", outfile, strerror(errno)); fclose(f); unlink(outfile); return -1; } } fclose(f); /* Success */ return 0; } /* Returns 0 on success */ int VerifyKernelBlob(uint8_t *kernel_blob, uint32_t kernel_size, struct vb2_packed_key *signpub_key, const char *keyblock_outfile, uint32_t min_version) { int rv = -1; uint32_t vmlinuz_header_size = 0; uint64_t vmlinuz_header_address = 0; uint8_t workbuf[VB2_KERNEL_WORKBUF_RECOMMENDED_SIZE] __attribute__((aligned(VB2_WORKBUF_ALIGN))); struct vb2_workbuf wb; vb2_workbuf_init(&wb, workbuf, sizeof(workbuf)); if (signpub_key) { struct vb2_public_key pubkey; if (VB2_SUCCESS != vb2_unpack_key(&pubkey, signpub_key)) { fprintf(stderr, "Error unpacking signing key.\n"); goto done; } if (VB2_SUCCESS != vb2_verify_keyblock(g_keyblock, g_keyblock->keyblock_size, &pubkey, &wb)) { fprintf(stderr, "Error verifying keyblock.\n"); goto done; } } else if (VB2_SUCCESS != vb2_verify_keyblock_hash(g_keyblock, g_keyblock->keyblock_size, &wb)) { fprintf(stderr, "Error verifying keyblock.\n"); goto done; } printf("Keyblock:\n"); struct vb2_packed_key *data_key = &g_keyblock->data_key; printf(" Signature: %s\n", signpub_key ? "valid" : "ignored"); printf(" Size: %#x\n", g_keyblock->keyblock_size); printf(" Flags: %u ", g_keyblock->keyblock_flags); if (g_keyblock->keyblock_flags & VB2_KEYBLOCK_FLAG_DEVELOPER_0) printf(" !DEV"); if (g_keyblock->keyblock_flags & VB2_KEYBLOCK_FLAG_DEVELOPER_1) printf(" DEV"); if (g_keyblock->keyblock_flags & VB2_KEYBLOCK_FLAG_RECOVERY_0) printf(" !REC"); if (g_keyblock->keyblock_flags & VB2_KEYBLOCK_FLAG_RECOVERY_1) printf(" REC"); printf("\n"); printf(" Data key algorithm: %u %s\n", data_key->algorithm, vb2_get_crypto_algorithm_name(data_key->algorithm)); printf(" Data key version: %u\n", data_key->key_version); printf(" Data key sha1sum: %s\n", packed_key_sha1_string(data_key)); if (keyblock_outfile) { FILE *f = NULL; f = fopen(keyblock_outfile, "wb"); if (!f) { fprintf(stderr, "Can't open keyblock file %s: %s\n", keyblock_outfile, strerror(errno)); goto done; } if (1 != fwrite(g_keyblock, g_keyblock->keyblock_size, 1, f)) { fprintf(stderr, "Can't write keyblock file %s: %s\n", keyblock_outfile, strerror(errno)); fclose(f); goto done; } fclose(f); } if (data_key->key_version < (min_version >> 16)) { fprintf(stderr, "Data key version %u < minimum %u.\n", data_key->key_version, (min_version >> 16)); goto done; } struct vb2_public_key pubkey; if (VB2_SUCCESS != vb2_unpack_key(&pubkey, data_key)) { fprintf(stderr, "Error parsing data key.\n"); goto done; } /* Verify preamble */ if (VB2_SUCCESS != vb2_verify_kernel_preamble( (struct vb2_kernel_preamble *)g_preamble, g_preamble->preamble_size, &pubkey, &wb)) { fprintf(stderr, "Error verifying preamble.\n"); goto done; } printf("Preamble:\n"); printf(" Size: %#x\n", g_preamble->preamble_size); printf(" Header version: %u.%u\n", g_preamble->header_version_major, g_preamble->header_version_minor); printf(" Kernel version: %u\n", g_preamble->kernel_version); printf(" Body load address: 0x%" PRIx64 "\n", g_preamble->body_load_address); printf(" Body size: %#x\n", g_preamble->body_signature.data_size); printf(" Bootloader address: 0x%" PRIx64 "\n", g_preamble->bootloader_address); printf(" Bootloader size: %#x\n", g_preamble->bootloader_size); vb2_kernel_get_vmlinuz_header(g_preamble, &vmlinuz_header_address, &vmlinuz_header_size); if (vmlinuz_header_size) { printf(" Vmlinuz header address: 0x%" PRIx64 "\n", vmlinuz_header_address); printf(" Vmlinuz header size: %#x\n", (uint32_t)vmlinuz_header_size); } printf(" Flags : %#x\n", vb2_kernel_get_flags(g_preamble)); if (g_preamble->kernel_version < (min_version & 0xFFFF)) { fprintf(stderr, "Kernel version %u is lower than minimum %u.\n", g_preamble->kernel_version, (min_version & 0xFFFF)); goto done; } /* Verify body */ if (VB2_SUCCESS != vb2_verify_data(kernel_blob, kernel_size, &g_preamble->body_signature, &pubkey, &wb)) { fprintf(stderr, "Error verifying kernel body.\n"); goto done; } printf("Body verification succeeded.\n"); printf("Config:\n%s\n", kernel_blob + kernel_cmd_line_offset(g_preamble)); rv = 0; done: return rv; } uint8_t *CreateKernelBlob(uint8_t *vmlinuz_buf, uint32_t vmlinuz_size, enum arch_t arch, uint64_t kernel_body_load_address, uint8_t *config_data, uint32_t config_size, uint8_t *bootloader_data, uint32_t bootloader_size, uint32_t *blob_size_ptr) { uint32_t now = 0; int tmp; /* We have all the parts. How much room do we need? */ tmp = KernelSize(vmlinuz_buf, vmlinuz_size, arch); if (tmp < 0) return NULL; g_kernel_size = tmp; g_config_size = CROS_CONFIG_SIZE; g_param_size = CROS_PARAMS_SIZE; g_bootloader_size = roundup(bootloader_size, CROS_ALIGN); g_vmlinuz_header_size = vmlinuz_size-g_kernel_size; g_kernel_blob_size = roundup(g_kernel_size, CROS_ALIGN) + g_config_size + g_param_size + g_bootloader_size + g_vmlinuz_header_size; /* * Round the whole blob up so it's a multiple of sectors, even on 4k * devices. */ g_kernel_blob_size = roundup(g_kernel_blob_size, CROS_ALIGN); VB2_DEBUG("g_kernel_blob_size %#x\n", g_kernel_blob_size); /* Allocate space for the blob. */ g_kernel_blob_data = malloc(g_kernel_blob_size); memset(g_kernel_blob_data, 0, g_kernel_blob_size); /* Assign the sub-pointers */ g_kernel_data = g_kernel_blob_data + now; VB2_DEBUG("g_kernel_size %#x ofs %#x\n", g_kernel_size, now); now += roundup(g_kernel_size, CROS_ALIGN); g_config_data = g_kernel_blob_data + now; VB2_DEBUG("g_config_size %#x ofs %#x\n", g_config_size, now); now += g_config_size; g_param_data = g_kernel_blob_data + now; VB2_DEBUG("g_param_size %#x ofs %#x\n", g_param_size, now); now += g_param_size; g_bootloader_data = g_kernel_blob_data + now; VB2_DEBUG("g_bootloader_size %#x ofs %#x\n", g_bootloader_size, now); g_ondisk_bootloader_addr = kernel_body_load_address + now; VB2_DEBUG("g_ondisk_bootloader_addr 0x%" PRIx64 "\n", g_ondisk_bootloader_addr); now += g_bootloader_size; if (g_vmlinuz_header_size) { g_vmlinuz_header_data = g_kernel_blob_data + now; VB2_DEBUG("g_vmlinuz_header_size %#x ofs %#x\n", g_vmlinuz_header_size, now); g_ondisk_vmlinuz_header_addr = kernel_body_load_address + now; VB2_DEBUG("g_ondisk_vmlinuz_header_addr 0x%" PRIx64 "\n", g_ondisk_vmlinuz_header_addr); } VB2_DEBUG("end of kern_blob at kern_blob+%#x\n", now); /* Copy the kernel and params bits into the correct places */ if (0 != PickApartVmlinuz(vmlinuz_buf, vmlinuz_size, arch, kernel_body_load_address)) { fprintf(stderr, "Error picking apart kernel file.\n"); free(g_kernel_blob_data); g_kernel_blob_data = NULL; g_kernel_blob_size = 0; return NULL; } /* Copy the other bits too */ memcpy(g_config_data, config_data, config_size); memcpy(g_bootloader_data, bootloader_data, bootloader_size); if (g_vmlinuz_header_size) { memcpy(g_vmlinuz_header_data, vmlinuz_buf, g_vmlinuz_header_size); } if (blob_size_ptr) *blob_size_ptr = g_kernel_blob_size; return g_kernel_blob_data; } enum futil_file_type ft_recognize_vblock1(uint8_t *buf, uint32_t len) { uint8_t workbuf[VB2_KERNEL_WORKBUF_RECOMMENDED_SIZE] __attribute__((aligned(VB2_WORKBUF_ALIGN))); struct vb2_workbuf wb; vb2_workbuf_init(&wb, workbuf, sizeof(workbuf)); /* Vboot 2.0 signature checks destroy the buffer, so make a copy */ uint8_t *buf2 = malloc(len); memcpy(buf2, buf, len); struct vb2_keyblock *keyblock = (struct vb2_keyblock *)buf2; if (VB2_SUCCESS != vb2_verify_keyblock_hash(keyblock, len, &wb)) { free(buf2); return FILE_TYPE_UNKNOWN; } /* Try unpacking the data key from the keyblock */ struct vb2_public_key data_key; if (VB2_SUCCESS != vb2_unpack_key(&data_key, &keyblock->data_key)) { /* It looks like a bad keyblock, but still a keyblock */ free(buf2); return FILE_TYPE_KEYBLOCK; } uint32_t more = keyblock->keyblock_size; /* Followed by firmware preamble too? */ struct vb2_fw_preamble *pre2 = (struct vb2_fw_preamble *)(buf2 + more); if (VB2_SUCCESS == vb2_verify_fw_preamble(pre2, len - more, &data_key, &wb)) { free(buf2); return FILE_TYPE_FW_PREAMBLE; } /* Recopy since firmware preamble check destroyed the buffer */ memcpy(buf2, buf, len); /* Or maybe kernel preamble? */ struct vb2_kernel_preamble *kern_preamble = (struct vb2_kernel_preamble *)(buf2 + more); if (VB2_SUCCESS == vb2_verify_kernel_preamble(kern_preamble, len - more, &data_key, &wb)) { free(buf2); return FILE_TYPE_KERN_PREAMBLE; } free(buf2); /* No, just keyblock */ return FILE_TYPE_KEYBLOCK; } enum futil_file_type ft_recognize_vb1_key(uint8_t *buf, uint32_t len) { /* Maybe just a packed public key? */ const struct vb2_packed_key *pubkey = (struct vb2_packed_key *)buf; if (vb2_packed_key_looks_ok(pubkey, len) == VB2_SUCCESS) return FILE_TYPE_PUBKEY; /* How about a private key? */ if (len < sizeof(uint64_t)) return FILE_TYPE_UNKNOWN; const unsigned char *start = buf + sizeof(uint64_t); struct rsa_st *rsa = d2i_RSAPrivateKey(NULL, &start, len - sizeof(uint64_t)); if (rsa) { RSA_free(rsa); return FILE_TYPE_PRIVKEY; } return FILE_TYPE_UNKNOWN; }